JPS60212651A - Electronic control type fuel injector - Google Patents

Electronic control type fuel injector

Info

Publication number
JPS60212651A
JPS60212651A JP6822584A JP6822584A JPS60212651A JP S60212651 A JPS60212651 A JP S60212651A JP 6822584 A JP6822584 A JP 6822584A JP 6822584 A JP6822584 A JP 6822584A JP S60212651 A JPS60212651 A JP S60212651A
Authority
JP
Japan
Prior art keywords
fuel ratio
lean air
air
engine
water temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6822584A
Other languages
Japanese (ja)
Inventor
Koji Hattori
服部 好志
Toshimitsu Ito
利光 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP6822584A priority Critical patent/JPS60212651A/en
Publication of JPS60212651A publication Critical patent/JPS60212651A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent the retardation, breathing, etc. of an engine by setting the air-fuel ratio to rich side for a prescribed time after the rise of the cooling-water temperature to a prescribed value ensuring perfect warming, after the engine starts, in the captioned apparatus for operating an internal-combustion engine with an aimed lean air-fuel ratio. CONSTITUTION:When an ignition switch 25 is turned ON, an electronic controller 50 judges if the cooling-water temperature detected by a water-temperature sensor 12 is over a prescribed value or not, and in case of NO, namely before perfect warming, a fuel injection valve 16 is controlled so that the lean air-fuel ratio feedback control is carried-out according to the lean air-fuel ratio correction coefficient set on the basis of the output of a limit current type oxygen concentration sensor (lean sensor) 10. When the cooling-water temperature rises to a prescribed value ensuring perfect warming, the lean air-fuel ratio feedback control is carried-out according to the lean air-fuel ratio correction coefficient for bringing the air-fuel ratio to the rich side during a prescribed time from the rise of the cooling-water temperature, and retardation, breathing, etc. of the engine during transition are prevented.

Description

【発明の詳細な説明】 [技術分野] 本発明は内燃機関を目標リーン空燃比で運転する電子制
御式燃料噴射装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an electronically controlled fuel injection device for operating an internal combustion engine at a target lean air-fuel ratio.

−1− [従来技術] 一般に、排気中の残存酸素l!1度に比例した電流を発
生するリーンセンサを備え、内燃機関を目標リーン空燃
比で運転する電子制御式燃料噴射装置においては、第1
図に示すように、冷却水ITHWがTHW2 (例えば
80℃)以上の完全@機時であり、かつ、リーン空燃比
(A/F)フィードバック制御時には、目標空燃比(A
/F)は最も大きな値に設定され、また冷却水ITHW
がTI−IWl (例えば55℃)以上THW2以下で
あり、かつ、リーンA/Fフィードバック制御時には、
目標A/Fは上記完全暖機時の目allA/Fに比べて
リッチ側即ち濃い側に設定され、また、冷却水温THW
がTHW1以下の空燃比(A/F)オーブン制御時には
、目標A/Fは更にリッチ側に設定している。但し、完
全11flI後にあっては、目標A/Fが図では一定値
のように示されているが、実際には、機関回転数および
負荷に応じて目標△/Fが定められる。
-1- [Prior art] Generally, residual oxygen in exhaust gas l! In an electronically controlled fuel injection system that is equipped with a lean sensor that generates a current proportional to 1°C and operates an internal combustion engine at a target lean air-fuel ratio,
As shown in the figure, when the cooling water ITHW is THW2 (e.g. 80°C) or higher and the engine is fully operated, and during lean air-fuel ratio (A/F) feedback control, the target air-fuel ratio (A/F) is
/F) is set to the largest value, and the cooling water ITHW
is TI-IWl (e.g. 55℃) or more and THW2 or less, and during lean A/F feedback control,
The target A/F is set to the rich side, that is, the dark side, compared to the target all A/F at the time of complete warm-up, and the cooling water temperature THW
During oven control with an air-fuel ratio (A/F) of THW1 or less, the target A/F is set further to the rich side. However, although the target A/F is shown as a constant value in the diagram after the complete 11flI, the target Δ/F is actually determined according to the engine speed and load.

しかし、目標A/Fを上記の如く設定して内燃−2− 機関を運転すると、機開始動後完全暖機前のり−ンA/
Fフィードバック制御から完全暖機後のリーンA/Fフ
ィードバック制御に移行するとき、いわゆる、機関のも
たつき、息つき等といった不具合が生じ易かった。
However, if the target A/F is set as above and the internal combustion engine is operated, the A/F speed will increase after the engine starts and before it is completely warmed up.
When shifting from F feedback control to lean A/F feedback control after complete warm-up, problems such as so-called engine sluggishness and breathing tend to occur.

ところで、この種の電子制御式燃料噴射装置においては
燃料噴射fiTAUを次の式、即ちTAU=TPxFW
Lx (1+FASE+KLEAN+・・・) により定めている。この式において、TPは基本噴@量
、FWLは暖機増量係数、FASEは始動後増量係数を
表わす。KLEANは目標空燃比をリーン空燃比にする
ための補正係数であり仮に目標空燃比を理論空燃比にす
る場合には「1」の値とされるもの(本発明においては
リーン空燃比補正係数と呼んでいる。)を表わし、完全
暖機前においては、冷却水温および制御モードに応じて
第2図に示すように設定され、一方、完全暖機後におい
ては、次の式、即ち KLEAN=KLEANNExKLEANPM−3− により定められる。この式において、係数KLEANN
Eおよび係数KLEANPMはそれぞれ第3図および第
4図に示すように機関回転数NEおよび負荷(吸気管圧
力)PMに対応して定められ、またリーン空燃比補正係
数KLEANは1以下の値とされる。
By the way, in this type of electronically controlled fuel injection device, the fuel injection fiTAU is expressed by the following formula, that is, TAU=TPxFW
It is determined by Lx (1+FASE+KLEAN+...). In this equation, TP represents the basic injection amount, FWL represents the warm-up increase coefficient, and FASE represents the post-start increase coefficient. KLEAN is a correction coefficient for making the target air-fuel ratio into a lean air-fuel ratio, and if the target air-fuel ratio is made into the stoichiometric air-fuel ratio, the value is "1" (in the present invention, it is called the lean air-fuel ratio correction coefficient). ) is set as shown in Fig. 2 according to the cooling water temperature and control mode before it is completely warmed up, while after it is completely warmed up, it is set as shown in the following formula, that is, KLEAN=KLEANNExKLEANPM. -3- Defined by. In this formula, the coefficient KLEANN
E and the coefficient KLEANPM are determined corresponding to the engine speed NE and the load (intake pipe pressure) PM, respectively, as shown in Figs. 3 and 4, and the lean air-fuel ratio correction coefficient KLEAN is set to a value of 1 or less. Ru.

[発明の目的] 本発明は上記に鑑みなされたものであり、少なくとも次
のような移行、即ち、機関始動後、完全暖機前のリーン
A/Fフィードバック制御から完全暖機後のリーンA/
Fフィードバック制御への移行があると、この移行時点
から所定の期間、上記リーン空燃比補正係数の値を増大
せしめて燃料噴射量が増大するようにし、この移行時の
機関のもたつき、息つき等を防止することを目的とする
[Object of the Invention] The present invention has been made in view of the above, and includes at least the following transition, that is, from lean A/F feedback control after engine startup and before complete warm-up to lean A/F feedback control after complete warm-up.
When there is a transition to F-feedback control, the value of the lean air-fuel ratio correction coefficient is increased for a predetermined period from the transition point to increase the fuel injection amount, thereby reducing engine sluggishness, breathing, etc. during this transition. The purpose is to prevent

[発明の構成] そのため本発明の電子制御式燃料噴射装置は、第5図に
示すように、 リーン空燃比補正係数を含む噴射量演算式により燃料噴
射量を定める演算手段M1を備え、内燃−4一 機関M2を目標リーン空燃比で運転する電子制御式燃料
噴射装置において、 機関始動後冷却水温が完全暖機を示す所定温度に上昇し
たとき、値rOJよりも大きな一定値とされる補正量で
あって、その後時間の経過にしたがって値「0」まで減
衰し、あるいは、所定時間後直rOJとなるものを設定
する手段M3を設け、この補正量に上記リーン空燃比補
正係数を加算して新たなリーン空燃比補正係数としたこ
とを特徴とする。なお、図中の他の符号M4、M5、M
6はそれぞれ、電子制御装置、リーンセンサ、燃料噴射
弁を表わす。
[Structure of the Invention] Therefore, as shown in FIG. 5, the electronically controlled fuel injection device of the present invention includes a calculation means M1 that determines the fuel injection amount by an injection amount calculation formula including a lean air-fuel ratio correction coefficient, and 41 In an electronically controlled fuel injection system that operates engine M2 at a target lean air-fuel ratio, when the cooling water temperature rises to a predetermined temperature indicating complete warm-up after engine startup, the correction amount is set to a constant value larger than the value rOJ. Then, a means M3 is provided for setting a value that attenuates to the value "0" as time passes or becomes rOJ immediately after a predetermined time, and adds the lean air-fuel ratio correction coefficient to this correction amount. It is characterized by a new lean air-fuel ratio correction coefficient. In addition, other symbols M4, M5, M
6 represents an electronic control unit, a lean sensor, and a fuel injection valve, respectively.

[実施例] 以下、第6図ないし第9図を参照しつつ本発明の一実施
例を説明する。
[Embodiment] Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 6 to 9.

第6図は本発明の一実施例電子制御式燃料噴射装置を含
む内燃機関の電子制御システムの全体構成を示す。
FIG. 6 shows the overall configuration of an electronic control system for an internal combustion engine including an electronically controlled fuel injection device according to an embodiment of the present invention.

図において、マイクロコンピュータ内臓の電子、制御装
置50は内燃機関1の各種運転状態を検出−5= するための後述する如きセンサ類からの検出信号を受け
、燃料噴射制御、点火時期制御、アイドル回転数制御お
よびEGR(排気ガス再循環)制御を行なう。
In the figure, an electronic control device 50 with a built-in microcomputer receives detection signals from sensors as described below to detect various operating states of the internal combustion engine 1, and performs fuel injection control, ignition timing control, and idle rotation. Performs numerical control and EGR (exhaust gas recirculation) control.

内燃機関1の運転状態を検出するためのセンサ類として
、吸気系のインテークマニホルド2には、エアクリーナ
3により浄化された後の吸入空気の温度を検出するサー
ミスタ式の吸気温センサ5と、アクセルペダル6に連動
し吸入空気量を制御するスロットルバルブ7の弁開度を
検出するポテンショメータ式のスロットルセン゛す8と
が設けられている。またサージタンク18には吸気圧セ
ンサ4が設けられている。一方、排気系のエギゾースト
マニホルド9には排気ガス中の残存酸素濃度を検出する
限界電流型酸素濃度センサ即ちリーンセンサ10が設け
られている。更に、内燃機関1のシリンダブロック11
には冷却水温を検出するサーミスタ式の水温センサ12
が設けられている。更に、点火系のディストリビュータ
13には、内燃機関1の回転数および基準ピストン位置
を検出す−6− べくロータ14の回転数および基準角度位置を検出する
電磁ピックアップ式の回転センサ15が設けられている
As sensors for detecting the operating state of the internal combustion engine 1, the intake manifold 2 of the intake system includes a thermistor-type intake temperature sensor 5 that detects the temperature of intake air after being purified by the air cleaner 3, and an accelerator pedal. A potentiometer type throttle sensor 8 is provided which detects the opening degree of a throttle valve 7 which is linked to the throttle valve 6 and controls the amount of intake air. Further, the surge tank 18 is provided with an intake pressure sensor 4. On the other hand, the exhaust manifold 9 of the exhaust system is provided with a limiting current type oxygen concentration sensor, ie, a lean sensor 10, which detects the residual oxygen concentration in the exhaust gas. Furthermore, the cylinder block 11 of the internal combustion engine 1
There is a thermistor-type water temperature sensor 12 that detects the cooling water temperature.
is provided. Further, the ignition system distributor 13 is provided with an electromagnetic pickup type rotation sensor 15 for detecting the rotation speed and reference angular position of the rotor 14 in order to detect the rotation speed and reference piston position of the internal combustion engine 1. There is.

一方、電子制御装置50により制御される対象としては
、インテークマニホルド2に設けられた電磁駆動式のイ
ンジェクタ即ち燃料噴射弁16およびコールドスタート
インジェクタ17があり、また、スロットルバルブ7上
流側とサージタンク18との間のバイパス通路19に設
けられた電磁駆fj式又はダイヤフラム式のISO(ア
イドルスピードコントロール)バルブ2oがあり、また
、エギゾーストマニホルド9からサージタンク18に至
る排気ガス再循環路21に設けられた電磁駆動式のF 
ORI+11 III弁22があり、また、点火系のイ
グナイタ23がある。なお、図中の他の符号、24.2
5.26.27はそれぞれバッテリ、イグニッションス
イッチ、燃料系の燃料タンク、燃料ポンプを示す。また
25aはイグニッション端子、25bはスタータ端子を
示づ。
On the other hand, the objects controlled by the electronic control device 50 include the electromagnetically driven injectors provided in the intake manifold 2, that is, the fuel injection valves 16 and the cold start injectors 17, as well as the upstream side of the throttle valve 7 and the surge tank 18. There is an electromagnetically driven fj type or diaphragm type ISO (idle speed control) valve 2o provided in the bypass passage 19 between the Electromagnetic drive type F
There is an ORI+11 III valve 22, and an igniter 23 for the ignition system. In addition, other symbols in the figure, 24.2
5, 26, and 27 indicate the battery, ignition switch, fuel tank, and fuel pump, respectively. Further, 25a indicates an ignition terminal, and 25b indicates a starter terminal.

次に第7図は電子制011811250のブロック図を
−7− 表わしている。
Next, FIG. 7 shows a block diagram of the electronic system 011811250.

51は各センサ4.5.8.10.12.15より出力
される信号およびスタータ信号、バッテリ電圧信号を制
御ブOグラムに従って入力及び演算すると共に、インジ
ェクタ16、イグナイタ23等の各梗制皿対象を作動制
御等するための処理を行うセントラルプロセシングユニ
ット(以下、単にCPUと呼ぶ)、52は前記制御プロ
グラムや燃料噴射量演算などの為のマツプ等のデータが
格納されるリードオンリメモリ(以下、単にROMと呼
ぶ)、53は電子制御装置50に入力されてくるデータ
や演算制御に必要なデータが一時的に読み書きされるラ
ンダムアクセスメモリ(以下、単にRAMと呼ぶ)、5
4はキースイッチ25がオフされても以後のエンジン作
動に必要なデータ等を保持するよう、バッテリ24によ
ってバックアップされたバックアップランダムアクセス
メモリ(以下、単にバックアップRAMと呼ぶ)、55
は図示していない入力ボートや必要に応じて設けられる
波形整形回路、複数のセンサの出力信号−8− をCPU51に選択的に出力するマルチプレクサ、アナ
ログ信号をデジタル信号に変換するA/D変換器、出力
ボート、インジェクタ16、イグナイタ23等をCPU
50の制御信号に従って駆動する駆動回路等が備えられ
た入・出力部、56は、CPU51、ROM52等の各
素子及び入・出力部55を結びデータおよびコントロー
ル信号が送られるパスラインをそれぞれ表わしている。
51 inputs and calculates signals output from each sensor 4,5,8,10,12,15, starter signal, and battery voltage signal according to the control program, and also inputs and calculates signals output from each sensor 4,5,8,10,12,15, and inputs and calculates signals output from each sensor 4,5,8,10,12,15, and inputs and calculates signals output from each sensor 4,5,8,10,12,15, A central processing unit (hereinafter simply referred to as CPU) performs processing for controlling the operation of a target, and 52 is a read-only memory (hereinafter simply referred to as CPU) in which data such as a map for calculating the control program and fuel injection amount is stored. , 53 is a random access memory (hereinafter simply referred to as RAM) in which data input to the electronic control unit 50 and data necessary for arithmetic control are temporarily read and written.
Reference numeral 4 denotes a backup random access memory (hereinafter simply referred to as backup RAM) 55 backed up by a battery 24 so as to retain data necessary for subsequent engine operation even when the key switch 25 is turned off.
denotes an input port (not shown), a waveform shaping circuit provided as necessary, a multiplexer that selectively outputs the output signals of multiple sensors to the CPU 51, and an A/D converter that converts analog signals to digital signals. , output boat, injector 16, igniter 23, etc.
The input/output section 56 is equipped with a drive circuit etc. that drives according to the control signal 50, and 56 represents a path line connecting each element such as the CPU 51, ROM 52, etc. and the input/output section 55, and through which data and control signals are sent. There is.

電子制御装置50のマイクロコンピュータはイグニッシ
ョンスイッチがオンされると、本発明に係る処理として
、第8図ないし第9図に示すような処理を実行開始する
When the ignition switch is turned on, the microcomputer of the electronic control unit 50 starts executing the process shown in FIGS. 8 and 9 as the process according to the present invention.

第8図は、メインルーチンを示し、このメインルーチン
においては、ステップ101にて冷却水mTHWがTH
W2以上であるか否かを判断し、T I−I WがTI
−IW2未満である場合には、ステップ102にてTH
WがTH’W2から微少温度αを減算した温度(THW
2−α)よりも小さいか否かを判断し、THWが(T)
lW2−α)よりも小さい場合には、ステップ103を
へて図示しない後−9= 続のステップに移行する。その模冷却水mTHWが上昇
してTHW2以上になると、ステップ101の判定結果
がrYEsJに反転し、ステップ104にてフラグFが
rOJであるか否かが判断され、この時点ではフラグF
がrOJであることから次にステップ105にてフラグ
Fを「1」にした上で、次のステップ106でKを一定
値とする。
FIG. 8 shows the main routine, in which the cooling water mTHW is changed to TH in step 101.
Determine whether it is greater than or equal to W2, and determine whether T I-I W is T I
- If it is less than IW2, in step 102 TH
W is the temperature obtained by subtracting the minute temperature α from TH'W2 (THW
2-α), and determine whether THW is smaller than (T).
If it is smaller than lW2-α), step 103 is passed and the process moves to the next step (not shown). When the simulated cooling water mTHW rises to THW2 or more, the determination result in step 101 is reversed to rYEsJ, and in step 104 it is determined whether or not flag F is rOJ.
Since is rOJ, the flag F is set to "1" in step 105, and then K is set to a constant value in step 106.

ここでKは新たなリーン空燃比補正係数KLE△Nの式
、即ち KLEAN−KLEANB+K におけるKである。なお上記の式におけるKLEANB
は従来のKLEAN、即ち、完全暖機前では第2図に示
すような値とされ、かつ、完全暖機後では機関回転数N
Eにより定められる第3図に示すようなKLEANNE
と負荷により定められる第4図に示すようなKLEAN
PMとの乗算値とされるものと同一である。補正IKが
このように一定値にされた後は、THWが(THW2−
α)以上である間、このメインルーチンにおいては補正
IKに対する処理は何ら行なわれない。一方、= 10
 = 第9図の一定時間間隔ルーチンにおいては、一定時間間
隔ごとに、ステップ201にて補正11Kを一定値βづ
つデクリメントし、ステップ202にてこのデクリメン
ト後の補正1iKが「0」以上であるか否かが判定され
、「0」以上である場合には図示しない後続のステップ
に移行し、一方rOJ未満である場合にはステップ20
3にて補正量Kを「0」にした上で後続のステップに移
行する。
Here, K is K in the expression of the new lean air-fuel ratio correction coefficient KLEΔN, that is, KLEAN-KLEANB+K. In addition, KLEANB in the above formula
is the conventional KLEAN, that is, the value shown in Figure 2 before complete warm-up, and the engine speed N after complete warm-up.
KLEANNE as shown in Figure 3 defined by E.
KLEAN as shown in Figure 4 determined by
This is the same as the multiplication value with PM. After the correction IK is set to a constant value in this way, THW becomes (THW2-
While α) or above, no processing is performed on the correction IK in this main routine. On the other hand, = 10
= In the fixed time interval routine of FIG. 9, the correction 11K is decremented by a fixed value β at each fixed time interval in step 201, and in step 202 it is determined whether the correction 1iK after this decrement is "0" or more. It is determined whether or not the value is "0" or more, the process moves to a subsequent step (not shown), whereas if it is less than rOJ, the process proceeds to step 20.
After setting the correction amount K to "0" in step 3, the process moves to the subsequent step.

従って、メインルーチンにおいて補正量Kに一定値がセ
ットされると、以後、一定時間処理ルーチンにおいて、
補正量には一定時間間隔でこの一定値から一定量づつ減
少してゆき最終的に10」となる。
Therefore, when the correction amount K is set to a constant value in the main routine, thereafter, in the constant time processing routine,
The correction amount decreases from this fixed value by a fixed amount at fixed time intervals until it finally reaches 10.

一方、開開始動時に既に完全暖機状態にある場合には、
直ちに補正量Kに一定値がセットされ、この補正量には
以後、一定時間間隔で一定量づつ減少してゆき「0」と
なる。
On the other hand, if it is already fully warmed up when the engine starts to open,
Immediately, the correction amount K is set to a constant value, and thereafter this correction amount decreases by a constant amount at regular time intervals until it reaches "0".

従って、始動後冷却水温THWが上昇してゆき完全暖機
に移行すると、または、始動時に既に完全暖機状態にあ
ると、この時点から所定の期間中−11− 燃比が濃い側となり機関のもたつき、息つき等を防止す
ることができる。
Therefore, if the cooling water temperature THW rises after startup and the engine is completely warmed up, or if the engine is already fully warmed up at the time of startup, the fuel ratio will be on the rich side for a certain period from this point on, causing the engine to become sluggish. , can prevent shortness of breath, etc.

なお、上記の実施例では、補正量Kを一定時間間隔で一
定量づつ減少させているが、これ以外に、補正量Kを一
定時間経過後「0」にするようにしてもよい。
In the above embodiment, the correction amount K is decreased by a certain amount at certain time intervals, but the correction amount K may be set to "0" after a certain period of time has elapsed.

[発明の効果] 以上説明した如く、本発明は、機関始動後、冷却水温が
完全暖機を示す所定温痩に上昇したときから所定の期間
、空燃比を濶い側に設定したため、完全暖機前のリーン
A/Fフィードバック制御から完全暖機後のリーンA/
Fフィードバック制御への移行時に生じ易い機関のもた
つき、息つき等を防止できる。
[Effects of the Invention] As explained above, the present invention sets the air-fuel ratio to the dry side for a predetermined period from when the cooling water temperature rises to a predetermined temperature indicating complete warm-up after the engine is started. Lean A/F feedback control before the aircraft to lean A/F after complete warm-up
It is possible to prevent engine sluggishness, sluggishness, etc. that tend to occur when shifting to F feedback control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図はそれぞれ従来の問題点を説明する
ための線図、第5図は本発明を明示するためのクレーム
対応図、第6図ないし第9図は本発明の一実施例であり
、第6図はその全体構成図、第7図は電子制御装置の内
部構成を概略的に表わ− 12 − したブロック図、第8図および第9図はそれぞれ本実施
例による処理内容を表わしたフローチャー1−である。 Ml・・・演算手段 M2.1・・・内燃機関 M3・・・設定手段 M4.50・・・電子制御装置 M5.10・・・リーンセンサ M6.16・・・燃料噴射弁 代理人 弁理士 定立 勉 他1名 −13− 第1図 第2図 81wt tr−twz tt−tw
Figures 1 to 4 are diagrams for explaining the problems of the conventional technology, Figure 5 is a claim correspondence diagram for clarifying the present invention, and Figures 6 to 9 are diagrams for explaining an embodiment of the present invention. 6 is an overall configuration diagram thereof, FIG. 7 is a block diagram schematically showing the internal configuration of the electronic control device, and FIGS. 8 and 9 are processing contents according to this embodiment, respectively. This is a flowchart 1- representing the following. Ml...Calculating means M2.1...Internal combustion engine M3...Setting means M4.50...Electronic control device M5.10...Lean sensor M6.16...Fuel injection valve agent Patent attorney Tsutomu Sadatsu and 1 other person -13- Figure 1 Figure 2 81wt tr-twz tt-tw

Claims (1)

【特許請求の範囲】 リーン空燃比補正係数を含む噴射量演算式により燃料噴
射量を定める演算手段を備え、内燃機関を目標リーン空
燃比で運転する電子制御式燃料噴射装置において、 機関始動後冷却水温が完全暖機を示す所定湯度に上昇し
たとき、値rOJよりも大きな一定値とされる補正量で
あって、その慢時間の経過にしたがって’m I’OJ
まで減衰し、あるいは、所定時間後直「0」となるもの
を設定する手段を設け、この補正量に上記リーン空燃比
補正係数を加算して新たなリーン空燃比補正係数とした
ことを特徴とする電子制御式燃料噴射装置。
[Scope of Claims] In an electronically controlled fuel injection system that operates an internal combustion engine at a target lean air-fuel ratio, the electronically controlled fuel injection device includes a calculation means for determining the fuel injection amount using an injection amount calculation formula including a lean air-fuel ratio correction coefficient, A correction amount that is set to a constant value larger than the value rOJ when the water temperature rises to a predetermined temperature indicating complete warm-up, and 'm I'OJ
The present invention is characterized in that means is provided for setting a value at which the lean air-fuel ratio correction coefficient is attenuated to 0 or immediately becomes "0" after a predetermined period of time, and the above-mentioned lean air-fuel ratio correction coefficient is added to this correction amount to obtain a new lean air-fuel ratio correction coefficient. Electronically controlled fuel injection device.
JP6822584A 1984-04-04 1984-04-04 Electronic control type fuel injector Pending JPS60212651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6822584A JPS60212651A (en) 1984-04-04 1984-04-04 Electronic control type fuel injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6822584A JPS60212651A (en) 1984-04-04 1984-04-04 Electronic control type fuel injector

Publications (1)

Publication Number Publication Date
JPS60212651A true JPS60212651A (en) 1985-10-24

Family

ID=13367650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6822584A Pending JPS60212651A (en) 1984-04-04 1984-04-04 Electronic control type fuel injector

Country Status (1)

Country Link
JP (1) JPS60212651A (en)

Similar Documents

Publication Publication Date Title
JPS58150048A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS58144642A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPH0252105B2 (en)
JPS6131647A (en) Engine temperature detector
JPS593135A (en) Control of idle revolution number of internal- combustion engine
JPH0512538B2 (en)
JPS60212651A (en) Electronic control type fuel injector
JPS58214632A (en) Electronically controlled fuel injection method for internal-combustion engine
JPH0573907B2 (en)
JPS58144637A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS60209646A (en) Electronic control type fuel injection device
JP2803084B2 (en) Idle speed control method
JPS58150045A (en) Electronically controlled fuel injection method of internal-combustion engine
JPH0251060B2 (en)
JP2625984B2 (en) Air-fuel ratio control device for electronically controlled fuel injection type internal combustion engine
JPS58144640A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS5830425A (en) Feedback control method of air-fuel ratio
JPH0456142B2 (en)
JPS61223239A (en) Starting fuel injection controller of internal-combustion engine
JPS63159636A (en) Economy control method
JPH0553941B2 (en)
JPS58133430A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS61190146A (en) Fuel injection controller of internal-combustion engine
JPH0749045A (en) Air fuel ratio control method at the time of abolitioly of intake air temperature sensor
JPH0364643A (en) Idle air-fuel ratio learning and reflecting method