JPS60211068A - Formation of film - Google Patents

Formation of film

Info

Publication number
JPS60211068A
JPS60211068A JP6605484A JP6605484A JPS60211068A JP S60211068 A JPS60211068 A JP S60211068A JP 6605484 A JP6605484 A JP 6605484A JP 6605484 A JP6605484 A JP 6605484A JP S60211068 A JPS60211068 A JP S60211068A
Authority
JP
Japan
Prior art keywords
base plate
target
substrate
film
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6605484A
Other languages
Japanese (ja)
Inventor
Toshihiro Nakayama
中山 利博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6605484A priority Critical patent/JPS60211068A/en
Publication of JPS60211068A publication Critical patent/JPS60211068A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/14Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material, e.g. vapour evaporation
    • H05K3/16Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material, e.g. vapour evaporation by cathodic sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To form different film circuits simultaneously on both the surfaces of base plate by fitting the base plate to a rotary cylindrical base plate holder of the inside of a bell jar and providing targets respectively in opposing to the front and rear surfaces of the base plate. CONSTITUTION:A film hybrid integrated circuit is manufactured by forming a film circuit element with sputtering on both the front and rear surfaces of circuit base plate. Plural sheets of base plates 16, 17 for coating sputtered films are fitted to the outer and inner surfaces or a rotatable cylindrical base plate holder 11 or perforated holes 23 are provided to a base plate holder 21 and a base plate 22 is fitted therein and attached. The first target 12 is provided via a shutter 14 in opposing to the inner side base plate 16 or the inner surface of the base plate 22 and the second target 13 is provided via a shutter 15 in opposing to the outside base plate 17 or the outer surface of the base plate 22. The different sputtered films are formed to both the surfaces of said base plate or to one surface of two sheets of base plates by performing magnetron sputtering through removing the shutters 14, 15.

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明は薄膜の形成方法、特に基板の表面と裏面の双方
に薄膜回路素子を形成させてなる薄膜混成集積回路の製
造方法に係わる。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method for forming a thin film, and particularly to a method for manufacturing a thin film hybrid integrated circuit in which thin film circuit elements are formed on both the front and back surfaces of a substrate.

(b)技術の背景 回路素子を形成及び搭載してなる混成集積回路は、大量
生産することによって製造原価が低減し、品質の安定化
が確保される。しかし、比較的少量生産されているもの
もある一方で、混成集積回路を搭載し構成される機器の
小型化.高密度化の要請に伴って、その高集積化が進め
られている。そこで、少量生産品の製造プロセスを合理
化することが必要であり、従来の混成集積回路は回路基
板の一方の面(表面)のみに回路素子を形成及び搭載し
ていたが、他方の面(裏面)にも回路素子を形成及び搭
載させることにより、その集積度を高めることが検討さ
れるに至った。
(b) Background of the Technology Hybrid integrated circuits formed by forming and mounting circuit elements can be mass-produced to reduce manufacturing costs and ensure stable quality. However, while some products are produced in relatively small quantities, devices equipped with hybrid integrated circuits are becoming smaller. With the demand for higher density, higher integration is being promoted. Therefore, it is necessary to streamline the manufacturing process for small-volume products.In conventional hybrid integrated circuits, circuit elements were formed and mounted only on one side (front side) of the circuit board, but on the other side (back side). ), it has been considered to increase the degree of integration by forming and mounting circuit elements.

(C)従来技術と問題点 しかしながら、従来のスパッタリング装置はスパッタ源
と基板ホルダーとが決められた成る方向に対向しており
、同一ペルジャー内で2種類の膜形成ができない。従っ
て、装置の容量に余裕のできる少量生産品には不利であ
り、前記両面混成集積回路は片面混成集積回路の製造工
程を繰り返す、又は、例えばスパッタリング装置のペル
ジャー内で基板ホルダーを180度回転させる等により
、片面ずつ回路素子形成膜を被着していた。
(C) Prior Art and Problems However, in the conventional sputtering apparatus, the sputtering source and the substrate holder face each other in a predetermined direction, making it impossible to form two types of films in the same Pelger. Therefore, it is disadvantageous for small-volume production products where the capacity of the equipment is available, and the double-sided hybrid integrated circuit requires repeating the manufacturing process of the single-sided hybrid integrated circuit, or, for example, rotating the substrate holder by 180 degrees in the Pel jar of the sputtering equipment. The circuit element forming film was deposited on one side at a time.

(d)発明の目的 本発明の目的は、マグネトロンスパッタリング装置を利
用して上記問題点の除去された薄膜形成方法を提供し、
少量生産される薄膜混成集積回路の製造プロセスを合理
化させる、又は両面に回路素子が形成及び搭載された薄
膜混成集積回路の実用化に寄与することである。
(d) Object of the Invention The object of the present invention is to provide a method for forming a thin film using a magnetron sputtering apparatus, which eliminates the above-mentioned problems,
The purpose of the present invention is to streamline the manufacturing process of thin film hybrid integrated circuits produced in small quantities, or to contribute to the practical application of thin film hybrid integrated circuits in which circuit elements are formed and mounted on both sides.

(e)発明の構成 上記目的は、回転又は反転動可能な筒状基板ホルダーの
筒状面に基板を取り付けし、該筒状面の内側に設けたス
パッタリング用の第一のターゲットと該筒状面の外側に
設けたスパッタリング用の第二のターゲットとを用いて
、同一ベルジャ−内で2種のスパッタリング膜を該基板
に被着させることを特徴とする薄膜のスパッタリング方
法により達成される。
(e) Structure of the Invention The above object is to attach a substrate to the cylindrical surface of a cylindrical substrate holder that can be rotated or reversed, and to connect a first target for sputtering provided inside the cylindrical surface and This is achieved by a thin film sputtering method characterized in that two types of sputtering films are deposited on the substrate in the same bell jar using a second target for sputtering provided on the outside of the surface.

(f)発明の実施例 以下に、図面を用いて本発明の詳細な説明する。(f) Examples of the invention The present invention will be explained in detail below using the drawings.

第1図はマグネトロン・スパッタリング装置の概略を説
明するための模式図である。なお、マグネトロン・スパ
ッタリング装置は、直交電磁界を利用しローレンツの式
に従って運動するプラズマをターゲット(カソード)近
傍の局所的空間に閉じ込め、ターゲット上をサイクロイ
ド運動する電子がガス分子と衝突する結果密度め高いプ
ラズマが発生することにより、電子がスパッタ基板に衝
突して生じるダメージを無くするとともに、高いスパッ
タ速度が得られることを特徴としたスパッタリング装置
である。
FIG. 1 is a schematic diagram for explaining the outline of a magnetron sputtering apparatus. Magnetron sputtering equipment uses orthogonal electromagnetic fields to confine plasma moving according to Lorentz's equation in a local space near the target (cathode), and as a result of electrons moving cycloidally on the target colliding with gas molecules, the density decreases. This sputtering apparatus is characterized by generating high plasma to eliminate damage caused by electrons colliding with the sputtering substrate and to obtain a high sputtering rate.

第1図において、1は回転又は反転動可能な筒状基板ホ
ルダー、2はスパッタ膜材料と同じ材料にてなるターゲ
ット、3はホルダー1とターゲット2との対向間を適当
に仕切る回動自在なシャッター、4はホルダー1の外筒
面に取り付けられた複数枚のスパッタ膜被着用基板であ
る。一般に、アノード電極(図示せず)及び直交電磁界
の印可用磁石(図示せず)等とともに組み込まれたター
ゲット2は、基板ホルダー1の外筒面に対向し複数個(
例えば3個)が分散し配設さている。
In FIG. 1, 1 is a cylindrical substrate holder that can be rotated or reversed, 2 is a target made of the same material as the sputtered film material, and 3 is a rotatable substrate holder that appropriately partitions the space between the holder 1 and the target 2. The shutter 4 is a plurality of sputtered film-coated substrates attached to the outer cylinder surface of the holder 1. In general, a plurality of targets 2 (not shown), which are incorporated together with an anode electrode (not shown), a magnet for applying an orthogonal electromagnetic field (not shown), etc., face the outer cylindrical surface of the substrate holder 1.
For example, 3 pieces) are distributed and arranged.

かかる装置により被着さたスパッタ膜、例えばニクロム
(NiCr)にてなるターゲット2を使用し基板4のタ
ーゲット対向面に被着されたニクロム(NiCr)膜は
、ターゲット2の組成とほぼ同一であり、しかも低温度
(例えば80℃)で被着さる。そのため、基板14及び
既に被着された層(膜)が受ける熱的衝撃は、従来のD
C二極スパッタ方式或いはRF(高周波)スパッタ基板
と呼ばれるスパッタリング装置に比べて著しく少ない。
The sputtered film deposited by such an apparatus, for example, the nichrome (NiCr) film deposited on the target-facing surface of the substrate 4 using the target 2 made of nichrome (NiCr), has almost the same composition as the target 2. , and can be deposited at low temperatures (for example, 80° C.). Therefore, the thermal shock received by the substrate 14 and the layer (film) already deposited is less than that of the conventional D
This is significantly less than a sputtering device called a C two-pole sputtering method or an RF (radio frequency) sputtering substrate.

第2図は本発明の一実施例に係わるマグネトロン・スパ
ッタリング装置の概略を説明するための模式図である。
FIG. 2 is a schematic diagram for explaining the outline of a magnetron sputtering apparatus according to an embodiment of the present invention.

第2図において、11は回転又は反転動可能な筒状基板
ホルダー、12は第一のスパッタ膜材料と同じ材料にて
なる第一のターゲット、13は第二のスパッタ膜材料と
同じ材料にてなる第二のターゲット、14はホルダー1
1とターゲラ目2との対向間を適当に仕切る回動自在な
第一のシャッター、15はホルダー11とターゲット1
3との対向間を適当に仕切る回動自在な第二のシャッタ
ー、16はホルダー11の外筒面の内側に取り付けられ
た複数枚のスパッタ膜被着用基板、17はホルダー11
の外筒面の外側に取り付けられた複数枚のスパッタ膜被
着用基板である。
In FIG. 2, 11 is a cylindrical substrate holder that can be rotated or reversed, 12 is a first target made of the same material as the first sputtered film material, and 13 is made of the same material as the second sputtered film material. second target, 14 is holder 1
1 is a rotatable first shutter that appropriately partitions the facing space between 1 and target eye 2; 15 is a holder 11 and target 1;
16 is a plurality of sputtered film coating substrates attached to the inside of the outer cylinder surface of the holder 11; 17 is a rotatable second shutter that appropriately partitions the space facing the holder 11
A plurality of sputtered film-covered substrates are attached to the outside of the outer cylindrical surface of.

そこで、装置ペルジャー内の不活性ガス圧が例えば7.
3 Xl0−’パスカル程度にされた雰囲気中で、ター
ゲラ目2,13に所定の電圧を印加し、シャッター14
が基板16とターゲット12とを対向させ、シャッター
15が基板17とターゲット13とを対向させるように
開口すると、基板12.13にはそれぞれの対向ターゲ
7)12又は13とほぼ同じ組成の膜が被着される。
Therefore, if the inert gas pressure inside the Pelger device is, for example, 7.
3 In an atmosphere of approximately
When the shutter 15 is opened so that the substrate 16 and the target 12 face each other and the substrate 17 and the target 13 face each other, a film having approximately the same composition as each opposing target 7) 12 or 13 is formed on the substrate 12, 13. be coated.

第3図は本発明の他の一実施例に係わるマグネトロン・
スパッタリング装置の概略を説明するための模式図であ
る。
FIG. 3 shows a magnetron according to another embodiment of the present invention.
FIG. 1 is a schematic diagram for explaining the outline of a sputtering apparatus.

第2図と共通可能部分には同一符号(12,13,14
゜15)を用いた第3図において、21は回転又は反転
動可能な筒状基板ホルダー、22はホルダー21に取り
付けられた複数枚のスパッタ膜被着用基板であり、基板
22を外側に取り付けたホルダー21には、各基板21
の裏面(取り付は面)の 所定部が露呈する透孔23が
あけられている。
Parts that can be common with those in Fig. 2 have the same reference numerals (12, 13, 14).
In FIG. 3 using the holder 21, 21 is a cylindrical substrate holder that can be rotated or reversed, and 22 is a plurality of sputtered film-coated substrates attached to the holder 21, with the substrates 22 attached on the outside. Each board 21 is mounted on the holder 21.
A through hole 23 is drilled through which a predetermined portion of the back surface (mounting surface) is exposed.

従って、かかる装置を用いてスパッタ膜の被着された基
板22は、ターゲラ目2と対向する裏面にターゲット1
2と同じ組成の膜が被着される反面、ターゲット13が
対向する表面にはターゲット13と同じ組成の膜が被着
されることになる。
Therefore, the substrate 22 on which the sputtered film is deposited using such an apparatus has a target 1 on the back surface facing the target eye 2.
On the other hand, a film having the same composition as target 13 is deposited on the surface facing target 13.

なお、第4図は薄膜混成集積回路基板に形成された電極
層の構成を拡大して示す模式断面図、第5図はマグネト
ロンスパッタリング装置で被着されたNiCr−Au電
極層の特性を示す図であり、第5図(イ)は前記電極層
に熱圧着手段でボンディングされたリード端子の抵抗温
度特性を実測によりめた図、第5図(El)は前記電極
層にボンディングされた前記リード端子の引張強さを実
測によりめた図、第5図(ハ)は前記電極層のはんだ食
われ特性を実測によりめた図である。
In addition, FIG. 4 is a schematic cross-sectional view showing an enlarged structure of the electrode layer formed on the thin film hybrid integrated circuit board, and FIG. 5 is a diagram showing the characteristics of the NiCr-Au electrode layer deposited by a magnetron sputtering device. FIG. 5(a) is a diagram showing the resistance-temperature characteristics of the lead terminal bonded to the electrode layer by thermocompression bonding means, and FIG. The tensile strength of the terminal is determined by actual measurements, and FIG. 5 (c) is a diagram determined by actual measurements of the solder erosion characteristics of the electrode layer.

第4図において、31はグレーズド基板、32は基板3
1の上面に被着されたタンタル(Ta)層、33はニク
o ム(NiCr)層34を下地層としその上に金(A
u)層35が形成され電極層である。
In FIG. 4, 31 is a glazed substrate, 32 is a substrate 3
A tantalum (Ta) layer 33 is deposited on the upper surface of 1, and a gold (A
u) Layer 35 is formed and is an electrode layer.

第5図(イ)において、横軸は使用したNiCrターゲ
ットのNi成分比%、縦軸は温度係数T、C,Rppm
/℃、実線Aは測定値をプロットしそれを曲線で結んだ
電極層の温度特性であり、温度特性AはほぼNi60%
のNiCrターゲットを使用した電極層が±0であり、
その前後において増加する。従って、Ni60%のNi
Crターゲットを使用した電極層が温度特性からみて、
最も優れていることになる。
In Figure 5 (a), the horizontal axis is the Ni component ratio % of the NiCr target used, and the vertical axis is the temperature coefficient T, C, Rppm.
/°C, the solid line A is the temperature characteristic of the electrode layer, which is obtained by plotting the measured values and connecting them with a curve, and the temperature characteristic A is approximately 60% Ni.
The electrode layer using NiCr target is ±0,
It increases before and after that. Therefore, Ni60% Ni
Considering the temperature characteristics of the electrode layer using a Cr target,
It will be the best.

第5図(El)において、横軸は使用したNiCrター
ゲットのNi成分比%、縦軸は電極層にボンディングさ
れたリード端子の引張強さに、、実線Bは測定値をプロ
ットしそれを直線で結んだ引張強さ特性であり、B−+
は電極層を275℃で5時間熱処理したときの引張強さ
特性、B−2は電極層を250℃で5時間熱処理したと
きの引張強さ特性、B、は電極層を200℃で5時間熱
処理したときの引張強さ特性、B−4は電極層を熱処理
しないときの引張強さ特性である。そして、引張強さ特
性B−4がほぼ一定の値であるのにたいし、各引張強さ
特性B。
In Figure 5 (El), the horizontal axis is the Ni component ratio % of the NiCr target used, the vertical axis is the tensile strength of the lead terminal bonded to the electrode layer, and the solid line B plots the measured values and draws them as a straight line. It is the tensile strength property connected by B-+
B-2 is the tensile strength characteristic when the electrode layer is heat-treated at 275°C for 5 hours, B-2 is the tensile strength property when the electrode layer is heat-treated at 250°C for 5 hours, and B is the tensile strength property when the electrode layer is heat-treated at 200°C for 5 hours. Tensile strength characteristics when heat treated, B-4 are tensile strength characteristics when the electrode layer is not heat treated. And while the tensile strength characteristic B-4 is a substantially constant value, each tensile strength characteristic B.

〜B−3ははほぼNi60%のNiCrターゲットを使
用したとき最大値を示しており、Ni60%のNiCr
ターゲットを使用した電極層が引張り強さの特性からみ
て、最も優れていることになる。
~B-3 shows the maximum value when using a NiCr target with approximately 60% Ni;
The electrode layer using the target is the most excellent in terms of tensile strength properties.

第5図(ハ)において、横軸は使用したNiCrターゲ
ットのNi成分比%、縦軸は電極層の上面に被着させた
はんだの食われ(Auがはんだに拡散されてなくなる)
率%、実線Cは測定値をプロットしそれを直線で結んだ
はんだ食われ特性であり、C−1は第1回目のはんだデ
ィップ時特性、C−zは第2回目のはんだディップ時特
性、C−Sは第3回目のはんだディップ時特性を示す。
In Fig. 5 (c), the horizontal axis is the Ni component ratio % of the NiCr target used, and the vertical axis is the erosion of the solder deposited on the top surface of the electrode layer (Au is diffused into the solder and disappears).
%, the solid line C is the solder eating characteristic by plotting the measured values and connecting them with a straight line, C-1 is the characteristic at the first solder dip, C-z is the characteristic at the second solder dip, C-S shows the characteristics at the third solder dipping.

そして、電極層ははんだディップを繰り返す毎に劣化さ
れるが、Ni70%のNiCrターゲットを使用した電
極層のはんだ食われ特性Cは、第1回目のはんだディッ
プ及びはんだディップの繰り返しによる劣化に対して、
他のものより優れていることが第3図(ハ)により明ら
かにされた。
The electrode layer deteriorates each time the solder dip is repeated, but the solder erosion characteristic C of the electrode layer using a 70% Ni/NiCr target shows that the electrode layer deteriorates due to the first solder dip and the repeated solder dip. ,
It is clear from FIG. 3 (c) that this method is superior to the others.

従って、第5図(イ)及び第5図(o)より熱圧着によ
りリード端子等が接続される電極層をマグネトロンスパ
ッタリングにて作成するには、N160%のNiCrタ
ーゲットを使用し最良の電極層が得られる。その反面、
はんだ付けに使用される電極層をマグネトロンスパッタ
リングにて作成するには、第5図(ハ)よりNi70%
のNiCrターゲットを使用し、最良の電極を得ること
ができる。
Therefore, from FIG. 5(a) and FIG. 5(o), in order to create an electrode layer to which lead terminals etc. are connected by thermocompression bonding by magnetron sputtering, a NiCr target containing 160% N is used to create the best electrode layer. is obtained. On the other hand,
To create the electrode layer used for soldering by magnetron sputtering, as shown in Figure 5 (c), 70% Ni
The best electrodes can be obtained using a NiCr target.

従って、電極層33がその上にリード端子等を熱圧着手
段でボンディングされるとき、NiCr層34の組成は
Niを約60%含むものが最良であるのにたいして、リ
ード端子等がはんだ付は手段でボンディングされるNi
Cr層34の組成は、Niを約70%含むものが最良で
ある。
Therefore, when the electrode layer 33 is bonded with a lead terminal or the like by thermocompression bonding means, it is best for the composition of the NiCr layer 34 to contain approximately 60% Ni; Ni bonded with
The best composition of the Cr layer 34 is one containing approximately 70% Ni.

そこで、第2図及び第3図において、ターゲソ目2をN
i60%含むNiCrで作成し、ターゲット13をNi
70%含むNiCrで作成したとき、熱圧着性に優れた
電極用NiCr膜と、はんだ付は性に優れた電極用Ni
Cr膜とが、同じペルジャー内で被着可能となり、少量
生産される熱圧着用及びはんだ付は用の2種類の混成集
積回路、又は表面の電極層が熱圧着用であり裏面の電極
層がはんだ付は用である混成集積回路の製造工程が著し
く短縮される。
Therefore, in Figs. 2 and 3, N.
The target 13 was made of NiCr containing 60% i.
When made with 70% NiCr, the NiCr film for electrodes has excellent thermocompression bonding properties, and the Ni film for electrodes has excellent solderability.
Cr film can be deposited in the same Pelger, and two types of hybrid integrated circuits can be produced in small quantities, one for thermo-compression and one for soldering, or the electrode layer on the front is thermo-compression and the electrode layer on the back is The manufacturing process for hybrid integrated circuits, which requires soldering, is significantly shortened.

(g)発明の詳細 な説明した如く本発明によれば、少量生産される混成集
積回路の2種類を同一工程化、及び表面と裏面に回路素
子を同一工程化させたことにより、それらの所要工数が
著しく短縮し、ユーザにたいして安価に提供できるよう
になった効果は大きい。
(g) As described in detail, according to the present invention, two types of hybrid integrated circuits produced in small quantities are made in the same process, and circuit elements on the front and back sides are made in the same process. The effect of significantly shortening the man-hours and being able to provide the product to users at low cost is significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はマグネトロン・スパッタリング装置の概略を説
明するための模式図、第2図は本発明の一実施例に係わ
るマグネトロン・スパッタリング装置の概略を説明する
ための模式図、第3図は本発明の他の一実施例に係わる
マグネトロン・スパッタリング装置の概略を説明するた
めの模式図、第4図は薄膜混成集積回路基板に形成され
た電極層の構成を拡大して示す模式断面図、第5図はマ
グネトロンスパッタリング装置で被着されたNiCr−
Au電極層の特性を示す図である。 図中において、1,11.21は基板ホルダー、2.1
2゜13はターゲット、3.14.15はシャツ−14
,16,1? 、22.31は基板、23は透孔、33
は電極層、34はNiCr層、35はAu層を示す。 第1図 第2図 、第 3 図 第4図 第 5 図 (% ) iVt /(NL+ Cr )
FIG. 1 is a schematic diagram for explaining the outline of a magnetron sputtering apparatus, FIG. 2 is a schematic diagram for explaining the outline of a magnetron sputtering apparatus according to an embodiment of the present invention, and FIG. 3 is a schematic diagram for explaining the outline of a magnetron sputtering apparatus according to an embodiment of the present invention. FIG. 4 is a schematic cross-sectional view showing an enlarged structure of an electrode layer formed on a thin film hybrid integrated circuit board; FIG. The figure shows NiCr deposited using a magnetron sputtering device.
It is a figure showing the characteristic of an Au electrode layer. In the figure, 1, 11.21 are substrate holders, 2.1
2゜13 is the target, 3.14.15 is the shirt-14
,16,1? , 22.31 is a substrate, 23 is a through hole, 33
34 represents an electrode layer, 34 represents a NiCr layer, and 35 represents an Au layer. Figure 1 Figure 2, Figure 3 Figure 4 Figure 5 (%) iVt / (NL+ Cr)

Claims (2)

【特許請求の範囲】[Claims] (1) 回転又は反転動可能な筒状基板ホルダーの筒状
面に基板を取り付けし、該筒状面の内側に設けたスパッ
タリング用の第一のターゲットと該筒状面の外側に設け
たスパッタリング用の第二のターゲットとを用いて、同
一ベルジャ−内で2種のスパッタリング膜を該基板に被
着させることを特徴とする薄膜の形成方法。
(1) A substrate is attached to the cylindrical surface of a cylindrical substrate holder that can be rotated or reversed, and a first target for sputtering is provided on the inside of the cylindrical surface, and a sputtering target is provided on the outside of the cylindrical surface. 1. A method for forming a thin film, comprising depositing two types of sputtered films on the substrate in the same bell jar using a second target for forming a thin film.
(2)前記ホルダー筒状面に前記基板の取り付は面の所
定部が露呈する透孔が明けてあり、前記第−及び第二タ
ーゲットを用いて、前記基板の表面と裏面の双方にスパ
ッタリング膜を被着させることを特徴とする特許 た薄膜の形成方法。 《3》前記ホルダー筒状面の内側と外側それぞれ前記基
板を取り付けし、該内側基板には前記第二のターゲット
にてスパッタリング膜を被着させ、該外側基板には前記
第一のターゲットにてスパッタリング膜を被着させるこ
とを特徴とする前記特許請求の範囲第1項に記載した薄
膜の形成方法。
(2) To attach the substrate to the cylindrical surface of the holder, a through hole is opened to expose a predetermined portion of the surface, and sputtering is performed on both the front and back surfaces of the substrate using the first and second targets. A patented thin film forming method characterized by depositing a film. <<3>> The substrates are attached to the inside and outside of the cylindrical surface of the holder, the inner substrate is coated with a sputtering film using the second target, and the outer substrate is coated with a sputtering film using the first target. A method of forming a thin film according to claim 1, characterized in that a sputtering film is deposited.
JP6605484A 1984-04-03 1984-04-03 Formation of film Pending JPS60211068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6605484A JPS60211068A (en) 1984-04-03 1984-04-03 Formation of film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6605484A JPS60211068A (en) 1984-04-03 1984-04-03 Formation of film

Publications (1)

Publication Number Publication Date
JPS60211068A true JPS60211068A (en) 1985-10-23

Family

ID=13304773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6605484A Pending JPS60211068A (en) 1984-04-03 1984-04-03 Formation of film

Country Status (1)

Country Link
JP (1) JPS60211068A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025336A1 (en) * 2004-08-30 2006-03-09 Ulvac, Inc. Film forming equipment
CN101845613A (en) * 2009-03-25 2010-09-29 鸿富锦精密工业(深圳)有限公司 Sputtering device
CN101871091A (en) * 2009-04-25 2010-10-27 鸿富锦精密工业(深圳)有限公司 Target seat structure
JP2020517832A (en) * 2017-04-27 2020-06-18 エヴァテック・アーゲー Soft magnetic multilayer deposition apparatus, method of manufacture, and magnetic multilayer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025336A1 (en) * 2004-08-30 2006-03-09 Ulvac, Inc. Film forming equipment
JPWO2006025336A1 (en) * 2004-08-30 2008-05-08 株式会社アルバック Deposition equipment
JP4691498B2 (en) * 2004-08-30 2011-06-01 株式会社アルバック Deposition equipment
US7967961B2 (en) 2004-08-30 2011-06-28 Ulvac, Inc Film forming apparatus
DE112005002056B4 (en) 2004-08-30 2021-09-23 Ulvac, Inc. Film forming device
CN101845613A (en) * 2009-03-25 2010-09-29 鸿富锦精密工业(深圳)有限公司 Sputtering device
CN101871091A (en) * 2009-04-25 2010-10-27 鸿富锦精密工业(深圳)有限公司 Target seat structure
JP2020517832A (en) * 2017-04-27 2020-06-18 エヴァテック・アーゲー Soft magnetic multilayer deposition apparatus, method of manufacture, and magnetic multilayer

Similar Documents

Publication Publication Date Title
US5281326A (en) Method for coating a dielectric ceramic piece
US8102640B2 (en) Monolithic ceramic electronic component and method of manufacturing monolithic ceramic electronic component
US4031272A (en) Hybrid integrated circuit including thick film resistors and thin film conductors and technique for fabrication thereof
GB1424642A (en) Layer circuits
JPS60211068A (en) Formation of film
US4113896A (en) Method of manufacturing an electrically conductive contact layer
JPH09180541A (en) Conductive paste, conductive body using it, and ceramic substrate
US4285781A (en) Metal support for an electronic component interconnection network and process for manufacturing this support
JPH1126284A (en) Chip electronic component and its manufacture
JPH10116707A (en) Chip type thermistor and its manufacturing method
JP3614915B2 (en) Chip-shaped electronic component and manufacturing method thereof
CN111313855B (en) Novel resonator assembling method
JPS6145851B2 (en)
JPS60254639A (en) Electrode film and manufacture thereof
JP2000306763A (en) Laminated ceramic capacitor and manufacture thereof
JPH04154104A (en) Laminated ceramic capacitor
JP3489002B2 (en) Electronic component and method of manufacturing the same
JPS6033793B2 (en) Ceramic body with copper coating
JPS60262304A (en) Conductor
JPH08330105A (en) Electronic component
JPS5826680B2 (en) Ceramic warm air conditioner
JPS6132752A (en) Manufacture of ceramics circuit board
JP2000353931A (en) Electronic part and manufacture of the same
JPH029457B2 (en)
JPH03239302A (en) Porcelain semiconductor element and manufacture of porcelain semiconductor element