JPS60210554A - Hydraulic cement admixing agent - Google Patents

Hydraulic cement admixing agent

Info

Publication number
JPS60210554A
JPS60210554A JP6619384A JP6619384A JPS60210554A JP S60210554 A JPS60210554 A JP S60210554A JP 6619384 A JP6619384 A JP 6619384A JP 6619384 A JP6619384 A JP 6619384A JP S60210554 A JPS60210554 A JP S60210554A
Authority
JP
Japan
Prior art keywords
concrete
water
slump
general formula
hydraulic cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6619384A
Other languages
Japanese (ja)
Other versions
JPH0155210B2 (en
Inventor
和美 廣喜
泰弘 亀田
柿崎 正義
石束 哲男
博 上野
小島 辰夫
博 滝本
寛史 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
DKS Co Ltd
Original Assignee
Kajima Corp
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Dai Ichi Kogyo Seiyaku Co Ltd filed Critical Kajima Corp
Priority to JP6619384A priority Critical patent/JPS60210554A/en
Publication of JPS60210554A publication Critical patent/JPS60210554A/en
Publication of JPH0155210B2 publication Critical patent/JPH0155210B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は水硬性セメント混和剤に関する。さらに詳しく
は、水硬性セメント配合物であるコンクリート、モルタ
ルあるいはペーストの経時による流動性低下を抑制し、
その施工性、作業性を改善すると共に、高い減水性を有
し品質向上をならしめた水硬性セメント混和剤に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to hydraulic cement admixtures. More specifically, it suppresses the decline in fluidity of hydraulic cement mixtures such as concrete, mortar, or paste over time,
This invention relates to a hydraulic cement admixture that has improved workability and workability, as well as high water-reducing properties and improved quality.

コンクリートあるいはモルタルは、セメント水、砂、砂
利、必要に応じて混和剤を練り混ぜることによって得ら
れるが、セメントと水の接触によりセメント粒子は化学
的、物理的作用により時間の経過と共に流動性が低下し
、その作業性、施工性の障害となる。この現象は一般に
コンクリートのスランプロス、モルタルのフローダウン
と呼ばれる。
Concrete or mortar is obtained by mixing cement water, sand, gravel, and admixtures as necessary. When cement and water come into contact, cement particles become fluid over time due to chemical and physical effects. This will impede workability and construction efficiency. This phenomenon is generally called concrete slump loss or mortar flowdown.

コンクリートあるいはモルタルの品質向上をはかる第一
歩はできるだけ少ない単位水量で練り混ぜることが原則
である。
The first step in improving the quality of concrete or mortar is to mix it with as little unit water as possible.

ナフタリンスルホン酸ホルマリン高縮合物塩あるいはメ
ラミン樹脂スルボン酸ポルマリン縮合物塩等、いわゆる
高性能減水剤は高い減水能を有し、単位水量を大幅に低
下できる。しかし経時によるスランプロスが極めて大き
く、多量添加で使用するコンクリート高強度二次製品に
は使用できるが、生コンクリート工場では使用し得す、
樹脂酸塩等OAE剤、リグニンスルホン酸塩等のAE減
水剤を用いているのが現状であり、前者の減水率は5〜
8%、後者は10−13%程度である。
So-called high-performance water reducing agents, such as naphthalene sulfonic acid formalin high condensate salt or melamine resin sulfonic acid polymarin condensate salt, have high water reducing ability and can significantly reduce the unit water amount. However, the slump loss over time is extremely large, and although it can be used for high-strength secondary concrete products that use large amounts of additives, it cannot be used in ready-mixed concrete factories.
Currently, OAE agents such as resinates and AE water reducers such as lignin sulfonates are used, and the water reduction rate of the former is 5 to 5.
8%, and the latter is about 10-13%.

コンクリートのスランプロスは生コンクリートにおいて
は、アジテータ車の搬送時間の制限、打設現場での待機
時間、ポンプ圧送の一時中断等による品質変化、施工性
不良、未充填、コールドジヨイントの発生等耐久性低下
の障害を起こす。またコンクリートパイル、ボール等の
二次製品工場では成型時間の制限、締め固め不良等、作
業性、品質上で多くの問題点を生じる。
Concrete slump loss is due to durability issues such as limited conveyance time of agitator vehicles, waiting time at the pouring site, quality changes due to temporary suspension of pump pressure, poor workability, unfilled concrete, occurrence of cold joints, etc. Causes disorders of sexual decline. In addition, in factories for secondary products such as concrete piles and balls, many problems arise in terms of workability and quality, such as limited molding time and poor compaction.

従って、コンクリートの経時スランプロスは生コンクリ
ート工場をはじめコンクリート二次製品工場、その他に
おいて解決しなければならない重要な課題であり、モル
タルにおいても同様である。
Therefore, the slump loss of concrete over time is an important problem that must be solved in ready-mixed concrete factories, concrete secondary product factories, and others, and the same applies to mortar.

就中、生コン工場では、骨材品質の低下による単位水量
、単位セメント量の増大を余儀なくされており、高い減
水性を有し、しかもスランプロスのない混和剤の開発が
最も重要な課題となっている。
In particular, ready-mixed concrete plants are forced to increase the amount of water and cement per unit due to the decline in aggregate quality, and the most important issue is the development of admixtures that have high water-reducing properties and no slump loss. ing.

従来コンクリートのスランプロス防止法として、次のよ
うないくつかの方法が知られている。すなわち、 (イ)コンクリートの単位水量を増大する方法。
The following several methods are known as conventional methods for preventing slump loss in concrete. In other words, (a) A method of increasing the unit water volume of concrete.

(ロ)液状または顆粒状コンクリート混和剤の後添加に
よる方法。
(b) Method by post-addition of liquid or granular concrete admixture.

(ハ)コンクリート混和剤の繰り返し添加による方法。(c) Method by repeated addition of concrete admixture.

(ニ)凝結遅延剤の添加あるいは併用による方法。(d) A method involving the addition or combination of a setting retarder.

上記(イ)の方法は練り混ぜ開始により、打設に至るま
でのスランプロスを見込んだコンクリートの単位水量を
増大する方法であり、最も安易にスランプロスを抑制で
きるが、コンクリートの品質上、強度低下または乾燥収
縮によるひび割れ発生等、耐久性低下を来すことや、所
定強度を得るためには単位セメント量の増大という経済
的な不利を伴う。
Method (a) above is a method of increasing the unit water volume of concrete by starting mixing to account for slump loss up to pouring, and is the easiest way to suppress slump loss, but in terms of concrete quality, strength There is an economical disadvantage in that durability is reduced due to cracking due to deterioration or drying shrinkage, and the amount of cement per unit is increased in order to obtain a predetermined strength.

(ロ)の方法は一時的なスランプロス防止改善策であっ
て、本質的な防止策ではない。特に高品質を目的とした
単位水量の少ないコンクリートにおいては、添加後のス
ランプロスを却って助長する傾向にある。しかも後添加
という作業の煩雑は避けられない。また顆粒状混和剤の
場合、徐々に熔解することによってセメント粒子の分散
性が得られ、スランプロスを防止する方法であるが、練
り混ぜから打設に至る時間はその時々によって異なり、
その溶解速度をコントロールすることは困難であり、し
かも部分的に未溶解のま\コンクリート中に存在すると
、強度、耐久性の点で問題である。
Method (b) is a temporary improvement measure to prevent slump loss, and is not an essential preventive measure. Particularly in concrete with a small unit water content aimed at high quality, it tends to promote slump loss after addition. Moreover, the complication of post-addition is unavoidable. In addition, in the case of granular admixtures, dispersibility of cement particles is obtained by gradually melting, which is a method to prevent slump loss, but the time from mixing to casting varies from time to time.
It is difficult to control its dissolution rate, and if it remains partially undissolved in concrete, it poses problems in terms of strength and durability.

(ハ)の方法はスランプロスした時点で、混和剤を再添
加する方法であり、完全に防止するものでないが、効果
的な手段といえる。しかしながら繰り返し添加という作
業性および絶対添加量の増大という経済的な不利がある
Method (c) involves re-adding the admixture at the time of slump loss, and although it does not completely prevent the problem, it can be said to be an effective means. However, there are economical disadvantages such as the workability of repeated addition and an increase in the absolute amount added.

(ニ)の方法はオキシカルボン酸塩、リグニンスルホン
酸塩、デキストリンフミン酸塩等の凝結遅延剤を単独あ
るいは高性能減水剤との併用により凝結時間を遅延させ
、流動性を維持させようとする方法であるが、必ずしも
スランプロスを防止するものではなく、しかも過剰添加
の場合、硬化不良、強度低下などの事故を招く危険性が
非常に大きい。
Method (d) attempts to maintain fluidity by delaying the setting time by using setting retarders such as oxycarboxylic acid salts, lignin sulfonates, and dextrin humates alone or in combination with high-performance water reducing agents. However, it does not necessarily prevent slump loss, and if it is added in excess, there is a great risk of causing accidents such as poor curing and reduced strength.

以上のような従来のスランプロス防止法は、コンクリー
ト品質または施工性、経済性に問題かあり、あるいは一
時的なスランプロス防止対策であって、実用的な防止方
法とは言えない。
The conventional slump loss prevention methods described above have problems with concrete quality, workability, and economic efficiency, or are temporary slump loss prevention measures, and cannot be said to be practical methods of prevention.

本発明者らは、従来技術の問題点を解消すべく、鋭意研
究の結果、高い減水性を有すると共に、長時間流動性を
保持し、しかも凝結遅延、その他品質および施工性に悪
影響をおよぼさない水硬性セメント配合物のスランプロ
ス抑制混和剤を見い出し本発明に到達したものである。
In order to solve the problems of the conventional technology, the inventors of the present invention have conducted intensive research and found that it has high water-reducing properties, maintains fluidity for a long time, and does not cause setting delay or other adverse effects on quality and workability. The present invention has been achieved by discovering an admixture for suppressing slump loss in hydraulic cement formulations that does not cause slump loss.

本発明は、 一般式、 1 CH2=C(11 C−Ni1−R2−5011X 1 (ただし、式中R1はHまたは低級アルキル基、R2は
炭素数1〜4の直鎖または分枝状アルキレン基、XはH
またはアルカリ金属またはNH4または有機塩基を表す
)で示される化合物100〜15モル%。
The present invention is based on the general formula, 1 CH2=C(11 C-Ni1-R2-5011 , X is H
or an alkali metal or NH4 or an organic base) from 100 to 15 mol%.

一般式、 3 ■ CH2=C(21 C−NH−A 1 (ただし、式中RaはHまたは低級アルキル基、AはH
または一〇〇2011を表す)で示される化合物を0〜
85モル%。
General formula, 3 ■ CH2=C(21 C-NH-A 1 (However, in the formula, Ra is H or a lower alkyl group, A is H
or 1002011) from 0 to
85 mol%.

一般式、 4 ■ CR2= C(31 ■ −OY 1 (ただし、式中R4はHまたは低級アルキル基、YはH
またはアルカリ金属またはN)14または有機塩基を表
す)で示される化合物0〜85モル%。
General formula, 4 ■ CR2= C(31 ■ -OY 1 (However, in the formula, R4 is H or a lower alkyl group, Y is H
or an alkali metal or a compound represented by N) 14 or an organic base) from 0 to 85 mol%.

を重合させて得られる極限粘度(INNaα水溶液の3
0℃における)が0.05〜2.0dl/gを有する水
溶性重合体を必須の構成成分として含有することを特徴
とする水硬性セメント混和剤を提供するものである。
The intrinsic viscosity obtained by polymerizing (3 of INNaα aqueous solution)
The present invention provides a hydraulic cement admixture characterized in that it contains as an essential component a water-soluble polymer having a (at 0°C) of 0.05 to 2.0 dl/g.

上記一般式(1)で示される化合物としては、2−アク
リロイルアミノ−2−メチルプロパンスルホン酸、2−
アクルロクルアミノエタンスルホン酸、3−メタアクリ
ロイルアミノプロパンスルホン酸等があり、一般式(2
)で示される化合物としては、アクリルアミド、メタク
リルアミド等があり、また一般式(3)で示される化合
物としては、アクリル酸、メタクリル酸、およびそれら
の塩等がある。
Examples of the compound represented by the above general formula (1) include 2-acryloylamino-2-methylpropanesulfonic acid, 2-
Acrylocruaminoethanesulfonic acid, 3-methacryloylaminopropanesulfonic acid, etc., with the general formula (2
Examples of the compound represented by formula (3) include acrylamide and methacrylamide, and examples of the compound represented by general formula (3) include acrylic acid, methacrylic acid, and salts thereof.

本発明水硬性セメント混和剤の配合量は、対セメント固
型分として、0.05〜1.5重量%の範囲が好ましい
。また水硬性セメント混和剤の添加方法および養生方法
としては、セメント組成物の練り混ぜ水に添加しても良
く、またセメント組成物の練り混ぜ後に添加して練り混
ぜることもできる。
The amount of the hydraulic cement admixture of the present invention is preferably in the range of 0.05 to 1.5% by weight based on cement solid content. The hydraulic cement admixture may be added to the mixing water of the cement composition, or may be added after the cement composition is mixed.

さらに本発明水硬性セメント混和剤である水溶性重合体
の乾燥粉末物をあらかじめセメントとプレミックスした
後練り混ぜることもできる。
Furthermore, the dry powder of the water-soluble polymer, which is the hydraulic cement admixture of the present invention, can be premixed with cement and then kneaded.

また、添加練り混ぜ後の打設あるいは成型後の養生方法
は、通常の気乾、水中、水蒸気、オートクレーブ養生し
ても良い。
Further, the curing method after casting after addition and mixing or after molding may be the usual air drying, underwater, steam, or autoclave curing.

対象とするセメントとしては各種ポルトランドセメント
、混合セメント、フライアッシュセメント、特殊セメン
ト等の水硬性セメントを挙げることができる。
The target cements include hydraulic cements such as various portland cements, mixed cements, fly ash cements, and special cements.

また必要に応じて、樹脂酸塩等のAE剤、リグニンスル
ホン酸塩等のAE減水剤、ナフタリンスルホン酸ホルマ
リン高縮合物塩等の高性能減水剤と併用しても良く、さ
らに硬化促進剤、凝結遅延剤あるいは膨張剤等と併用す
ることもできる。
In addition, if necessary, it may be used in combination with an AE agent such as a resin acid salt, an AE water reducing agent such as a lignin sulfonate, a high performance water reducing agent such as a naphthalene sulfonic acid formalin high condensate salt, and a curing accelerator, It can also be used in combination with a setting retarder or an expanding agent.

次に、本発明における水溶性重合体の製造方法は、ラジ
カル開始剤の存在下で、要すれば重合調節剤の存在下に
、一般式(11で示される化合物を重合、または一般式
(11,(2)および(3)で示される化合物を共重合
させることによって得られる。また基体となるポリマー
を常法により合成した後、高分子反応により官能基を変
換することにより合成することもできる。
Next, the method for producing a water-soluble polymer in the present invention involves polymerizing a compound represented by the general formula (11) in the presence of a radical initiator and, if necessary, a polymerization regulator. It can be obtained by copolymerizing the compounds shown in , (2) and (3).It can also be synthesized by synthesizing the base polymer by a conventional method and then converting the functional group by a polymer reaction. .

次に一般式+11. +21および(3)で示される化
合物の配合モル比に関して述べる。
Next, general formula +11. The molar ratio of compounds represented by +21 and (3) will be described.

一般式(1)で示される化合物は100〜15モル%(
好ましくは90〜25モル%)であり、15モル%以下
の場合はセメント粒子の分散性が劣り、セメント組成物
中の単位水量が増大する。即ち減水率が大幅に増大し、
流動化減水剤としては供し得ない。
The compound represented by general formula (1) contains 100 to 15 mol% (
If it is less than 15 mol%, the dispersibility of cement particles will be poor and the unit water amount in the cement composition will increase. In other words, the water reduction rate increases significantly,
It cannot be used as a fluidizing water reducing agent.

一般式+21. (31で示される化合物は0〜85モ
ル%(好ましくは10〜75モル%)であり、一般式(
2)で示される化合物が85モル%以上の場合、減水率
が低下し、しかもスランプの経時安定性が劣る。また一
般式(3)で示される化合物が85モル%以上になると
セメント配合物の凝結遅延作用を呈し、初期強度の低下
を招く恐れがある。
General formula +21. (The compound represented by 31 is 0 to 85 mol% (preferably 10 to 75 mol%), and has the general formula (
When the amount of the compound represented by 2) is 85 mol % or more, the water reduction rate decreases and the stability of slump over time is poor. Moreover, if the compound represented by the general formula (3) exceeds 85 mol %, it may exhibit a setting retarding effect on the cement mixture, leading to a decrease in initial strength.

本発明水硬性セメント混和剤である水溶性重合体のlN
Na0i!水溶液の30℃における極限粘度(η)は0
.05〜2.0の範囲であることが好ましく、極限粘度
が0.05未満の場合、および2.0を越えると、水硬
性セメント混和剤のセメント組成物に対する添加直後の
流動化効果が発揮されず、減水率が低下し、しかもスラ
ンプの経時安定性が不良となる。
lN of the water-soluble polymer which is the hydraulic cement admixture of the present invention
Na0i! The intrinsic viscosity (η) of an aqueous solution at 30°C is 0
.. It is preferable that the intrinsic viscosity is in the range of 0.05 to 2.0, and if the intrinsic viscosity is less than 0.05 or exceeds 2.0, the fluidizing effect of the hydraulic cement admixture will not be exerted immediately after addition to the cement composition. First, the water reduction rate decreases, and the stability of slump over time becomes poor.

本発明水硬性セメント混和剤をセメント配合物に添加す
ることにより、遅延作用を伴うことなく、従来のAE剤
、AE減水剤では得られなかった高い減水率を得ること
ができ、しかも高温時でも、長時間スランプの安定性を
保持することが可能となる。
By adding the hydraulic cement admixture of the present invention to a cement mixture, it is possible to obtain a high water reduction rate that could not be obtained with conventional AE agents and AE water reducers, without any retarding effect, and even at high temperatures. , it becomes possible to maintain slump stability for a long time.

従って、従来単位水量の少ないコンクリートを打設する
場合、生コンクリートでは現場へ搬入し、現場でアジテ
ータ−車に、いわゆる流動化剤を投入し、攪拌、混合し
、一時的に流動性を高めてポンプ圧送し、打設を行って
いたが、生コンプラントで従来のAE剤、AE減水剤と
同様の方法で混和剤の添加、練り混ぜ、運搬、打設が可
能となり、ポンプ圧送性の改善がなされ、作業性の向上
がはかれて、現場での高速攪拌による騒音公害もなく、
しかも低水量コンクリートの流動性および経時安定性を
保持することができ、安定した高品質のコンクリートを
打設することが可能となった。さらにコンクリート二次
製品の成型、製造においても、より高い減水効果と安定
した流動性を有することにより、高品質でしかも作業効
率の向上がはかれる。
Therefore, conventionally, when pouring concrete that requires a small amount of water per unit, fresh concrete is delivered to the site and a so-called fluidizing agent is poured into an agitator truck at the site, where it is stirred and mixed to temporarily increase fluidity. Previously, it was pumped and placed, but now it is possible to add, knead, transport, and place admixtures in the same way as conventional AE agents and AE water reducers for ready-mixed concrete, improving pumping performance. This has improved work efficiency, and there is no noise pollution caused by high-speed agitation on site.
Moreover, it is possible to maintain the fluidity and stability over time of low water content concrete, making it possible to cast stable, high-quality concrete. Furthermore, in the molding and manufacturing of secondary concrete products, it is possible to achieve high quality and improve work efficiency by having a higher water-reducing effect and stable fluidity.

以下に本発明を実施例により具体的に説明する(部、%
は重量基準を示す)。
The present invention will be specifically explained below with reference to Examples (parts, %
(indicates weight basis).

製造例1 撹拌棒、温度計、リフランクスコンデンサー、窒素導入
管を具備した容量1βの4つロフラスコに固型分濃度3
0%、pH8,0の2−アクリロイルアミノ−2−メチ
ル−プロパンスルホン酸ナトリウム水溶液500gを仕
込む。
Production Example 1 A solid content concentration of 3 was placed in a 4-bottle flask with a capacity of 1β equipped with a stirring bar, thermometer, reflux condenser, and nitrogen inlet tube.
Charge 500 g of a 0%, pH 8.0 sodium 2-acryloylamino-2-methyl-propanesulfonic acid aqueous solution.

次いで窒素を導入しなから2−メルカプトエタノール3
.0gを仕込み、温度を40℃に調節する。
Then, without introducing nitrogen, 2-mercaptoethanol 3
.. 0g and adjust the temperature to 40°C.

2−2゛−アゾビス(2−アミノジプロパン)塩酸塩0
.15 gを水20厭に熔解し加える。若干の誘導期の
後発熱が認められ重合反応が開始する。
2-2′-azobis(2-aminodipropane) hydrochloride 0
.. Dissolve 15 g in 20 g of water and add. After a slight induction period, exotherm is observed and the polymerization reaction begins.

温度を60℃にコントロールしながら4時間重合反応を
続ける。かくして得られたポリ−2−アクリロイルアミ
ノ−2−メチル−プロパンスルホ・ン酸ナトリウムの3
0℃IN NaCj!中で測定した極限粘度は0.51
dl/gであった。
The polymerization reaction was continued for 4 hours while controlling the temperature at 60°C. 3 of the thus obtained sodium poly-2-acryloylamino-2-methyl-propanesulfonate.
0℃IN NaCj! The intrinsic viscosity measured inside is 0.51
It was dl/g.

製造例2 製造例1において2−アクリロイルアミノ−2−メチル
−プロパンスルホン酸ナトリウムの水溶液の内300g
を、150gを9.3%のアクリルアミド水溶液、更に
150gを12.3%、pH8゜0のアクリル酸ナトリ
ウム水溶液に変え、2−メルカプトエタノールの添加量
を0.1gとすることの外は製造例1と同様に合成した
Production Example 2 In Production Example 1, 300 g of the aqueous solution of sodium 2-acryloylamino-2-methyl-propanesulfonate
Production example except that 150g was changed to 9.3% aqueous acrylamide solution, and further 150g was changed to 12.3% aqueous sodium acrylate solution, pH 8.0, and the amount of 2-mercaptoethanol added was 0.1g. It was synthesized in the same manner as 1.

得られた共重合体の極限粘度は1.5dl/gであった
The intrinsic viscosity of the obtained copolymer was 1.5 dl/g.

製造例3 製造例1において2−アクリロイルアミノ−2−メチル
−プロパンスルホン酸ナトリウムに変えて30%のアク
リルアミド水溶液を用い、2−メルカプトエタノールを
5g添加し、同様に重合してポリアクリルアミドを得た
Production Example 3 In Production Example 1, 30% aqueous acrylamide solution was used instead of sodium 2-acryloylamino-2-methyl-propanesulfonate, 5g of 2-mercaptoethanol was added, and polyacrylamide was obtained by polymerization in the same manner. .

このポリアクリルアミド水溶液に37%ボルムアミド1
71 g、酸性亜硫酸ナトリウム220gを加え、p 
H12,0になるよう調整する。
Add 37% borumamide 1 to this polyacrylamide aqueous solution.
71 g, add 220 g of sodium acid sulfite, and
Adjust so that it becomes H12.0.

得られた混合物を50℃、4時間反応せしめてスルホメ
チル化ポリアクリルアミドのナトリウム塩を得た。得ら
れた重合物の極限粘度は0.09di/gであった。
The resulting mixture was reacted at 50° C. for 4 hours to obtain a sodium salt of sulfomethylated polyacrylamide. The intrinsic viscosity of the obtained polymer was 0.09 di/g.

なお上記製造例に準じて合成した重合体および共重合体
(混和剤)を表−1に示す。
Table 1 shows polymers and copolymers (admixtures) synthesized according to the above production example.

(以下余白) 表−1 一般式(2)ニアクリルアミド 一般式(3)ニアクリル酸ナトリウム 実施例1 表−1に示す混和剤をコンクリートに添加し、スランプ
の経時変化、凝結時間を測定した。
(Leaving space below) Table 1 General Formula (2) Niacrylamide General Formula (3) Sodium Niacrylate Example 1 The admixtures shown in Table 1 were added to concrete, and changes in slump over time and setting time were measured.

コンクリートの調合を表−2に示す。Table 2 shows the concrete formulation.

(以下余白) 実験は1007!領胴型ミキサーに練り混ぜ量が501
となるように表−2の調合を計量し、全材料を投入する
。直ちに3分間練り混ぜを行い(19r、p、m、) 
ミキサーより全量排出しスランプ(JISA 1101
) 、空気量(JIS八1へ28 )を測定する。この
値を添加前とする。
(Left below) 1007 experiments! The amount of kneading in the trunk type mixer is 501
Weigh out the formulation shown in Table 2 and add all ingredients. Immediately knead for 3 minutes (19r, p, m,)
Discharge the entire amount from the mixer and slump (JISA 1101
), measure the amount of air (JIS 81 to 28). This value is taken as before addition.

測定後直ちにミキサーに戻し、表−1に示す混和剤を添
加し、1〜2分間練り混ぜ、スランプ。
Immediately after the measurement, return to the mixer, add the admixture shown in Table 1, mix for 1 to 2 minutes, and slump.

空気量および凝結時間(ASTM (403−797)
の測定をした。この値を添加直後とする。
Air Volume and Condensation Time (ASTM (403-797)
measurements were taken. This value is set immediately after addition.

以後ミキサーを低速(10r、p、m、)でアジチーテ
ィングを行い、20分毎にスランプ、空気量を測定し経
時変化を見た。
Thereafter, the mixer was subjected to aji-cheating at low speed (10 r, p, m,), and the slump and air amount were measured every 20 minutes to observe changes over time.

測定結果を表−3に示す。The measurement results are shown in Table-3.

(以下余白) 表−3の測定結果から明らかなように、本発明混和剤隘
1〜6を添加したコンクリートはスランプの経時安定性
が良く90分後においても高い流動性を示している。し
かも凝結時間は無添加コンクリート(Ikll)と同等
であり、凝結遅延をおこさないことが判る。一方比較例
隘7は一般式+11. f31の配合モル比(%)が本
発明外のものであり、スランプ増大効果も弱く、経時安
定性が不良で、しかも凝結時間は無添加コンクリートよ
りも2時間以上遅延することが確認された。
(The following is a blank space) As is clear from the measurement results in Table 3, the concrete to which admixtures Nos. 1 to 6 of the present invention were added had good slump stability over time and exhibited high fluidity even after 90 minutes. Moreover, the setting time is the same as that of additive-free concrete (Ikll), indicating that there is no setting delay. On the other hand, Comparative Example No. 7 has the general formula +11. It was confirmed that the mixing molar ratio (%) of f31 was outside the scope of the present invention, the slump increasing effect was weak, the stability over time was poor, and the setting time was delayed by 2 hours or more compared to additive-free concrete.

隘8は一般式(11の配合モル比(%)が本発明外のも
のであり、陽7同様スランプ増人効果、経時安定性が不
良であった。隘9は本発明混和剤隘2と同一配合モル比
のものであるが極限粘度が2.65dl/gのため凝結
遅延はないがスランプ増大効果が得られなかった。
In No. 8, the compounding molar ratio (%) of the general formula (11) was outside the scope of the present invention, and as with Positive 7, the slump increase effect and stability over time were poor. Although they had the same blending molar ratio, the intrinsic viscosity was 2.65 dl/g, so although there was no setting delay, no slump increasing effect was obtained.

Nlll0は一般式(3)のホモポリマーであり、セメ
ント粒子の分散能が弱くスランプ増大効果が小さい。し
かも凝結遅延が極めて大きいことが明らかとなり本発明
混和剤の配合モル比(%)、および極限粘度の範囲のみ
において有効な混和剤となることが認められた。
Nlll0 is a homopolymer represented by the general formula (3), which has a weak dispersion ability for cement particles and a small slump increasing effect. Moreover, it became clear that the setting delay was extremely large, and it was confirmed that the admixture of the present invention is an effective admixture only within the blending molar ratio (%) and intrinsic viscosity range.

実施例2 コンクリートの調合を表−4に示す。Example 2 Table 4 shows the concrete formulation.

(以下余白) 表−4の調合に基づき、生コンクリート工場Gこおいて
強制練りミキサーで45秒間練り混ぜ(混和剤は練り混
ぜ水に含む)生コンクリートを製造した。これをトラン
クアジテータ−に移し、直後のスランプ、空気量の測定
を行い以後トラ・ツクアジテータ−を低速(2r、p、
n+、 )で連続アジチーティングし、経時のスランプ
、空気量を測定した。
(The following is a blank space) Based on the formulation shown in Table 4, ready-mixed concrete was produced by mixing for 45 seconds using a forced mixing mixer at ready-mixed concrete factory G (the admixture was included in the mixing water). Transfer this to the trunk agitator, measure the slump and air volume immediately after, and then turn the trunk agitator at low speed (2r, p,
n+, ), and the slump and air amount over time were measured.

測定結果を表−5に示す。The measurement results are shown in Table-5.

(以下余白) 表−5から明らかなように通常のAEコンクリ−1−(
11kl13) 、AE減水コンクリート (隘14)
は90分後入ランプ16a++以上と経時安定性は見ら
れるが減水率は各々6.9%、11.9%と小さい。
(Margin below) As is clear from Table 5, normal AE concrete-1-(
11kl13), AE water-reduced concrete (14)
Although stability over time can be seen with the lamp entering after 90 minutes of 16a++ or more, the water reduction rate is small at 6.9% and 11.9%, respectively.

また比較例Nn15.Na16は本発明範囲外の重合物
(混和剤)であり、いずれもスランプの経時安定性に欠
ける。
Comparative example Nn15. Na16 is a polymer (admixture) outside the scope of the present invention, and both lack slump stability over time.

一方本発明Nn17.m18は単位水量の多い無添加コ
ンクリートと同等の良好なスランプ経時安定性と共に減
水率が14.9%、18.8%のコンクリートが得られ
、従来の生コンクリートでは得られなかったスランプの
安定性と高い減水率、すなわち高品質の生コンクリ−1
・が得られることが確認された。
On the other hand, the present invention Nn17. m18 has good slump stability over time, equivalent to additive-free concrete with a large unit water volume, and concrete with a water reduction rate of 14.9% and 18.8%, and has slump stability that cannot be obtained with conventional ready-mixed concrete. and high water reduction rate, i.e. high quality ready-mixed concrete 1
It was confirmed that .

実施例3 本発明の添加剤と市販の高性能減水剤との(jf用によ
るスランプの経時変化と圧縮強度(JIS A1108
による)の測定を実施した。
Example 3 Changes in slump over time and compressive strength (JIS A1108
) was measured.

コンクリ−1・の調合を表−6に、測定結果を表−7に
示す。
The formulation of Concrete 1 is shown in Table 6, and the measurement results are shown in Table 7.

測定結果から明らかなように、本発明11h19.20
は市販の高性能減水剤と併用することによっても安定し
た経時スランプを示すことが判る。一方、出較例階21
は本発明外の混和剤との併用であり、社22は高性能減
水剤単独添加のものである。隘21はスランプの安定性
、圧縮強度共に劣り、隘22は強度面では問題ないがス
ランプの経時低下り(著 しい。
As is clear from the measurement results, the present invention 11h19.20
It can be seen that it shows a stable slump over time even when used in combination with a commercially available high performance water reducing agent. On the other hand, the comparative example floor 21
is used in combination with an admixture other than the present invention, and Company 22 is a product in which a high performance water reducing agent is added alone. No. 21 has poor slump stability and compressive strength, and No. 22 has no problems in terms of strength, but the slump has decreased significantly over time.

このように本発明混和剤は低水セメント比にお・するコ
ンクリート、いわゆる高強度コンクリートこおいて安定
した流動性を保持することができ、コンクリートの二次
製品あるいは生コンクリートL場で現場打ち高強度コン
クリートの製造が可能こなる。
In this way, the admixture of the present invention can maintain stable fluidity in concrete with a low water-to-cement ratio, so-called high-strength concrete, and can improve the on-site casting height in secondary concrete products or fresh concrete L fields. It becomes possible to manufacture high-strength concrete.

寺許出願人 鹿島建設株式会社 \Ill’、1□h□)、f 第1頁の続き 0発 明 者 上 野 博 @発明者小島 辰夫 0発 明 者 滝 本 博 @発明者堀1)寛史 京都市上京区今出用通寺町西入二筋目上ル柳風呂町18
9草津市野路町171−19
Applicant Kajima Corporation \Ill', 1□h□), f Continued on page 1 0 Inventor Hiroshi Ueno @ Inventor Tatsuo Kojima 0 Inventor Hiroshi Takimoto @ Inventor Hori 1) Hiroshi 18 Yanagifuro-cho, Nishiiri Nisujime-kami, Imaide-yotsuji-cho, Kamigyo-ku, Kyoto City
9 171-19 Nojicho, Kusatsu City

Claims (1)

【特許請求の範囲】 一般式、 1 CR2= C(11 C−N11−R2−3Oa X 1 (ただし、式中R1はHまたは低級アルキル基、R2は
炭素数1〜4の直鎖または分枝状アルキレン基、XはH
またはアルカリ金属またはNH4または有機塩基を表す
)で示される化合物100〜15モル%。 一般式、 3゜ 3 C)+2 = CT21 C−NH−^ 1 (ただし、式中R8はHまたは低級アルキル基、AはH
または−C)120+1を表す)で示される化合物を0
〜85モル%。 一般式、 4 CH2=C(31 −OY 1 (ただし、式中R4はHまたは低級アルキル基、YはH
またはアルカリ金属またはNH4または有機塩基を表す
)で示される化合物0〜85モル%を重合させて得られ
る極限粘度(INNaC1!水溶液の30℃における)
が0.05〜2.Oa/gを有する水溶性重合体を必須
の構成成分として含有することを特徴とする水硬性セメ
ント混和剤。
[Claims] General formula, 1 CR2=C(11 C-N11-R2-3Oa alkylene group, X is H
or an alkali metal or NH4 or an organic base) from 100 to 15 mol%. General formula, 3゜3 C)+2 = CT21 C-NH-^ 1 (However, in the formula, R8 is H or a lower alkyl group, A is H
or -C) represents 120+1) is 0
~85 mol%. General formula, 4 CH2=C(31 -OY 1 (in the formula, R4 is H or a lower alkyl group, Y is H
Intrinsic viscosity (INNaC1! at 30°C of aqueous solution) obtained by polymerizing 0 to 85 mol% of a compound represented by alkali metal or NH4 or an organic base)
is 0.05 to 2. A hydraulic cement admixture characterized by containing a water-soluble polymer having Oa/g as an essential component.
JP6619384A 1984-04-03 1984-04-03 Hydraulic cement admixing agent Granted JPS60210554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6619384A JPS60210554A (en) 1984-04-03 1984-04-03 Hydraulic cement admixing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6619384A JPS60210554A (en) 1984-04-03 1984-04-03 Hydraulic cement admixing agent

Publications (2)

Publication Number Publication Date
JPS60210554A true JPS60210554A (en) 1985-10-23
JPH0155210B2 JPH0155210B2 (en) 1989-11-22

Family

ID=13308761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6619384A Granted JPS60210554A (en) 1984-04-03 1984-04-03 Hydraulic cement admixing agent

Country Status (1)

Country Link
JP (1) JPS60210554A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260453A (en) * 1984-06-05 1985-12-23 第一工業製薬株式会社 Admixing agent for underwater concrete
JPS61209945A (en) * 1985-03-12 1986-09-18 日本ゼオン株式会社 Admixing agent for cement
JPS63291840A (en) * 1987-05-26 1988-11-29 Nippon Shokubai Kagaku Kogyo Co Ltd Cement composite
US5489626A (en) * 1993-11-24 1996-02-06 Mitsui Toatsu Chemicals, Inc. Admixture for hydraulic cement

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260453A (en) * 1984-06-05 1985-12-23 第一工業製薬株式会社 Admixing agent for underwater concrete
JPH0224778B2 (en) * 1984-06-05 1990-05-30 Daiichi Kogyo Seiyaku Kk
JPS61209945A (en) * 1985-03-12 1986-09-18 日本ゼオン株式会社 Admixing agent for cement
JPS63291840A (en) * 1987-05-26 1988-11-29 Nippon Shokubai Kagaku Kogyo Co Ltd Cement composite
US5489626A (en) * 1993-11-24 1996-02-06 Mitsui Toatsu Chemicals, Inc. Admixture for hydraulic cement

Also Published As

Publication number Publication date
JPH0155210B2 (en) 1989-11-22

Similar Documents

Publication Publication Date Title
US3972723A (en) Mortar of inorganic binder and sulfonic acid group-containing formaldehyde condensation product with cycloalkanone
US20030144384A1 (en) Superplasticizer for concrete and self-leveling compounds
US5092934A (en) Aminoarylsulfonic acid-phenol-formaldehyde condensate and concrete admixture comprising the same
JP2002003256A (en) Cement-dispersing polymer for high flow, high-strength and self-compacting concrete
JP2001011129A (en) Polymer capable of dispersing multi-purpose cement for high-fluidity, high-strength concrete
JPS60210554A (en) Hydraulic cement admixing agent
JPH0952749A (en) Admixture for high flowability concrete and concrete material containing the same
JPH09295843A (en) High performance water reducing agent and cement composition using the same
JP4709359B2 (en) Hydraulic composition
JPH0240623B2 (en)
JP2617903B2 (en) Cement dispersant
JP2882623B2 (en) Method for promoting hardening of hydraulic cement composition and method for improving strength of the hardened product
JPH09241055A (en) Cement additive
JPS6224371B2 (en)
JPS6218507B2 (en)
JPH0216260B2 (en)
JP3172747B2 (en) Cement admixture
JP3172748B2 (en) Cement admixture
JP3605853B2 (en) Non-separable cement composition
JPS6328866B2 (en)
JPS6183662A (en) Cement additive
JPH04349160A (en) Cement admixture
JPH04119954A (en) Admixture of cement
JPH0517187A (en) Production of high-strength concrete
JPH03257053A (en) Cement dispersant