JPS60208413A - Manufacture of carburizing steel - Google Patents

Manufacture of carburizing steel

Info

Publication number
JPS60208413A
JPS60208413A JP6390584A JP6390584A JPS60208413A JP S60208413 A JPS60208413 A JP S60208413A JP 6390584 A JP6390584 A JP 6390584A JP 6390584 A JP6390584 A JP 6390584A JP S60208413 A JPS60208413 A JP S60208413A
Authority
JP
Japan
Prior art keywords
steel
less
heating
cooling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6390584A
Other languages
Japanese (ja)
Inventor
Takeshi Takahashi
武士 高橋
Kazuichi Tsubota
坪田 一一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Sanyo Tokushu Seiko KK
Original Assignee
Sanyo Special Steel Co Ltd
Sanyo Tokushu Seiko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd, Sanyo Tokushu Seiko KK filed Critical Sanyo Special Steel Co Ltd
Priority to JP6390584A priority Critical patent/JPS60208413A/en
Publication of JPS60208413A publication Critical patent/JPS60208413A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Abstract

PURPOSE:To prevent the coarsening of the grains during carburization by austenitizing a steel contg. specified percentages of C, Mn, Nb, N, O, etc. by heating to a prescribed temp. and by cooling and forging the steel under specified conditions. CONSTITUTION:A steel consisting of 0.1-0.5% C, <=0.4% Si, 0.1-1.5% Mn, <=0.025% P, <=0.025% S, <=0.0015% O, 0.02-0.08% Nb, 0.015-0.050% sol. Al, 0.12-0.020% N and the balance Fe or further contg. one or more among <=5% Ni, <=3% Cr, <=1% Mo and 0.03-0.20% Pb is uniformly austenitized by heating to >=900 deg.C. The steel is cooled from >=600 deg.C to the Ac1 point at >=100 deg.C/hr cooling rate and forged at room temp. - the Ac1 point. When the resulting steel is carburized at >=925 deg.C, the austenite grains are not coarsened, so a carburized steel of high quality is obtd.

Description

【発明の詳細な説明】 本発明は室温からAC,へまでの温度で鍛造した後、9
25℃以上で浸炭した場合にiIf+7.発生するオー
ステナイト結晶粒の全体的もしくは部分的な粗大化の防
止法に関するものである。上述の室温からAC,点の間
の鍛造は涌π玲間もしくは温間鍛造といわれているが、
具((・的に何度から何度の間の鍛造を冷間19 aと
称するかは見方によ−)で差異があるので、ここではA
C,、a以−丁での鍛造を「冷・温間鍛造」と称してお
く。このまりな冷・温間鍛造を行なった後、つづいて浸
炭処埠を行なうとオーステナイト結晶粒が全体的もしく
は部分的に粗大化することは当業者にとって頭の痛い問
題であった。すなわち、浸炭焼入れ鏝の部品の曲がりな
どの変形と品質の信fRvEの低I、とくに働撃値およ
び疲れ強さの低下と部分的なかたさの差異が発生する。
DETAILED DESCRIPTION OF THE INVENTION After forging at temperatures ranging from room temperature to AC, the present invention
iIf+7. when carburized at 25°C or higher. The present invention relates to a method for preventing total or partial coarsening of austenite crystal grains that occur. Forging between the room temperature and AC points mentioned above is called Wakupirema or warm forging.
There are differences depending on how many times the forging process is called cold 19a, so here we use A.
Forging in C, A and D is called "cold/warm forging." It has been a vexing problem for those skilled in the art that when carburizing is subsequently performed after performing this mild cold/warm forging, the austenite crystal grains become coarse in whole or in part. That is, deformation such as bending of the parts of the carburizing and quenching iron, low I of quality reliability fRvE, especially a decrease in working impact value and fatigue strength, and differences in local hardness occur.

冷・温間!I9造を(1なう場合には、加工性を向上さ
せる最良のlj法として球状化焼なましが通常行なわれ
るが、この熱処理が浸炭の前熱処理としては浸炭後の結
晶粒度にとって最悪の結果をもたらすという皮肉な現′
央かぁ−)だ。
Cold/warm! In the case of I9 structure (1), spheroidizing annealing is usually carried out as the best lj method to improve workability, but this heat treatment, as a pre-carburizing heat treatment, has the worst effect on grain size after carburizing. The ironic reality of bringing
It's the center.

本発明は、前処理と化学成分の組合せによって、この浸
炭によるオーステナイト結晶粒の粗大化をに/r +l
てきる方法を検、tlした結果なされたもので、その要
旨とするところは C:0.1−0.5Φ Si:0.4%以「 Mn゛ 01〜15Φ P ’ 0.025%以下 S l O,025%以下 0 : o、oo1s%以下 Nb: 0.02〜0.0896 SoeAe:0.015−0.050%N : 0.0
12〜0020形 更に必要に応じてN15%以下、Cr5q6以トMo 
: 196以下、PLI : 0.03〜0.20%比
二5の1種目加熱して均一なオークチナイトにした後、
600℃以上AC,点までを100℃/1+r u上の
速度で冷却し、当該温度においてγ−・α変態を終了せ
しめた後、室温から当該鋼のAC,点までの間の19糸
を行なうことにより925℃以上の温度で浸炭した場合
に、オーステナイト結晶粒が全体的もしくは部分的な粗
大化を起こさないことを特徴とする浸炭用鋼の製造方法
てあり、冷・温間I9造性を阻害することなく浸炭後に
おいて良好な結晶粒度が得られるものである。
The present invention uses a combination of pretreatment and chemical components to suppress the coarsening of austenite grains due to carburization.
This was done as a result of testing and tl of the method that can be used. l O, 025% or less 0: o, oo 1s% or less Nb: 0.02-0.0896 SoeAe: 0.015-0.050% N: 0.0
12~0020 type, and if necessary, N15% or less, Cr5q6 or more, Mo
: 196 or less, PLI: 0.03-0.20% After heating the first type of 25 to make uniform oakinite,
After cooling at a rate of 100°C/1+ru above 600°C to the AC point and completing the γ-・α transformation at that temperature, perform 19 threads from room temperature to the AC point of the steel. There is a method for producing steel for carburizing, which is characterized in that when carburized at a temperature of 925°C or higher, the austenite crystal grains do not coarsen completely or partially, and the cold/warm I9 buildability is improved. Good grain size can be obtained after carburizing without any hindrance.

次に本発明において対象とする鋼の成分限定の理由につ
いて述べる。
Next, the reason for limiting the composition of the steel targeted in the present invention will be described.

(炭素) 浸炭部品は必要な強度を得るためコアーかたさをHRC
20〜55程度に調整する必要がある。
(Carbon) For carburized parts, the core hardness is HRC to obtain the necessary strength.
It is necessary to adjust it to about 20-55.

この為には部品サイズと後述の他の合金元素との関連で
01〜0.5%あれば十分である。
For this purpose, 01 to 0.5% is sufficient in relation to the part size and other alloying elements described below.

よってCの上限を05%とし、下限を0.1%とする。Therefore, the upper limit of C is set to 0.05%, and the lower limit is set to 0.1%.

(硅素) Siは一般に焼入性の調整とフェライトの強化にイja
9)である。しかし、本発明においてはSiが04%を
超えるとフェライトが強化し、そのためかえって冷鍛時
の変形抵抗を高くする。
(Silicon) Si is generally used to adjust hardenability and strengthen ferrite.
9). However, in the present invention, when Si exceeds 0.4%, the ferrite becomes stronger, which actually increases the deformation resistance during cold forging.

従ってSiの上限を0496とする。一方Siは全く添
加せずとも本発明の効果を損うものではない。従って8
1の下限は定めない。
Therefore, the upper limit of Si is set to 0496. On the other hand, even if Si is not added at all, the effects of the present invention are not impaired. Therefore 8
There is no lower limit of 1.

(マンカン) 本発明においてはMuは適切なかたさを得るための焼入
性の調整に用いる。このためには、Mnは曲の合金元素
との関連で01〜15%剣で十分「1的を達しうる。よ
ってMuの下限を0.1%とし、上限を15%とする。
(Mankan) In the present invention, Mu is used to adjust the hardenability in order to obtain appropriate hardness. For this purpose, Mn of 01 to 15% in relation to the alloy elements of the song is enough to reach the target. Therefore, the lower limit of Mu is set to 0.1% and the upper limit is set to 15%.

多くなるとそれぞれ冷・温間鍛造時の割れ発生を助長す
る性質がある。本発明鋼てはPO,025%、S : 
0.025q6、O: 0.0015%をそれぞれ超え
ると、その悪影響が顕著をこなるのでそれぞれ上限値と
した0 :ニメプ) 本発明においてNbは鋼中で徹細なNb(C、N )と
して分散し、後述するAeおよびNとともに総合的に結
晶粒の粗大化を阻止する。
If the amount increases, each has the property of promoting cracking during cold and warm forging. The steel of the present invention has PO, 025%, S:
0.025q6, O: If each exceeds 0.0015%, the adverse effects become significant, so the upper limit values were set for each. In the present invention, Nb is treated as fine Nb (C, N) in steel It is dispersed and together with Ae and N, which will be described later, comprehensively prevents crystal grains from becoming coarser.

この場合、 Nbは多いほど結晶粒成長阻IL作用は強
くなるがNb(C,N)が多くなると切削性を劣化させ
、かつ、後述するようにころかり寿命を低下させる。本
発明のNb1jl述するN、Alとともに、さらにIl
l熱処理との総合的な組合せにおいて0.02〜008
%において目的を達することができる。
In this case, the more Nb there is, the stronger the IL effect of inhibiting crystal grain growth becomes, but the more Nb (C, N) there is, the more the machinability deteriorates and, as will be described later, the rolling life is reduced. In addition to N and Al described in Nb1jl of the present invention, Il
0.02-008 in comprehensive combination with l heat treatment
The goal can be achieved in %.

よって、Nbの上限を008% とし下限を002%と
する。
Therefore, the upper limit of Nb is set to 008% and the lower limit is set to 002%.

:酸可溶アルミニウム) 鋼中でSol、Al は後述するNとともにAeNを形
成し、微細に分散して結晶粒の成長を阻1F−する。
: Acid-soluble aluminum) In steel, Sol and Al form AeN together with N, which will be described later, and are finely dispersed to inhibit the growth of crystal grains.

本発明鋼ではSOe、Ae はn11述のNbと後述の
Nと+iil P処理との関係で0.015〜0050
%においてその目的を達することができる。
In the steel of the present invention, SOe and Ae are 0.015 to 0050 depending on the relationship between Nb described in n11, N and +iil P treatment described below.
The objective can be achieved in %.

ヨ・テ、Sue、Al (1)上限をo、oso=7と
し、下限を0015%とする。
Yo Te, Sue, Al (1) The upper limit is o, oso=7, and the lower limit is 0015%.

(窒素) 本発明においてNは1]11述のNl+とAeと結合し
ろ14本未発鋼で規制した成分の鋼てはNを多くした方
かNi1(C,N)の中のNか多くなり、 Al’Nと
ともにすぐれた結晶粒成長阻止作用を41−するか、こ
のようにしてAi+述のN13とAlとの関係て最小限
0012%を必要とする。よってNの下限1o、ox2
Φとする。一方、Nは多いほどよいが0020Φを趙え
ると鋼塊に巣が生成する可能1′1かててくるのて上限
を0.020a6とする。
(Nitrogen) In the present invention, N is 1] Combined with Nl+ and Ae mentioned in 11. 14 For steels with compositions regulated by undeveloped steel, it is better to increase N or to increase N in Ni1 (C, N). Therefore, together with Al'N, it has an excellent grain growth inhibiting effect, or in this way, the relationship between N13 and Al described in Ai+ requires a minimum of 0012%. Therefore, the lower limit of N is 1o, ox2
Let it be Φ. On the other hand, the higher the value of N, the better, but if 0020Φ is exceeded, there is a possibility that cavities will be formed in the steel ingot, so the upper limit is set to 0.020a6.

(ニッケル、クロム、モリブデン) +発明て用いる鋼において、特に高焼入性を・区實とす
る場合は、第111の発明で規制する鋼に、更にNi、
Cr、MOを加える。
(nickel, chromium, molybdenum)
Add Cr and MO.

この場合、N1は5%以−[、Crは3%lり1、Mu
は1%以下の量の添加によって1分その目的を達するこ
とができる。よってNiの上限を5%、Crのそれを3
%、MOのそれを1%とする。
In this case, N1 is 5% or more, Cr is 3% or more, Mu
can achieve its purpose by adding less than 1% in 1 minute. Therefore, the upper limit for Ni is 5%, and that for Cr is 3%.
%, and that of MO is 1%.

(鉛) 本発明で規制した成分の鋼において切削11を特に必要
とする場合にはpbを添加する。Pbの 被削性向上効果は003〜020@て十分である。
(Lead) If cutting 11 is particularly required in steel having the composition regulated in the present invention, PB is added. The machinability improving effect of Pb is sufficient for 003 to 020@.

よってpb の上限を020%とし、トー限を003%
とする。
Therefore, the upper limit of pb is set as 020%, and the toe limit is set as 003%.
shall be.

(熱処理と化学成分との相互間l−f+)本発明におけ
る特¥1請求範囲に記紅した熱処理と化学成分との相互
関係についての限定iJl由はそれぞれ第2表の実施例
、比較例にもとづいている。すなわち、900車1−の
加熱はAeNの分解をもたらすのtこ必要である。また
600℃〜AO1間を100℃/11r以上で冷却する
のは、ここの冷却が遅くなりすぎると結晶粒度が不良に
なるからである。これは、おそら(AeNがFil大に
なるためと巴われる。更に600℃以上としているのは
、これ以下になると混粒になるからで、これはベイナイ
トの混在した組織になることによると思われる。
(Interrelationship between heat treatment and chemical components l-f+) The limitations on the interrelationship between heat treatment and chemical components listed in the claims of the present invention are shown in the Examples and Comparative Examples in Table 2, respectively. It is based on That is, heating of the 900 ml is necessary to bring about the decomposition of the AeN. Further, the reason why the temperature between 600° C. and AO1 is cooled at 100° C./11r or more is because if the cooling is too slow, the crystal grain size becomes poor. This is probably due to the fact that AeN becomes larger than Fil. Furthermore, the temperature is set above 600°C because below this temperature, the grains become mixed, and this is thought to be due to the formation of a structure containing bainite. It will be done.

また、ACと、J ’l’としているのは、これ以上で
はγ・α変1心か終rしないためてもあるが、このよ5
なオーステナイト状帖から直接空冷した場合は良好な結
晶粒特性が得られないことは既に当業者の常識となって
いる。
Also, the reason why we use AC and J 'l' is because if we go beyond this, the γ/α change will be 1 mind or the end will not end.
It is already common knowledge among those skilled in the art that good crystal grain characteristics cannot be obtained when direct air cooling is performed from an austenitic sheet.

次に本発明の実施例を述べる。第1表に供試材の化学成
分を小す。これらは、いずれもItlO’91:ら周I
皮真空1涛’!’、la’iて浴槽したものである。
Next, examples of the present invention will be described. Table 1 shows the chemical composition of the sample materials. These are all ItlO'91: et al.
One skin vacuum! ', la'i and took a bath.

表1の成分をイjする鋼塊を30y8に熱間鍛造した後
に1・記(イ)〜0→に示す4i1 :塾処理を施した
後、室温のままおよび600℃に予熱したものについて
70%据込み加工を行なって席温に冷却後、浸炭旭川を
想定して950℃X6brの加熱後、水焼入れをfrな
い、オーステナイト結晶粒度を調査した。結果を第2表
に示す。
After hot forging a steel ingot with the ingredients in Table 1 to 30y8, 4i1 as shown in 1. (A) ~ 0 → 4i1: After applying cram school treatment, 70 for those left at room temperature and preheated to 600℃ After performing % upsetting and cooling to the seat temperature, the austenite grain size was investigated after heating at 950° C. x 6 br assuming carburization in Asahikawa, without water quenching. The results are shown in Table 2.

(011熱処理) (イ)900℃X11+r加熱後空冷 ■PI 850
℃X2hr aI? ?& 10℃/11r炉冷 囚(
ハ)760℃X2br 加熱後10’(:/l+ r 
Qi冷 (SA)に) 700℃X 3 II r加熱
後空冷 6)内 930℃x l l+ r 加熱後、
67o(のソルトハスヘ色冷し21+r i t、y 
i、空/= (IA)なお、950℃X51+r加熱時
の結晶粒度を調6したのは、最近、この程度の7aA度
で、比較的多く浸炭されていることによる。
(011 heat treatment) (a) Air cooling after heating at 900℃X11+r ■PI 850
℃X2hr aI? ? & 10℃/11r furnace cooling (
C) 760℃×2br After heating 10'(:/l+r
Qi cooling (SA)) 700°C x 3 II r Air cooling after heating 6) Inside 930°C x l l+ r After heating,
67o (salt lotus color cooled 21+r i t,
i, empty/= (IA) The reason why the grain size at the time of heating at 950° C.

第2表 オーステナイト結晶粒度 (950’CX61
+r加熱)○ 1llI!:%L7. A:軽1ρの混
rU、 X : ’lるしい混粒またはオII 粒4−
なわ’) ]iil ?処理かIAの場合に本発明の範
囲の化学)成分をN する場合にXtに良好な結晶粒度
を丁している。
Table 2 Austenite grain size (950'CX61
+r heating) ○ 1llI! :%L7. A: Light 1ρ mixed rU, X: 'lishi mixed grain or OII grain 4-
Nawa')]iil? In the case of treatment or IA, the chemical composition within the scope of the present invention has a good grain size in Xt.

そこで次にIAの条件について楡P11.たヘーーては
供試材として銅属5を用いた。条件としてオーステナイ
ト化温度′%T、%、変肝温度%T、’J:、冷却速度
゛)V%およびT9、尤の保持時間e1、e、について
検討した。
So next, let's talk about the conditions for IA. Therefore, copper metal 5 was used as the test material. As conditions, the austenitizing temperature '%T, %, the inversion temperature %T, 'J:, the cooling rate ')V% and T9, and the actual holding times e1, e were investigated.

各種条件および検り1結果を第3表にまとめて示イー。The various conditions and test results are summarized in Table 3.

第3表においてT、の保持時間は111rてありV ℃
/ h rで冷却した後、T、ての保持時間はそれぞれ
111rとして変縣を完全に終了せしめ、その後室温ま
で冷却し、その後、950℃x5hrの加熱処理を行な
いメーステナイト結晶粒度を測定した。
In Table 3, the holding time of T is 111r, and V ℃
After cooling at /hr, holding times T and T were respectively 111r to completely complete the deformation, and then cooling to room temperature, followed by heat treatment at 950°C x 5hr, and the maestenite grain size was measured.

この結果から、T1の適切な温度は900℃す■てあり
、T、としては600℃〜AC,占、程度であることか
わかる。また、T、 −T、の中間の冷却速度とし−(
約100℃/11r以上にすることか好ましいこともr
ll明した。このことから特許請求の範囲にある熱処理
条件を定めた。
From this result, it can be seen that the appropriate temperature for T1 is 900°C, and that T is about 600°C to AC. Also, suppose the cooling rate is between T, -T, and -(
It is also preferable to keep the temperature at about 100℃/11r or higher.
It was clear. Based on this, the heat treatment conditions within the scope of the claims were determined.

つぎにNbのころがり寿命への影響を見るためスラスト
型ころかり疲れ試験を行なった結果を述べる。試験条件
は次の通りである。
Next, we will discuss the results of a thrust type rolling fatigue test to see the effect of Nb on rolling life. The test conditions are as follows.

Pmnx: 500 kt f/ij 、潤滑油 霧6
0スピンドル油ill、1拭(]として鋼ノti 5.
7,10を用い浸吠仲化処理後、ス“ノスト試験片のか
たさをHRC61〜62に調整し−(試験を行なった・ イ1)られたli、−果を第4kに示す。
Pmnx: 500 kt f/ij, lubricant mist 6
0 spindle oil ill, 1 wipe () as steel noti 5.
After soaking and softening using No. 7 and No. 10, the hardness of the Snost test piece was adjusted to HRC 61 to 62, and the test was conducted. The results are shown in No. 4k.

第4表 ころがりh命試験 この結果から、ころかり寿命に対する悪影響をQ ’I
!するとNl+の上限は008% 程度と考えられる。
Table 4 Rolling life test Based on the results, Q'I indicates the negative effect on rolling life.
! Then, the upper limit of Nl+ is considered to be about 0.008%.

なお、本発明において成分を規制した鋼は製鋼、11延
専のJl (lNにおいて何の問題もなく、冷間)l’
i n、!1□1間!IQ m時の潤滑剤の(’I i
i’7をも全く問題にせず、通′吊の114と同一工程
てす・\て生産・加−1かnJ ijヒCある。
In addition, the steel whose composition is regulated in the present invention is produced by JL (cold working without any problem in IN) of Steel Manufacturing, 11
In,! 1□1 period! of lubricant at IQ m ('I i
I'7 is not a problem at all, and the production process is the same as that of the regular 114.

以」二連へたとおり、本願発明で規制した成分のj14
について、本願発明で規定した処理を施せは、その後の
高温浸炭処埠において部分的あるいは全面的な結晶粒の
粗大化が起こらすT且犬化に伴うf鮒撃値や1皮れ強さ
、あるいは焼入変形などを避けることがてきる。
Hereinafter, j14 of the ingredients regulated by the present invention
When the treatment specified in the present invention is applied, partial or total grain coarsening occurs in the subsequent high-temperature carburizing process. Alternatively, quenching deformation can be avoided.

特お出願人 山陽特殊製鋼株式会ン」 代表者 大 内 俊 「jjSpecial applicant: Sanyo Special Steel Co., Ltd.” Representative Shun Ouchi “jj

Claims (1)

【特許請求の範囲】 山 C゛ 01〜05% Si : 0.4%以下 Mu : 0.1〜1昨 P : 0.025%以下 S i O,025%以下 0 : 0.0015%以下 Nb : 0.02〜008% 5neAe : 0.015−o、oso4.sN :
 0.012〜0020% 四に必要に応してN1:5%以下、Cr:3%以1’、
Mu:1%以下、Pb : 0.03−0.20%≠キ
ノ1腫以上を含み残部は実質的にFeである鋼を91)
0℃以りに加熱して均一なオーステナイトにした後、6
00℃以上、AC,点までを100℃/br以上のし中
度て冷却し、当該温度においてγ−α変態を終了せしめ
た後、室温から当該鋼のAC。 点までの間で鍛造を行なうことにより、925℃以上の
z品度で浸炭した場合に、A−ステナイト結晶粒が全体
的もしくは部分的な11大化を起こさないことを特徴と
する浸炭用鋼の製造方法。
[Claims] Mountain C゛ 01-05% Si: 0.4% or less Mu: 0.1-1 P: 0.025% or less SiO, 025% or less 0: 0.0015% or less Nb : 0.02-008% 5neAe: 0.015-o, oso4. sN:
0.012~0020% 4. N1: 5% or less, Cr: 3% or more 1', as required
Mu: 1% or less, Pb: 0.03-0.20%≠Steel that contains more than 1 tumor and the remainder is substantially Fe91)
After heating to below 0℃ to make uniform austenite, 6
AC of the steel from room temperature after cooling at a temperature of 100°C/br or more to complete the γ-α transformation at that temperature. A carburizing steel characterized in that A-stenite crystal grains do not become larger than 11 in whole or in part when carburized at a Z grade of 925°C or higher by forging up to a point. manufacturing method.
JP6390584A 1984-03-30 1984-03-30 Manufacture of carburizing steel Pending JPS60208413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6390584A JPS60208413A (en) 1984-03-30 1984-03-30 Manufacture of carburizing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6390584A JPS60208413A (en) 1984-03-30 1984-03-30 Manufacture of carburizing steel

Publications (1)

Publication Number Publication Date
JPS60208413A true JPS60208413A (en) 1985-10-21

Family

ID=13242803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6390584A Pending JPS60208413A (en) 1984-03-30 1984-03-30 Manufacture of carburizing steel

Country Status (1)

Country Link
JP (1) JPS60208413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108070788A (en) * 2017-12-28 2018-05-25 安徽应流集团霍山铸造有限公司 A kind of preparation method of niobium alloy doping cast steel material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108070788A (en) * 2017-12-28 2018-05-25 安徽应流集团霍山铸造有限公司 A kind of preparation method of niobium alloy doping cast steel material

Similar Documents

Publication Publication Date Title
JPH0441616A (en) Production of low-hardness water-resistant steel excellent in wear resistance and bendability
CN112877591B (en) High-strength and high-toughness hardware tool and steel for chain and manufacturing method thereof
JPS6043431B2 (en) Manufacturing method of nitrided machine parts for light loads
JPS589813B2 (en) Manufacturing method for non-thermal forged steel products
US2505763A (en) Stainless steel and method
US1943595A (en) Hardened alloy steel and process of hardening same
JPH0320408A (en) Production of high tensile steel stock excellent in toughness at low temperature
JPS6127460B2 (en)
JPH0559488A (en) Precipitation hardening type high strength steel for soft-nitriding excellent in machinability
JPH11124623A (en) Manufacture of boron-containing steel for cold forging
US4853049A (en) Nitriding grade alloy steel article
EP0020357B1 (en) Lower bainite alloy steel article
JPS60208413A (en) Manufacture of carburizing steel
KR900000279B1 (en) Process for production of high-hardness hardened and tempered special steel and special steel alloy
US2724647A (en) Steel and article for high temperature uses
JPH0227408B2 (en)
JPS61147815A (en) Production of roll having high hardened depth
JPS62149814A (en) Production of low-carbon high-strength seamless steel pipe by direct hardening method
JP3109146B2 (en) Manufacturing method of low strain high strength member
JPH02259014A (en) Manufacture of tough and hard bar steel
JPS616212A (en) Manufacture of case hardening steel for bearing
JPH04337024A (en) Production of bearing steel
JPH10280036A (en) Wire rod for high strength bolt excellent in strength and ductility and its production
JPS5950158A (en) Soft-nitriding low alloy steel
JPH06122920A (en) Production of high strength spring steel