JPS60207390A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS60207390A
JPS60207390A JP6213184A JP6213184A JPS60207390A JP S60207390 A JPS60207390 A JP S60207390A JP 6213184 A JP6213184 A JP 6213184A JP 6213184 A JP6213184 A JP 6213184A JP S60207390 A JPS60207390 A JP S60207390A
Authority
JP
Japan
Prior art keywords
layer
active layer
type
photodetector
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6213184A
Other languages
Japanese (ja)
Inventor
Shigeru Semura
滋 瀬村
Hisao Nakajima
尚男 中島
Hiroshi Saito
浩 斉藤
Keisuke Kobayashi
啓介 小林
Tsuneaki Oota
太田 恒明
Tadashi Fukuzawa
董 福沢
Yoko Uchida
陽子 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6213184A priority Critical patent/JPS60207390A/en
Publication of JPS60207390A publication Critical patent/JPS60207390A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • H01S5/1032Coupling to elements comprising an optical axis that is not aligned with the optical axis of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To stabilize an output, and to improve reproducibility by forming a semiconductor laser having buried type double hetero-structure and a photodetector on the same substrate and detecting laser beams from the semiconductor laser by the photodetector. CONSTITUTION:A P type CaAlAs layer 22 and three layers or more of two kinds of compound semiconductor thin-films having different forbidden band width are laminated on a substrate 21, and quantum well type structure is used as an active layer 24. An N type GaAlAs layer 23 having forbidden band width larger than that of semiconductors is shaped as an upper clad layer, thus forming double hetero-junction structure. An N type GaAs layer 25 as an uppermost layer is etched by utilizing a mask 26 for diffusing an impurity, and the P type impurity is diffused. The two semiconductors constituting a quantum well type are alloyed in an impurity diffusion region in the active layer 24, forbidden band width is made larger than a light-emitting region in the lower section of the N type GaAs layer 25 and an optical waveguide, and a refractive index is reduced. The performance of a laser is improved, and the yield of products is enhanced largely.

Description

【発明の詳細な説明】 この発明は量子井戸型層の活性領域を有する半導体レー
ザ、光導波路及び光検出器を同一基板上に構成し、半導
体レーザと、光検知器を光学的に接続した半導体装置及
びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention provides a semiconductor laser in which a semiconductor laser having an active region of a quantum well type layer, an optical waveguide, and a photodetector are configured on the same substrate, and the semiconductor laser and the photodetector are optically connected. The present invention relates to a device and a method for manufacturing the same.

従来、単一モード発振の半導体レーザ装置は活性領域の
周囲が禁制帯幅の大きな半導体装置つて囲まれた埋込み
形へテロ構造がとられている。この埋込み形へテロ構造
のレーザ装置は2回の液相成長法とメサエッチングを用
いて製造されている。即ち、第1回目a液相成長でダブ
ルへテロ構造結晶が作られ、この結晶を化学エツチング
でメサ・ストライプ状にした後、第2回目の液相成長に
よりとのメサ・ストライプが禁制帯幅の大きい半導体に
よって埋込まれる。
Conventionally, a single mode oscillation semiconductor laser device has a buried heterostructure in which an active region is surrounded by a semiconductor device having a large forbidden band width. This buried heterostructure laser device is manufactured using two liquid phase growth methods and mesa etching. That is, a double heterostructure crystal is created in the first liquid phase growth, and this crystal is chemically etched into a mesa stripe shape, and then in the second liquid phase growth, the mesa stripes have a forbidden band width. embedded by a large semiconductor.

このように従来の埋込み形へテロ構造レーザ装置は製造
工程が煩雑でストライプの幅の制御がむずかしく、製品
の歩留シが悪かった。
As described above, the conventional buried type heterostructure laser device has a complicated manufacturing process, and it is difficult to control the stripe width, resulting in poor product yield.

上記に鑑み、本出願人は量子井戸型構造の活性層の上下
を量子井戸型を構成している二種の半導体の平均組成よ
りも大きな組成を有する半導体で構成し、活性層の左右
は量子井戸型構造に亜鉛を拡散して量子井戸型構造の平
均組成の半導体で構成する半導体レーザ装置を提案した
In view of the above, the applicant has proposed that the upper and lower parts of the active layer of the quantum well structure are made of semiconductors having a composition larger than the average composition of the two types of semiconductors that make up the quantum well structure, and that the left and right parts of the active layer are We have proposed a semiconductor laser device consisting of a semiconductor with an average composition in a quantum well structure by diffusing zinc into the well structure.

この半導体レーザ装置はエピタキシャル成長法で形成し
た多層半導体結晶成長層に不純物の拡散処理を行うのみ
で量子井戸構造を活性層とし11間昭(liO−207
390(2)79号)。
This semiconductor laser device uses a quantum well structure as an active layer by simply performing an impurity diffusion process on a multilayer semiconductor crystal growth layer formed by an epitaxial growth method.
390(2) No. 79).

ゝしかし、半導体レーザ装置は温度によって出力が敏感
に変化するので、出力を常に検出し、給出した出力をフ
ィードバックして出力の安定化を図る必登がある。これ
まで、上述のように製造された半導体レーザ装置は別個
に作った光検出器と共に金属マウントの上に配置し、レ
ーザ装置より発振するレーザ光の出力を検出していたが
、両装置のアライメントに煩雑な作業を要した。
However, since the output of a semiconductor laser device changes sensitively depending on the temperature, it is necessary to constantly detect the output and feed back the output to stabilize the output. Until now, the semiconductor laser device manufactured as described above was placed on a metal mount together with a separately manufactured photodetector to detect the output of the laser beam oscillated by the laser device, but the alignment of both devices was required complicated work.

との発明の目的は上述の如き埋込み型ダブルへテロ構造
の半導体レーザと光検出器とを同一基板上に設けて半導
体レーザよシのレーザ光を光検知器で検出して、出力の
安定化を図った半導体装置及び上記半導体装置を容易且
つ再現性良く製造するための方法を提供することにある
The purpose of the invention is to provide the above-mentioned embedded type double heterostructure semiconductor laser and a photodetector on the same substrate, detect the laser light of the semiconductor laser with the photodetector, and stabilize the output. It is an object of the present invention to provide a semiconductor device and a method for manufacturing the semiconductor device easily and with good reproducibility.

以下、この発明を添付の図面に基き説明すると、第1図
はこの発明の半導体装置の一実施例3− を示し、/はp型半導体基板であって、この半導体基板
/の上には下部クラッド層として後述九量子井戸型構造
の活性層ダが存在する。この量子井戸型構造を構成する
化合物半導体としてはGaAs 、GaAlAs 、G
cLAgP 、GaInAs 、 InGaAsP な
どの2元系、5元系、4元系の禁制帯幅の異なる半導体
が挙げられる。上記の活性層ダの上には上部クラッド層
として活性層ダを構成する半導体よシ禁制帯幅の大きい
n型半導体層3がある。
Hereinafter, the present invention will be explained based on the attached drawings. FIG. 1 shows a third embodiment of the semiconductor device of the present invention, / is a p-type semiconductor substrate, and on top of this semiconductor substrate An active layer having a nine-quantum well structure, which will be described later, is present as a cladding layer. Compound semiconductors constituting this quantum well structure include GaAs, GaAlAs, and G
Examples include binary, quinary, and quaternary semiconductors having different forbidden band widths, such as cLAgP, GaInAs, and InGaAsP. Above the active layer, there is an n-type semiconductor layer 3 as an upper cladding layer, which has a wider forbidden band width than the semiconductor constituting the active layer.

上記上部クラッド層3の上面中央にはクラッド層よりも
禁制帯幅の狭いストライプ状のn型半導体5αをレーザ
共振器方向に設ける。また、上部クラッド層3の端部の
光検出器を形成する位置にも同様にn型半導体よりを設
ける(第2図)。
At the center of the upper surface of the upper cladding layer 3, a striped n-type semiconductor 5α having a narrower forbidden band width than the cladding layer is provided in the direction of the laser resonator. Furthermore, an n-type semiconductor layer is similarly provided at the end of the upper cladding layer 3 at a position where a photodetector is to be formed (FIG. 2).

このストライプ状半導体3αの下の下部クラッド層2t
で達する直線部分りα及び上記直線部分りα6− の途中よシ分岐してn型半導体よりに向って延びている
曲線部分7bを除いて、亜鉛などのp型不純物を拡散し
た不純物拡散領域(第2図における斜線領域)があシ、
活性層lの不純物拡散領域6は量子井戸型構造を構成し
ている二種の半導体の合金化によシ活性層ダの不純物非
拡散領は光導波路となシ、曲線部分りbの先端部?、は
光゛1検出器を構成する。
Lower cladding layer 2t under this striped semiconductor 3α
The impurity diffusion region (in which a p-type impurity such as zinc is diffused) is formed, except for the straight line section α reached at , and the curved section 7b which branches off midway through the straight line section α6- and extends toward the n-type semiconductor. Shaded area in Figure 2)
The impurity diffusion region 6 of the active layer l is formed by alloying two types of semiconductors constituting a quantum well structure.The impurity non-diffusion region of the active layer D becomes an optical waveguide. ? , constitutes a light 1 detector.

: 上部クラッド層3上のストライプ状n型半導、;体
3αを設けた領域及び光検出器となるn型半導体sbを
設けた領域を除いて絶縁膜?で被覆する。
: A striped n-type semiconductor on the upper cladding layer 3; an insulating film except for the area where the body 3α is provided and the area where the n-type semiconductor sb serving as a photodetector is provided. Cover with

また発光領域ざαを通らない洩れ電流が生じるのを防ぐ
ため、n型半導体Sαと上部クラッド層3の不純物拡散
領域とは電気的に上部クラッド層3の不純物非拡散領域
を介して接続された状態とする。n型半導体jαの上面
には外側電極/θが−7− あり、半導体基板/の底面にはp側電極//があり、n
型半導体3bの上面には光検出器用の電極/コがあり、
第1図に示すような半導体装置を構成する。
In addition, in order to prevent leakage current that does not pass through the light emitting region Zα from occurring, the n-type semiconductor Sα and the impurity diffusion region of the upper cladding layer 3 are electrically connected via the impurity non-diffusion region of the upper cladding layer 3. state. There is an outer electrode /θ on the top surface of the n-type semiconductor jα, and a p-side electrode // on the bottom surface of the semiconductor substrate /.
There is an electrode for a photodetector on the upper surface of the type semiconductor 3b,
A semiconductor device as shown in FIG. 1 is constructed.

この半導体装置において、n側電極10に電子電流を、
p側電極に正孔電流を供給すると、電流は不純物非拡散
領域の直線部分7αの活性層(発光領域)gaへ集中す
る。この発光領域ざαの両側面は量子井戸型構造が合金
化した不純物拡散領域で構成されているため、発光領域
よシ屈このようにして、活性層ダの不純物非拡散領域の
直線部分7αの活性層&、を発光領域として半導体レー
ザが構成され、発光領域が量子井戸型構造であるため、
小さい発振閾値電流にて横方向単一モードのレーザ光が
発振することになる。
In this semiconductor device, an electron current is applied to the n-side electrode 10,
When a hole current is supplied to the p-side electrode, the current is concentrated in the active layer (light emitting region) ga in the straight line portion 7α of the impurity non-diffused region. Since both sides of this light-emitting region 7α are composed of impurity diffusion regions in which the quantum well structure is alloyed, the linear portion 7α of the impurity non-diffusion region of the active layer 2 is bent from the light-emitting region. A semiconductor laser is constructed with the active layer & as a light emitting region, and the light emitting region has a quantum well structure.
A single mode laser beam in the lateral direction is oscillated at a small oscillation threshold current.

尚、下部クラッド層−と活性層ダの間に光ガイド層とし
て下部クラッド層よシ屈折率の小さいp型半導体層を介
在させると、光の閉じ込めがよシ有効に行われ、またレ
ーザ光の発振閾値電流も更に低くなる。
Note that if a p-type semiconductor layer with a lower refractive index than the lower cladding layer is interposed as a light guide layer between the lower cladding layer and the active layer, light confinement will be more effective and the laser beam will be The oscillation threshold current also becomes lower.

活性層ダの不純物非拡散領域のうちの直線部分?、の発
光領域ざαにてレーザ光が発振すると、発光領域Sαは
曲線部分9bの光導波路としての活性層tbと光学的に
接続しているため、レーザ光はとの光導波路を伝搬して
曲線部分76の先端部?、に構成されている光検出器へ
向う。
Straight line part of the impurity non-diffused region of the active layer? When a laser beam oscillates in the light emitting region Sα of The tip of the curved portion 76? , to a photodetector configured in .

光検出器となる先端部?、は、第5図に示すように、p
−n接合部を構成しておシ、とのp−外接合部に逆バイ
アスをかけて空乏庵を形成し、この状態で光導波路rb
より光が伝搬してくると、シ検出された電気信号は半導
体レーザの久方側にフィードバックすることによって、
レーザ出−デー 力先が一定になるよう制御することができる。
The tip that becomes a photodetector? , is p as shown in FIG.
A reverse bias is applied to the p-outer junction with the -n junction to form a depletion hermitage, and in this state, the optical waveguide rb
As the light propagates further, the detected electrical signal is fed back to the far side of the semiconductor laser,
The laser output power destination can be controlled to be constant.

次にこの発明の半導体装置の製造方法の一実施例を説明
する。先ず、p型Gaza基板結晶2/を有機洗浄及び
化学エツチングした後に分子線エピタキシャル成長法、
気相エピタキシャル成長法などを用いて基板!/上に下
部クラッド層として活性層を構成する半導体よシ禁制帯
幅の大きいp型GaAjAa層−一を形成する。次いで
下部クラッド層λλ上に禁制帯幅の異なる二種の化合物
半導体薄膜を数10〜数100X程度の厚さで交互に三
層以上積層し、この量子井戸型構造を活性層、2IIと
する。続いて、量子井戸型構造活性層評の上に活性層を
構成する半導体よシ禁制帯幅の大きいn型GaAJAa
層コ3を上部クラッド層として形成し、所謂ダブルへテ
ロ接合構造とする。
Next, an embodiment of the method for manufacturing a semiconductor device of the present invention will be described. First, after organic cleaning and chemical etching of the p-type Gaza substrate crystal 2/, molecular beam epitaxial growth method,
Substrate using vapor phase epitaxial growth method! A p-type GaAjAa layer having a large forbidden band width than the semiconductor constituting the active layer is formed as a lower cladding layer on the active layer. Next, three or more layers of two types of compound semiconductor thin films having different forbidden band widths are alternately laminated on the lower cladding layer λλ to a thickness of several tens to several hundreds of times, and this quantum well structure is used as an active layer 2II. Next, on top of the quantum well structure active layer, we added n-type GaAJAa, which has a large forbidden band width compared to the semiconductor that constitutes the active layer.
Layer 3 is formed as an upper cladding layer to form a so-called double heterojunction structure.

上部クラッド層コ3上には次に上部クラッド層よシ禁制
帯幅の狭いn !J! GaAs層をオーミック電極と
接続するために成長形成する。必要に応じて基板結晶、
21と下部クラッド層−一との間にはp型GaAa層ま
たは911 GaAjAs層をバッファ層とし10− て設けても良い。
The upper cladding layer 3 has a narrow forbidden band width n! J! A GaAs layer is grown to connect to the ohmic electrode. Substrate crystal, if necessary
A p-type GaAa layer or a 911 GaAjAs layer may be provided as a buffer layer between 21 and the lower cladding layer 10-.

上述の如く多層構造が形成したら、n型Gaps層上に
シリカ、シリコンナイトライドなどの膜を被着した後に
、第4図に示すように、ストライプ状の直線部分と直線
部分の途中より分岐した曲線部分を残して除き、不純物
拡散用のマスクコロとする。次にこのマスク、26を利
用して最上層のn型GaAa層23をメサ状にエツチン
グして、マスクと同じような形状とし、しかる後に上面
よシ加熱した亜鉛(Zn)などのp型不純物を少くとも
活性層2ダを構成している量子井戸型構造の最下層の半
導体極薄膜に達するまで拡散する。
Once the multilayer structure is formed as described above, a film of silica, silicon nitride, etc. is deposited on the n-type Gaps layer, and as shown in Fig. Remove all but the curved portion and use it as a mask roller for impurity diffusion. Next, using this mask 26, the uppermost n-type GaAa layer 23 is etched into a mesa shape to have a similar shape to the mask, and then a p-type impurity such as zinc (Zn) is heated from the top surface. is diffused until it reaches at least the lowest layer of the semiconductor ultra-thin film of the quantum well structure that constitutes the active layer 2.

第4図において不純物拡散領域は斜線で示す。In FIG. 4, impurity diffusion regions are indicated by diagonal lines.

この不純物の深さ方向と横方向の拡散の制御は不純物の
拡散温度と拡散時間によシ行う。このように不純物の拡
散により活性層21の不純物拡散領域は量子井戸型を構
成している二つの半導体が合金化し、非拡散領域、即ち
、n型GaAa層2Sの下部の発光領域となる直線部分
と光導波路となる曲線部分よシも禁制帯幅が大きくなり
、−//− 屈折率は小さくなる。
The depth and lateral diffusion of impurities is controlled by the impurity diffusion temperature and diffusion time. In this way, due to the diffusion of impurities, the impurity diffusion region of the active layer 21 is formed by alloying the two semiconductors forming the quantum well type, and forming a non-diffusion region, that is, a linear portion that becomes a light emitting region under the n-type GaAa layer 2S. The forbidden band width of the curved portion that becomes the optical waveguide also becomes larger, and the refractive index becomes smaller.

次にマスク26を除き、更にn型GcLA8層コ3の直
型GaAs層の直線部分25α及び先端部−5bの上よ
シそれぞれ)、uGeNi合金2g 、 30を蒸着し
て外側電極及び光検出器用電極とする。また、基板2/
の裏面を研磨した後にCrku合金29を蒸着してp側
電極とする。最後に形成した多層構造体の両端面を骨間
して共振器とする。
Next, the mask 26 is removed, and uGeNi alloys 2g and 30 are vapor-deposited on the straight portion 25α and the tip 5b of the straight GaAs layer of the 8-layer n-type GcLA layer 3, respectively) for the outer electrode and photodetector. Use as an electrode. Also, the board 2/
After polishing the back surface, a Crku alloy 29 is deposited to form a p-side electrode. Finally, both end surfaces of the multilayered structure formed are placed between the bones to form a resonator.

このようにして製造された半導体装置は第6図に示し、
活性層、21Iの不純物を拡散しないストライプ状部分
はレーザの発光領域と々シ、曲線部分は光導波路となシ
、曲線部分の先端部、即ち、n型半導体2SbT部は光
検出器となって、レーザの発光領域で発振したレーザ光
の一部は光導波路を通って光検出器へ導かれ、発振した
レーザ光の出力強度が測定される。
The semiconductor device manufactured in this way is shown in FIG.
The striped portion of the active layer 21I that does not diffuse impurities serves as a laser emission region, the curved portion serves as an optical waveguide, and the tip of the curved portion, that is, the n-type semiconductor 2SbT portion serves as a photodetector. A part of the laser light oscillated in the light emitting region of the laser is guided to a photodetector through an optical waveguide, and the output intensity of the oscillated laser light is measured.

なお、光導波路となる不純物を拡散しない曲線状部分7
bは第2図の実施例の如く側面方向へ湾曲した形状ばか
りでなく、第7図に示すように、一部曲線状とし、一部
は直線状として襞間面近傍に光検出器を設けるようにし
ても良い。
Note that the curved portion 7 that does not diffuse impurities and becomes an optical waveguide
b is not only curved in the side direction as in the embodiment shown in FIG. 2, but also partially curved and partially straight, with a photodetector provided near the interfold surface, as shown in FIG. You can do it like this.

また上記の説明ではp型半導体基板上にp型半導体層に
より下部クラッド層、活性層、上部クラッド層、ストラ
イブ状半導体を形成し、シリコンなどのイオンを打ち込
んでn型不純物拡散領域を活性層に形成させ、発光領域
及び光導波路にしても上記と同様の機能を備えた半導体
装置を構成することができる。
Furthermore, in the above explanation, a lower cladding layer, an active layer, an upper cladding layer, and a striped semiconductor are formed using a p-type semiconductor layer on a p-type semiconductor substrate, and ions such as silicon are implanted to form an n-type impurity diffusion region in the active layer. A semiconductor device having the same functions as those described above can be constructed even when the light emitting region and the optical waveguide are formed.

この発明による半導体装置は上述の説明で明らかなよう
に、膜厚制御性の良い分子線エピタキシャル成長性成る
いは気相エピタキシャル成長法を用いた多層構造体の結
晶成長工程とフォア3− トリソグラフイによるマスクの形成と、離かしいマスク
合せの技術を必要としない自己整合(セルファライン)
方式による不純物拡散工程の極めて簡単な方法により量
子井戸型構造を活性層とする埋め込み型レーザと光導波
路と光検出器を同一基板上に一体集積化することができ
、レーザの性能を著るしく改善すると共に製品の歩留り
が大巾に向上する。
As is clear from the above description, the semiconductor device according to the present invention uses a crystal growth process of a multilayer structure using molecular beam epitaxial growth or vapor phase epitaxial growth with good film thickness controllability, and a mask formation process using Fore3-trithography. Self-alignment (self-alignment) that does not require formation or separate mask alignment technology
By using an extremely simple impurity diffusion process, it is possible to integrate an embedded laser with a quantum well structure as an active layer, an optical waveguide, and a photodetector on the same substrate, significantly improving the performance of the laser. This will greatly improve product yield.

次にこの発明を実施例によシ説明する。Next, the present invention will be explained with reference to examples.

性層として100X厚のGaAs層と70X厚のGa6
4Aj6.z As 層を交互に合計10層形成し、続
いて上部クラッド層として1.5μ常厚のn @ Qα
。、1IAlo、IIAB層及び0.5μ常厚のn型G
aA6層を結晶成長した。
100X thick GaAs layer and 70X thick Ga6 layer
4Aj6. A total of 10 zAs layers are formed alternately, followed by an n@Qα layer with a normal thickness of 1.5μ as an upper cladding layer.
. , 1IAlo, IIAB layer and 0.5μ normal thickness n-type G
The aA6 layer was crystal grown.

この多層構造体の上面にシリコンナイトライドを被着し
た後に幅約4μ常の直線部分と直線部分よ多分岐した曲
線部分を有するマスクをフォト−/4’− リソグラフィによ多形成した。このマスクを用いて最上
層のn型GaAs層をメサ状にエツチングし、続いて亜
鉛を600℃の温度で活性層の最下層に達するまで拡散
しfc。活性層での亜鉛の非拡散領域は横方向の拡散が
存在するためマスク幅よシ狭く約2.5μmでおった。
After silicon nitride was deposited on the upper surface of this multilayer structure, a mask having a straight line portion having a width of approximately 4 μm and curved portions branching from the straight line portion was formed by photo-/4'-lithography. Using this mask, the uppermost n-type GaAs layer is etched into a mesa shape, and then zinc is diffused at a temperature of 600° C. until it reaches the bottom layer of the active layer. The non-diffused region of zinc in the active layer was narrower than the mask width, about 2.5 μm, due to the presence of lateral diffusion.

次に最上層のn型GaAs層の亜鉛が拡散された部分を
サイドエツチングで除去し、酸素雰囲気中で約500 
℃の温度で加熱して、露出しているn型GaAjAa層
上に酸化膜を形成させ、マスクとしていたシリコンナイ
トライドを除去し、続いて最上層の外型GaAs層の曲
線部分を先端部を残してエツチングによシ除去し、直線
状及び先端部のn型GaAs層を除いて絶縁膜で被覆し
、次に直線状n型GcLAa層上にAuGεN(合金を
蒸着してn側電極とし、先端部のn型GaAs層上にも
A5LGeNi合金を蒸着して光検出器用の電極とした
。またp型GaAa基板の底面は研磨してCrAuを蒸
着し、p側電極とし、両端面を臂開し、切断して長さ約
300μm1幅約400μmの半導体装置とした。
Next, the portion of the uppermost n-type GaAs layer where zinc was diffused was removed by side etching, and the
℃ to form an oxide film on the exposed n-type GaAjAa layer, and the silicon nitride used as a mask was removed, and then the curved part of the uppermost outer mold GaAs layer was cut at the tip. The n-type GaAs layer on the straight line and the tip was covered with an insulating film, and then AuGεN (alloy) was evaporated on the straight n-type GcLAa layer to form the n-side electrode. An A5LGeNi alloy was also deposited on the n-type GaAs layer at the tip to form an electrode for a photodetector.The bottom surface of the p-type GaAa substrate was polished and CrAu was deposited on it to form a p-side electrode, with both ends opened at the arms. Then, it was cut into a semiconductor device having a length of about 300 μm and a width of about 400 μm.

−13− この半導体装置のレーザの室温での発振閾値電流は5 
m)、 、発振波長は7800 Xであシ、基本単一モ
ードのレーザ光が発振した。光検出器においてはレーザ
出力5席でIV、0.1fiWの変動に対して0.02
fiVであり、この値は半導体レーザの出力を検出する
のに充分な大きさであった。
-13- The oscillation threshold current of the laser of this semiconductor device at room temperature is 5
m), The oscillation wavelength was 7800X, and a fundamental single mode laser beam was oscillated. In the photodetector, there are 5 laser outputs with an IV of 0.02 for a fluctuation of 0.1fiW.
fiV, and this value was large enough to detect the output of the semiconductor laser.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による半導体装置の一実施例を示す斜
視図、第2図は上記半導体装置の一部を切取った斜視図
、第3図は半導体装置の光検出器の構造を示す断面図、
第4図〜第6図はこの発明の半導体装置の製造過程を示
す斜視図、第7図は半導体装置の光導波路と光検出器の
他の配置状態を示す平断面図である。 /・・・半導体基板、コ・・・下部クラッド層、3・・
・上部クラッド層、ダ・・・活性層、3α、jb・・・
n型半−・・・絶縁膜、10・・・n側電極、ll・・
・p側電極、12・・・光検出器用電極。 特許出願人 工業技術院長川田裕部
FIG. 1 is a perspective view showing an embodiment of a semiconductor device according to the present invention, FIG. 2 is a partially cut away perspective view of the semiconductor device, and FIG. 3 is a cross-sectional view showing the structure of a photodetector of the semiconductor device. figure,
4 to 6 are perspective views showing the manufacturing process of the semiconductor device of the present invention, and FIG. 7 is a plan sectional view showing another arrangement of the optical waveguide and photodetector of the semiconductor device. /...Semiconductor substrate, Co...Lower cladding layer, 3...
・Upper cladding layer, da...active layer, 3α, jb...
N-type half--insulating film, 10...n-side electrode, ll...
- P-side electrode, 12... electrode for photodetector. Patent applicant Hirobe Kawada, Director of the Agency of Industrial Science and Technology

Claims (2)

【特許請求の範囲】[Claims] (1)上下より活性層を構成する二種の化合物半導体の
平均組成より大きな組成の化合物半導体層で挾まれた量
子井戸型構造の活性層の中央にレーザ共振器方向にスト
ライプ状の発光領域を備えた半導体レーザと、該活性層
の端部に設けたp −n接合構造の光検出器と、一端を
該半導体レーザの発光領域と光学的に接続し、他端を該
光検出器と光学的に接続した光導波路から成ることを特
徴とする半導体装置。
(1) A stripe-shaped light-emitting region is formed in the center of the active layer with a quantum well structure, which is sandwiched between upper and lower compound semiconductor layers with a composition larger than the average composition of the two types of compound semiconductors that make up the active layer, in the direction of the laser cavity. a semiconductor laser provided with the active layer, a photodetector having a p-n junction structure provided at an end of the active layer, one end optically connected to the light emitting region of the semiconductor laser, and the other end optically connected to the photodetector. 1. A semiconductor device comprising optical waveguides that are connected to each other.
(2)二種の組成の異なる化合物半導体薄膜を交互に三
層以上積み重ねて構成した量子井戸型構造の活性層の上
下よシ該活性層を構成する二種の半導体の平均組成よシ
も大きな組成を有する化合物半導体層で挾んで多層構造
体と一一 し、該多層構造体の上面に直線部分と上記直線部分の途
中より分岐して外方に向って延びている曲線部分を有す
るマスクを形成し、次いで該マスクを用いて不純物を少
くとも活性層の最下層に達するまで拡散し、不純物の非
拡散領域の直線部分の上面と曲線部分の先端上面に電極
を設け、上記不純物の非拡散領域の直線部分を半導体レ
ーザの発光領域とし、曲線部分を光導波路とし、上記曲
線部分の先端を光検出器として、半導体レーザと光検出
器を光学的に接続したことを特徴とする半導体装置の製
造方法。
(2) The average composition of the two semiconductors constituting the active layer is larger than the upper and lower sides of the active layer of the quantum well structure, which is constructed by alternately stacking three or more layers of two compound semiconductor thin films with different compositions. a mask that is integrated with a multilayer structure sandwiched by compound semiconductor layers having the same composition, and has a straight line part and a curved part branching from the middle of the straight line part and extending outward on the upper surface of the multilayer structure. Then, using the mask, the impurity is diffused until it reaches at least the lowest layer of the active layer, and electrodes are provided on the top surface of the straight part of the impurity non-diffusion region and the top surface of the curved part, and the impurity is non-diffused. A semiconductor device characterized in that the straight part of the area is a light emitting area of a semiconductor laser, the curved part is an optical waveguide, the tip of the curved part is a photodetector, and the semiconductor laser and the photodetector are optically connected. Production method.
JP6213184A 1984-03-31 1984-03-31 Semiconductor device and manufacture thereof Pending JPS60207390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6213184A JPS60207390A (en) 1984-03-31 1984-03-31 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6213184A JPS60207390A (en) 1984-03-31 1984-03-31 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS60207390A true JPS60207390A (en) 1985-10-18

Family

ID=13191211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6213184A Pending JPS60207390A (en) 1984-03-31 1984-03-31 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60207390A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449636A2 (en) * 1990-03-28 1991-10-02 Xerox Corporation Laser apparatus with means for detecting the laser power level
US5252513A (en) * 1990-03-28 1993-10-12 Xerox Corporation Method for forming a laser and light detector on a semiconductor substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244192A (en) * 1975-10-06 1977-04-06 Hitachi Ltd Optical integrated circuit
JPS57207387A (en) * 1981-06-16 1982-12-20 Nec Corp Semiconductor optical function element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244192A (en) * 1975-10-06 1977-04-06 Hitachi Ltd Optical integrated circuit
JPS57207387A (en) * 1981-06-16 1982-12-20 Nec Corp Semiconductor optical function element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449636A2 (en) * 1990-03-28 1991-10-02 Xerox Corporation Laser apparatus with means for detecting the laser power level
US5252513A (en) * 1990-03-28 1993-10-12 Xerox Corporation Method for forming a laser and light detector on a semiconductor substrate

Similar Documents

Publication Publication Date Title
US5208821A (en) Buried heterostructure lasers using MOCVD growth over patterned substrates
JPH0834330B2 (en) Semiconductor laser device
JPH0243351B2 (en)
JP2914093B2 (en) Semiconductor laser
US4456999A (en) Terrace-shaped substrate semiconductor laser
US4759025A (en) Window structure semiconductor laser
JPS60207390A (en) Semiconductor device and manufacture thereof
JPH0426232B2 (en)
JPS589592B2 (en) Method for manufacturing semiconductor light emitting device
JPH1056200A (en) Light emitting diode and its manufacture
JP4164248B2 (en) Semiconductor element, manufacturing method thereof, and semiconductor optical device
US20230170672A1 (en) Optoelectronic devices with tunable optical mode and carrier distribution in the waveguides
JPH03104292A (en) Semiconductor laser
JP2973215B2 (en) Semiconductor laser device
JPH03129892A (en) Semiconductor light emitting element
JPS61242091A (en) Semiconductor light-emitting element
JPS61236183A (en) Semiconductor laser device provided with photo-detector and its manufacture
JPS6261383A (en) Semiconductor laser and manufacture thereof
JPS6386581A (en) Light emitting diode
JPH03174793A (en) Semiconductor laser
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same
JPH0410705Y2 (en)
JPS61236187A (en) Semiconductor laser device and its manufacture
JP4024319B2 (en) Semiconductor light emitting device
JPS62244167A (en) Optical, electronic semiconductor integrated circuit