JPS6020632A - Nor circuit - Google Patents

Nor circuit

Info

Publication number
JPS6020632A
JPS6020632A JP58127717A JP12771783A JPS6020632A JP S6020632 A JPS6020632 A JP S6020632A JP 58127717 A JP58127717 A JP 58127717A JP 12771783 A JP12771783 A JP 12771783A JP S6020632 A JPS6020632 A JP S6020632A
Authority
JP
Japan
Prior art keywords
logic
channel
output
level
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58127717A
Other languages
Japanese (ja)
Other versions
JPH0616586B2 (en
Inventor
Yoshiki Noguchi
孝樹 野口
Yoshimune Hagiwara
萩原 吉宗
Hideo Nakamura
英夫 中村
Hiroyuki Masuda
弘之 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Original Assignee
Hitachi Ltd
Hitachi Microcomputer Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Microcomputer Engineering Ltd filed Critical Hitachi Ltd
Priority to JP58127717A priority Critical patent/JPH0616586B2/en
Publication of JPS6020632A publication Critical patent/JPS6020632A/en
Publication of JPH0616586B2 publication Critical patent/JPH0616586B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/096Synchronous circuits, i.e. using clock signals
    • H03K19/0963Synchronous circuits, i.e. using clock signals using transistors of complementary type

Abstract

PURPOSE:To vary the speed of the circuit operation by bringing a signal inputted to an N-channel MOS gate of the NOR logic into an L level in precharging an output line. CONSTITUTION:The 1st stage NOR logic consists of N-channel MOSes 33, 34 and 35. The input of this logic is an output 26 of a driver comprising P-channel MOSes 30, 15 and an N-channel MOS 16 and an output is a potential at a terminal 17. The P-channel MOS 13 is utilized for precharging an output terminal. When inputs 26 or the like to the NOR logic are all at L level, since the N-channel MOSes 33-35 are turned off, the output 17 is not grounded and a precharged electric charge is not discharged, then the level is kept to H level. When any one input goes to H, the output 17 is grounded and the output is transited to the L lveel. The next stage NOR logic consists of N-channel MOSes 37-39. A clock signal line 25 designates a precharge period.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は多段論理回路に係シ、特にプリチャージ方式を
導入したダイナミック形多段論理回路に好適な回路構成
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a multi-stage logic circuit, and particularly to a circuit configuration method suitable for a dynamic multi-stage logic circuit incorporating a precharge method.

〔発明の背景〕[Background of the invention]

従来、多段論理として用いられるPLA等は、第1図に
示すNAND構成の多段論理、あるいは第2図に示すN
OR構成の多段論理で構成されている。この多段論理を
高速化するため、従来よシブ□リチャージ方式が採られ
てきた。ところが、プリチャージ方式に於いては、プリ
チャージ期間を制御するため、多種類のクロック信号が
必要となる。
Conventionally, PLA etc. used as multi-stage logic are multi-stage logic with NAND configuration shown in Figure 1 or NAND configuration shown in Figure 2.
It is composed of multi-stage logic with an OR configuration. In order to increase the speed of this multi-stage logic, the sib□ recharge method has conventionally been adopted. However, in the precharge method, many types of clock signals are required to control the precharge period.

しかし、L S Iに於いては、入力クロックの種類が
制限されるため、多種類のクロック信号を生成すること
が困難である。
However, in LSIs, the types of input clocks are limited, making it difficult to generate many types of clock signals.

このような状況下で示されたのが、第3図に示すドミノ
方式の多段論理回路である。このドミノ方式を用いたN
OR論理構成の多段論理回路の動作を第3図及び第4図
を用いて説明する。クロック信号1がLの期間、Pチャ
ネルMO82,,3はONL、NチャネルMO89,1
2がOFFするため、NOR論理8,11の出力4,5
はそれぞれHレベルにプリチャージされる。このプリチ
ャージ期間に入力信号7は決まるようにする。
A domino-type multi-stage logic circuit shown in FIG. 3 was shown under such circumstances. N using this domino method
The operation of a multistage logic circuit having an OR logic configuration will be explained using FIGS. 3 and 4. During the period when clock signal 1 is L, P channel MO82, 3 is ONL, N channel MO89, 1
2 turns OFF, the outputs 4 and 5 of NOR logic 8 and 11
are precharged to H level. The input signal 7 is determined during this precharge period.

クロック信号1がHレベルになると、PチャネルMO8
2,3がOFF’され、かつ、NチャネルMO89がO
Nして、NOR論理8が動作する。
When clock signal 1 becomes H level, P channel MO8
2 and 3 are turned OFF', and N channel MO89 is turned OFF'.
NOR logic 8 operates.

入カフが全てLであれば出力4はHを保持し、それ以外
の場合は出力4はLに遷移する。次段0NOR論理11
は、その人力4,6が決まるまで動作しないようにする
ため、クロック信号1を遅延させる手段を設ける。NO
R論理11の入力4゜6が決まる時点まで遅延されたク
ロック信号1の伝播信号10は、それらが決まった時点
でHになるようにし、NOR論理11が動作する。
If all of the input cuffs are at L, output 4 remains at H; otherwise, output 4 transitions to L. Next stage 0NOR logic 11
is provided with means for delaying the clock signal 1 so as not to operate until the human power 4, 6 is determined. NO
The propagation signals 10 of the clock signal 1, delayed until the time when the inputs 4.6 of the R logic 11 are determined, cause them to become H at the determined time, and the NOR logic 11 operates.

プリチャージ方式を導入した論理回路に於いては、出力
線とGNDとの間に直列に接続されるNMO8O数が少
ないほど、その動作は高速化される。つまり、出力線上
に保持された電荷をディスチャージする時間が、その論
理回路の動作時間となるため、ディスチャージ系路の抵
抗値が低いほど、その動作時間は高速化される。そのた
め、論理回路を高速化する場合、その論理構造はNAN
D構成よシもNOR構成の方が有利となる。
In a logic circuit adopting the precharge method, the smaller the number of NMO8Os connected in series between the output line and GND, the faster the operation will be. In other words, the time it takes to discharge the charges held on the output line is the operating time of the logic circuit, so the lower the resistance value of the discharge path, the faster the operating time. Therefore, when increasing the speed of a logic circuit, its logic structure is NAN
The NOR configuration is more advantageous than the D configuration.

第3図に示したドミノ方式は、上記点に関しては、高速
化の条件を満たしている。しかし、さらに、高速化を行
なおうとした場合、次の点が問題となる。ドミノ方式で
は、プリチャージ期間に出力線4,5上に蓄えられる電
荷が、論理の動作時間に移向するまではリークしないよ
うに、NチャネルMO89,12で接地を禁止している
。そのため、単純なNOR構成では、出力線とGNDと
の間に直列に接続されるNMO8は1つで済むのに対し
、2つのNMO3を必要としている。さらに、プリチャ
ージ期間には、出力線4.5上のNOR論理8,11を
構成するNチャネルMO8のドレイン容量に対してのみ
でなく、接地側のNチャネルMO89,12に接続され
るンース荏量に対しても、電荷が蓄えられる。そのため
、出力線とGND線との間にNチャネルMO8が1つし
か存在しないNOR回路よシも多くの電荷を、その論理
回路の動作時間にはディスチャージしなければならない
The domino system shown in FIG. 3 satisfies the conditions for speeding up in terms of the above points. However, when attempting to further increase the speed, the following problems arise. In the domino system, the N-channel MOs 89 and 12 are prohibited from being grounded so that the charges accumulated on the output lines 4 and 5 during the precharge period do not leak until the logic operation time begins. Therefore, in a simple NOR configuration, only one NMO8 is required to be connected in series between the output line and GND, whereas two NMO3 are required. Furthermore, during the precharge period, not only the drain capacitance of the N-channel MO8 constituting the NOR logic 8, 11 on the output line 4.5 but also the drain capacitance connected to the N-channel MO89, 12 on the ground side is Electric charge can also be stored with respect to quantity. Therefore, more charges must be discharged during the operating time of the logic circuit than in a NOR circuit in which only one N-channel MO8 exists between the output line and the GND line.

従って、第3図に示すドミノ方式のNOR構成論理回路
をさらに高速動作させるためには、出力線とGNDとの
間に直列に接続されたNチャネルMO8の数を1にし、
その直列抵抗を減らしかつ、プリチャージ期間に蓄えら
れる電荷量を減らさなければならない。
Therefore, in order to operate the domino-type NOR configuration logic circuit shown in FIG. 3 at higher speed, the number of N-channel MO8s connected in series between the output line and GND is set to one.
The series resistance must be reduced and the amount of charge stored during the precharge period must be reduced.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、プリチャージ方式に於いて高速化に適
した出力線とGNDとの間に接続される直列NMO8の
数を1としたNOR論理回路を直列に接続して構成され
る多段論理を、たた1つのクロック信号で連続的に動作
可能とする回路を提供することにある。
The object of the present invention is to provide a multi-stage logic circuit constructed by serially connecting NOR logic circuits in which the number of serial NMO8s is 1 and is connected between an output line and GND, which is suitable for high speed in a precharge method. The object of the present invention is to provide a circuit that can operate continuously with only one clock signal.

〔発明の概要〕[Summary of the invention]

出力線をプリチャージする際、NOR論理のNチャネル
MO8ゲートに入力される信号をLレベルとすることで
、出力線が接地されることを防ぐ回路構成とし、出力線
とGNDとの間に直列に接続されるNMO8O数を1と
した。
When precharging the output line, the signal input to the NOR logic N-channel MO8 gate is set to L level to prevent the output line from being grounded. The number of NMO8O connected to was set to 1.

上記回路に於いて、プリチャージ期間を指定する信号線
を遅延手段を用いて遅延させ、直列に接続される次段N
OR論理の信号線とすることで、ドミノ方式と同様な多
段論理を構成することを可能とした。
In the above circuit, the signal line specifying the precharge period is delayed using a delay means, and the next stage N connected in series
By using OR logic signal lines, it is possible to configure multi-stage logic similar to the domino system.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第5図、第6図を用いて説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 5 and 6.

第5図に於いて、初段NOR論理はNチャネルMO83
3,34,35よ多構成される。この論理の入力は、P
チャネルMO830,15及びNチャネルMO816よ
多構成されるドライバの出力26であシ、出力は17の
電位である。PチャネルM0813は、出力端子のプリ
チャージのために利用される。NOR論理への入力26
等が全てI、 I+の場合には、NチャネルMO833
゜34.35はOFF状態となるので、出力17は接地
されず、プリチャージした電荷がディスチャージされな
いため、Hを保つ。入力の1つでも”H”となると、出
力17は接地され、出力はLへと遷移する。次段NOR
論理はNチャネルMO837,38,39よシ構成され
ている。
In FIG. 5, the first stage NOR logic is an N-channel MO83.
It is composed of 3, 34, 35 and so on. The input of this logic is P
This is the output 26 of a driver composed of channel MOs 830 and 15 and N-channel MO 816, and the output is at a potential of 17. P channel M0813 is used for precharging the output terminal. Input 26 to NOR logic
etc. are all I, I+, N channel MO833
34.35 is in the OFF state, so the output 17 is not grounded and the precharged charge is not discharged, so it remains at H. If even one of the inputs becomes "H", the output 17 is grounded and the output changes to "L". Next stage NOR
The logic is composed of N-channel MOs 837, 38, and 39.

クロック信号線25は、プリチャージの期間を指定する
。クロック信号25がHレベルの期間(第6図参照)出
力17はプリチャージを行なわれる。すなわち、信号2
5はインバータ32によシ、そのレベルが反転させられ
、PチャネルMO813にLレベルを入力することにな
るので、13はON状態となIC117に電荷が供給さ
れる。
Clock signal line 25 specifies the precharge period. While the clock signal 25 is at H level (see FIG. 6), the output 17 is precharged. That is, signal 2
Since the level of 5 is inverted by the inverter 32 and the L level is inputted to the P-channel MO 813, 13 is turned on and charges are supplied to the IC 117.

一方、NOR論理への入力を行なうドライバ回路のPチ
ャネルMO815及びNチャネルMO816にも、信号
25は入力される。プリチャージ期間は、信号251’
iHであるから、PチャネルM O815はOFF状態
であり1NチャネルMO816はON状態となり、NO
R論理への入力26は接地されLレベルとなるうそのた
め、NOR論理を構成するNチャネルMO833,34
,35はOFF状態となシ出力17が接地されるのを防
いでいる。信号25は遅延手段を通して遅延され、信号
23として、次段NOR論理にも入力される。
On the other hand, the signal 25 is also input to the P-channel MO 815 and N-channel MO 816 of the driver circuit that perform input to the NOR logic. During the precharge period, the signal 251'
Since it is iH, the P channel MO815 is in the OFF state, the 1N channel MO816 is in the ON state, and the NO
Since the input 26 to the R logic is grounded and becomes L level, the N channel MO833, 34 forming the NOR logic
, 35 are in the OFF state to prevent the output 17 from being grounded. The signal 25 is delayed through the delay means and is also input as the signal 23 to the next stage NOR logic.

次段NOR論理も初段のNOR論理と同じ構造でちゃい
初段よシ多少遅れた時間にプリチャージが同様にして行
なわれる。プリチャージが終了すると1.それぞれのN
OR論理の出力17.28はHレベルとなる。初段NO
R論理はクロック信号25がLレベルになると動作を開
始する。その前に、初段NOR論理に入力すべき信号2
9を確定させておく。クロック信号25がLレベルにな
ると、インバータ32を通しPチャネルMO813には
Hが入力され出力17と電源との接続は断たれる。一方
、ドライバのPチャネルMO815はQN状態となシ、
NチャネルMO816はOFF状態となる。この時、ド
ライバへの入力29がHレベルだと、PチャネルMO8
30はOFF状態となるから、ドライバ出力26はLを
保持する。
The next stage NOR logic has the same structure as the first stage NOR logic, and precharging is performed in the same way at a slightly delayed time compared to the first stage. When precharging is completed, 1. each N
The outputs 17 and 28 of the OR logic become H level. Shodan NO
The R logic starts operating when the clock signal 25 becomes L level. Before that, signal 2 that should be input to the first stage NOR logic
Confirm 9. When the clock signal 25 becomes L level, an H signal is input to the P-channel MO 813 through the inverter 32, and the connection between the output 17 and the power supply is cut off. On the other hand, the P-channel MO815 of the driver is not in the QN state.
N-channel MO 816 is in the OFF state. At this time, if the input 29 to the driver is at H level, the P channel MO8
30 is in the OFF state, the driver output 26 holds L.

一方、29がLレベルだと、PチャネルMO830はO
N状態となり、PチャネルMO830゜15を通して出
力26はHに遷移し、NOR論理を構成するNチャネル
MO833がON状態となシ、出力17をLレベルに遷
移させる。この時、ドライバ人力29と、初段NOR論
理18の出力17のインバータ19を通した後での反転
信号20との関係をみると、信号29が全てII H”
レベルの時信号20は”L”レベルとなり、信号29の
1本でもL”レベルとなると、信号20は”H”ルベル
となるから、論理的には、第1図に示すNAND構成と
等価となる。
On the other hand, when 29 is at L level, P channel MO830 is at O
It enters the N state, and the output 26 transitions to H level through the P channel MO 830.degree. 15, and when the N channel MO 833 forming the NOR logic is in the ON state, the output 17 transitions to the L level. At this time, looking at the relationship between the driver's human power 29 and the inverted signal 20 after passing through the inverter 19 of the output 17 of the first stage NOR logic 18, all the signals 29 are II H"
When the level is high, the signal 20 becomes "L" level, and if even one of the signals 29 becomes "L" level, the signal 20 becomes "H" level. Therefore, logically, this is equivalent to the NAND configuration shown in FIG. Become.

初段NOR論理18の出力17が確定するまで、次段N
OR論理24が動作しないように、クロック信号25を
遅延する手段を設け、その遅延信号23を、次段NOR
論理のドライバ部PチャネルMO821,NチャネルM
O822及び、遅延信号23をインバータ36でレベル
反転させた信号をプリチャージ用PチャネルMO814
に入力する。次段N OR論理24の動作も、初段NO
R論理と同様でちゃ、動作時間にはプリチャージ用Pチ
ャネルMO814はOFF状態となシ、ドライバ部のP
チャネルMO8121はON状態となり、NチャネルM
O822はOFF状態となシ、ドライバ人力20が、全
てH”レベルの場合は、出力28はHレベルを保持し、
20がLレベルとなる。
Until the output 17 of the first stage NOR logic 18 is determined, the next stage N
A means for delaying the clock signal 25 is provided so that the OR logic 24 does not operate, and the delayed signal 23 is applied to the next stage NOR logic 24.
Logic driver section P channel MO821, N channel M
O822 and a signal whose level is inverted by the inverter 36 of the delayed signal 23 is sent to the P-channel MO814 for precharging.
Enter. The operation of the next stage NOR logic 24 is also the same as the first stage NO
Similar to R logic, the P channel MO814 for precharging is in the OFF state during operation time, and the P channel of the driver section is in the OFF state.
Channel MO8121 is in the ON state, and N channel M
O822 is in the OFF state, and when the driver power 20 is all at H" level, the output 28 remains at H level,
20 is the L level.

第5図で構成した多段論理回路をPLAに適用した例を
第7図に示す。クロック信号25には信号55が対応し
、遅延色号23には56が対応する。初段ドライバのP
チャネルMO830には42が、15には43が対応す
る。NチャネルMO816には45が対応する。また、
NOR論理を構成するNチャネルMO833等には44
が対応する。プリチャージ用PチャネルMO813には
54が対応する。初段NOR論理の出力は57で、イン
バータ19は46に対応する。次段ドライバのPチャネ
ルMO831には47が、21には48が、又、Nチャ
ネルMO822には51が対応する。次段NOR論理を
構成するNチャネルMO837等には50が対応する。
FIG. 7 shows an example in which the multistage logic circuit configured in FIG. 5 is applied to a PLA. A signal 55 corresponds to the clock signal 25, and a signal 56 corresponds to the delayed color code 23. First stage driver P
Channel MO830 corresponds to 42, and channel MO15 corresponds to 43. 45 corresponds to the N-channel MO 816. Also,
44 for the N-channel MO833 etc. that constitute the NOR logic.
corresponds. 54 corresponds to the P-channel MO 813 for precharging. The output of the first stage NOR logic is 57, and the inverter 19 corresponds to 46. 47 corresponds to the P-channel MO 831 of the next stage driver, 48 corresponds to 21, and 51 corresponds to the N-channel MO 822. 50 corresponds to the N-channel MO 837 and the like constituting the next stage NOR logic.

プリチャージ用PチャネルMO814には49が対応す
る。回路構成は第5図に示した多段論理と全く同じであ
る。
49 corresponds to the P-channel MO 814 for precharging. The circuit configuration is exactly the same as the multistage logic shown in FIG.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、多段論理回路をただ1つのクロック信
号を用いて、プリチャージ方式のNチャネルMO8のN
OR論理を出・力線とGNDとの間に直列に接続される
MOS数を1として構成できるので、回路動作の高速化
に効果がある。
According to the present invention, by using only one clock signal, a multi-stage logic circuit can be used to
Since the OR logic can be configured with one MOS connected in series between the output line and GND, it is effective in speeding up the circuit operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は多段論理の説明図、第3図は従来のド
ミノ形の多段論理回路図、第4図はその動作タイミング
図、第5図は本発明の多段論理回路図、第6図はその動
作タイミング図、第7図は本発明の多段論理回路をPL
Aに適用した場合の回路図である。 8.11,18.22及び44.50・・・NOR論第
 1 図 第 Z 図 γ 3 図 ■ 4 図 20ヅ7荏脣l フ4工4−/ 側修p拮号lθ 扇5図 /
1 and 2 are explanatory diagrams of multi-stage logic, FIG. 3 is a conventional domino-type multi-stage logic circuit diagram, FIG. 4 is an operation timing diagram thereof, and FIG. 5 is a multi-stage logic circuit diagram of the present invention. Figure 6 is its operation timing diagram, and Figure 7 is the PL of the multistage logic circuit of the present invention.
It is a circuit diagram when applied to A. 8.11, 18.22 and 44.50...NOR Theory No. 1 Figure Z Figure γ 3 Figure ■ 4 Figure 20ヅ7荏脣l ふ4工4-/ Side repair p 拮名 lθ Fan 5Figure/

Claims (1)

【特許請求の範囲】 1、NOR論理を構成するため、出方線と接地との間に
並列に接続されたNチャネルMO8と、出力線をプリチ
ャージするため電源と出力線との間に接続されたPチャ
ネルMO8,及び、上記NチャネルMO8のゲート電位
を、プリチャージの期間にはLレベルに、論理をとる期
間には入力レベルに対応したレベルにする電圧全出力す
る回路とからなるNOR回路。 2、前記NOR回路の出方信号全反転させ、さらに、同
じ回路構成の別のNOR回路に入力する多段論理に於い
て、プリチャージ期間のタイミンクt1前段NOR回路
のプリチャージタイミング信号の遅延信号上用いること
を特徴とする第1項のNOR四路。
[Claims] 1. N-channel MO8 connected in parallel between the output line and ground to configure NOR logic, and connected between the power supply and the output line to precharge the output line. A NOR circuit consisting of a circuit that outputs the full voltage to set the gate potential of the P-channel MO8 and the N-channel MO8 to the L level during the precharge period and to the level corresponding to the input level during the logic period. circuit. 2. In a multi-stage logic in which the output signal of the NOR circuit is completely inverted and is input to another NOR circuit with the same circuit configuration, the timing t1 of the precharge period is on the delayed signal of the precharge timing signal of the previous stage NOR circuit. The NOR four-way of the first term is characterized in that it is used.
JP58127717A 1983-07-15 1983-07-15 N OR circuit Expired - Lifetime JPH0616586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58127717A JPH0616586B2 (en) 1983-07-15 1983-07-15 N OR circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58127717A JPH0616586B2 (en) 1983-07-15 1983-07-15 N OR circuit

Publications (2)

Publication Number Publication Date
JPS6020632A true JPS6020632A (en) 1985-02-01
JPH0616586B2 JPH0616586B2 (en) 1994-03-02

Family

ID=14966960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58127717A Expired - Lifetime JPH0616586B2 (en) 1983-07-15 1983-07-15 N OR circuit

Country Status (1)

Country Link
JP (1) JPH0616586B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358957A (en) * 1986-08-29 1988-03-14 Mitsubishi Electric Corp Cascade connection structure of dynamic type cmos logic circuit
JPS63177615A (en) * 1987-01-19 1988-07-21 Oki Electric Ind Co Ltd Semiconductor logic circuit
JPH02501613A (en) * 1987-03-16 1990-05-31 シーメンス、アクチエンゲゼルシヤフト Gate circuit with MOS transistor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267557A (en) * 1975-12-02 1977-06-04 Toshiba Corp Logical circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267557A (en) * 1975-12-02 1977-06-04 Toshiba Corp Logical circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358957A (en) * 1986-08-29 1988-03-14 Mitsubishi Electric Corp Cascade connection structure of dynamic type cmos logic circuit
JPS63177615A (en) * 1987-01-19 1988-07-21 Oki Electric Ind Co Ltd Semiconductor logic circuit
JPH02501613A (en) * 1987-03-16 1990-05-31 シーメンス、アクチエンゲゼルシヤフト Gate circuit with MOS transistor
JPH0563967B2 (en) * 1987-03-16 1993-09-13 Siemens Ag

Also Published As

Publication number Publication date
JPH0616586B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
US5258666A (en) CMOS clocked logic decoder
US4061933A (en) Clock generator and delay stage
JPH10126249A (en) Logic circuit
US5489859A (en) CMOS output circuit with high speed high impedance mode
EP0481698A2 (en) Tri-state circuit
US5546035A (en) Latch circuit having a logical operation function
US6914453B2 (en) Integrated logic and latch design with clock gating at static input signals
US20040263209A1 (en) High-speed domino logic with improved cascode keeper
JPS6020632A (en) Nor circuit
US20020075038A1 (en) Active leakage control technique for high performance dynamic circuits
US4565934A (en) Dynamic clocking system using six clocks to achieve six delays
EP1265362A1 (en) Tri-state multiplexer
US5864251A (en) Method and apparatus for self-resetting logic circuitry
US6794903B2 (en) CMOS parallel dynamic logic and speed enhanced static logic
US7609088B2 (en) Programmable logic array
JP3369897B2 (en) Carry circuit of data processing device
JPH0456412A (en) Mos type logic circuit
JP2689533B2 (en) CMOS buffer circuit
US5163019A (en) Binary carry circuitry
JPS6062238A (en) Logical circuit
JP2647460B2 (en) Bus precharge circuit and high-speed logic system
US6750678B2 (en) Method for increasing the load capacity of clocked half-rail differential logic
US20030117177A1 (en) Method for clocking charge recycling differential logic
US6744283B2 (en) Clocked half-rail differential logic with sense amplifier
JP2004304609A (en) Semiconductor integrated circuit