JPS60206151A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60206151A
JPS60206151A JP6117584A JP6117584A JPS60206151A JP S60206151 A JPS60206151 A JP S60206151A JP 6117584 A JP6117584 A JP 6117584A JP 6117584 A JP6117584 A JP 6117584A JP S60206151 A JPS60206151 A JP S60206151A
Authority
JP
Japan
Prior art keywords
insulating layer
layer
conductive layer
conductive
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6117584A
Other languages
Japanese (ja)
Inventor
Koichi Shimoda
孝一 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP6117584A priority Critical patent/JPS60206151A/en
Publication of JPS60206151A publication Critical patent/JPS60206151A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent short circuits along a step in a multilayer device between its lower and upper conductive layers and disruption of wirings belonging to the upper conductive layer by a method wherein the entire surface of a second insulating layer is flattened by forming a P-doped insulating layer on the surface of the first insulating layer. CONSTITUTION:On a semiconductor substrate 11 covered with an impurity- diffused layer 12, a first insulator 13 of PSG or the like is formed. An insulating layer 14 is then formed densely diffused with P by the ion implantation or diffusion method. A conductive layer 15a for contacts and a conductive layer 15b for wirings are formed. A second insulating layer 16 is formed of P-glass or an oxide by CVD under a normal pressure. Next, a second conductive layer 17 is formed. The existence of the P-doped insulating layer 14 on the first insulating layer 13 accelerates the growth of the second insulating layer 16, which alleviates the inclination C in the second insulating layer 16 at a step. This design greatly reduces the possibility for the second conductive layer to be formed excessively thin or of disruption thereof, which contributes to the prevention of short circuits between the first and second conductive layers.

Description

【発明の詳細な説明】 (技術分野) この発明は、多層配線における段差部での下層の導電層
と上層の導電層の短絡および上層の導電層の断線を解決
するようにし互生導体装置の製造方法に関する。
Detailed Description of the Invention (Technical Field) The present invention solves short-circuits between a lower conductive layer and an upper conductive layer and disconnections in the upper conductive layer at a stepped portion in multilayer wiring, and manufactures an alternating conductor device. Regarding the method.

(従来技術) 従来の多層配線構造の半導体装置の代表的な製造方法の
一例を第1図(a)〜第11Q(d)の工程説明図を用
いて説明する。まず、第1図(a)に示すように、P型
またはN型の拡散層2が形成された半導体基板1上に、
例えば酸化膜などの第1絶縁層3を形成する。
(Prior Art) An example of a typical manufacturing method for a semiconductor device having a conventional multilayer wiring structure will be described using process diagrams shown in FIGS. 1(a) to 11Q(d). First, as shown in FIG. 1(a), on a semiconductor substrate 1 on which a P-type or N-type diffusion layer 2 is formed,
For example, a first insulating layer 3 such as an oxide film is formed.

次に、第1図(b)に示すように、拡散層2とコンタク
Ii−とるための窓を、絶縁層3に設けた後、金属膜、
例えばM膜を蒸着などで形成し、拡散層2とコンタクト
をとるための導電層4aと配線となる導電層4biフオ
トリソ技術で形成する。
Next, as shown in FIG. 1(b), a window for making contact with the diffusion layer 2 is provided in the insulating layer 3, and then a metal film,
For example, an M film is formed by vapor deposition, and a conductive layer 4a for making contact with the diffusion layer 2 and a conductive layer 4bi for wiring are formed by photolithography.

次に、第1図(c)に示す工うに、導電層4a 、4b
全含む第1絶僚層3上にCVD法などに↓クリンガラス
酸化膜などを形成し、第2絶縁層5とする。
Next, in the structure shown in FIG. 1(c), conductive layers 4a and 4b are formed.
A clean glass oxide film or the like is formed on the entire first insulating layer 3 using a CVD method or the like to form a second insulating layer 5.

次に、第1図(d)に示すように、第2絶縁層5にフォ
トリソ技術にニジ、選択的に第1導電層4a上にコンタ
クト’ff−とるための窓を設けた後、この窓を含む第
2絶縁層5上にアルミ膜などの金属膜を形成する。その
後、フォトリソ技術により必要な配線層、つまシ第2導
電層6を形成する。
Next, as shown in FIG. 1(d), a window for making a contact 'ff- is selectively provided on the first conductive layer 4a by photolithography in the second insulating layer 5, and then this window is A metal film such as an aluminum film is formed on the second insulating layer 5 including the second insulating layer 5. Thereafter, a necessary wiring layer and a second conductive layer 6 are formed by photolithography.

しかしながら、第1図(d)に示されているような半導
体装置には、次のような欠点がある。第1図(d)にお
いて、第2絶縁層5は下層の第1導電層4a、4bなど
と同じ凹凸状の表面段差を示す形になシ、丸印Aにおけ
る段差部で、第2導電層6が薄くなっタシ、切れgDす
る、いわゆる段切れを生じる。
However, the semiconductor device shown in FIG. 1(d) has the following drawbacks. In FIG. 1(d), the second insulating layer 5 has the same uneven surface step as the underlying first conductive layers 4a, 4b, etc.; 6 becomes thinner and rips, resulting in so-called step-cutting.

また、第2絶縁N5は下層の第1導電層4aなどの端の
部分の丸印Bで薄くなるため、丸印Bにおいて、第1導
電層4aと第2導電層6間の絶縁耐圧が著しく低下する
という欠点を有している。
In addition, since the second insulation N5 becomes thinner at the circle mark B at the end of the lower first conductive layer 4a, etc., the dielectric strength voltage between the first conductive layer 4a and the second conductive layer 6 is significantly reduced at the circle mark B. It has the disadvantage that it decreases.

これらの欠点全解消するため、各種の技術が開発されて
おシ、例えば、代表的なものとして、アルミの陽極酸化
ケ用いたもの(特公昭56−10788号公報)、配線
傾斜エツチングによるもの(特公昭49−4177号公
報)、低温アルミナ膜によるもの(特公昭51−159
57号公報)、ポリイミド樹脂膜によるもの(特公昭5
6−5502号公報)などがあるが、これらの先行技術
の方法には一長一短があシ、必ずしもよい解決方法では
ない。
In order to eliminate all of these drawbacks, various techniques have been developed, including, for example, a method using anodized aluminum (Japanese Patent Publication No. 10788/1988) and a method using inclined wiring etching ( (Japanese Patent Publication No. 49-4177), by low-temperature alumina film (Japanese Patent Publication No. 51-159)
No. 57), polyimide resin film (Special Publication No. 57),
However, these prior art methods have advantages and disadvantages, and are not necessarily good solutions.

(発明の目的) この発明の目的は、従来の工程全はとんど変更すること
なく、簡単な処理の付加だけで、多層配線における段差
部での下層の導電層と上層の導電層の短絡および上層の
導電層の断線を解決することができる半導体装置の製造
方法を得るにある。
(Objective of the Invention) The object of the present invention is to short-circuit the lower conductive layer and the upper conductive layer at the stepped portion in multilayer wiring by adding simple processing without changing all the conventional processes. Another object of the present invention is to obtain a method for manufacturing a semiconductor device that can solve the problem of disconnection in the upper conductive layer.

(発明の概要) この発明の要点は、第1絶縁層の表面上にリン全ドープ
した絶縁層を形成することにぶり、常圧CVD法に↓り
第2絶縁層を形成する時、リンを含む絶縁層上のCVD
膜成長速度が速めことを利用して、第1導電層上の第2
絶縁層の膜厚と、第1絶縁層上の第2絶縁層の膜厚の膜
厚差を減少させて、第2絶縁層全面を平坦化することに
ある。
(Summary of the Invention) The main point of this invention is to form an insulating layer fully doped with phosphorus on the surface of the first insulating layer, and when forming the second insulating layer by atmospheric pressure CVD, phosphorus is CVD on insulating layer containing
Taking advantage of the faster film growth rate, the second conductive layer on the first conductive layer
The purpose is to reduce the difference in thickness between the insulating layer and the second insulating layer on the first insulating layer, thereby flattening the entire surface of the second insulating layer.

(実施例) 次に、この発明の半導体装置の製造方法の一実施例を第
2図(a)〜第2図(e) k用いて説明する。壕ず、
第2図(a)に示す↓うに、P型またはN型拡散層12
が形成された半導体基板11上に、例えば、酸化膜(P
SG)などの第1絶縁層13全形成する。
(Example) Next, an example of the method for manufacturing a semiconductor device of the present invention will be described with reference to FIGS. 2(a) to 2(e). No trenches,
As shown in Fig. 2(a), P-type or N-type diffusion layer 12
For example, an oxide film (P
The first insulating layer 13 such as SG) is completely formed.

次に、第2図(b)に示す↓うに、第1絶縁層13の表
面上に、イオン注入や拡散などに工り、1×1 o%−
3程度の高濃度のリンをドープしfc1000〜200
0X位のリンドープ絶縁層14を形成する。
Next, as shown in FIG. 2(b), on the surface of the first insulating layer 13, ions are implanted or diffused to form a 1×1 0%-
Doped with phosphorus at a high concentration of about 3 fc1000-200
A phosphorus-doped insulating layer 14 of about 0X is formed.

次に、第2図(c)に示すように、拡散層12とコンタ
クトラとるための窓を、第1絶縁層13お工びリンドー
プ絶縁層14に設けた後、金属膜を、例えばM全蒸着な
どで5000λ〜9oooA形成し。
Next, as shown in FIG. 2(c), a window for making contact with the diffusion layer 12 is provided in the first insulating layer 13 and the phosphorus-doped insulating layer 14, and then a metal film, for example, is 5000λ~9oooA is formed by vapor deposition etc.

拡散層12とコンタクトラとるための導電層15aと配
線となる導電層15klフオトリン技術で形成する。
A conductive layer 15a for making contact with the diffusion layer 12 and a conductive layer 15kl for forming wiring are formed using photorin technology.

次に、第2図(cl)に示す工うに、導電層15a。Next, as shown in FIG. 2(cl), a conductive layer 15a is formed.

15bを含む第1絶縁層13とリンドープ絶縁層14上
に常圧CVD法にニジ、リンガラスや酸化膜を300℃
〜500℃の低温常圧で5000λ〜5oooA形成し
、第2絶縁層16とする。
A nitrogen, phosphorus glass, or oxide film is formed on the first insulating layer 13 including the first insulating layer 15b and the phosphorus-doped insulating layer 14 by atmospheric pressure CVD at 300°C.
The second insulating layer 16 is formed with a thickness of 5000λ to 5oooA at a low temperature of 500° C. and normal pressure.

次に、第2図(e)に示すように、第2絶縁層16にフ
ォトリソ技術にニジ、選択的に第1導電層15a上にコ
ンタクIfとるための窓を設け、この窓を富む第2絶縁
層16上に、金属膜を、例えばMを蒸着などで5ooo
i〜1ooooX形成する。
Next, as shown in FIG. 2(e), a window for forming a contact If is selectively provided on the first conductive layer 15a by photolithography in the second insulating layer 16, and a second A metal film, for example M, is deposited on the insulating layer 16 by vapor deposition.
i~1ooooX is formed.

その後、フォトリソ技術に↓シ、必要な配線層つまシ、
第2導電層17を形成する。
After that, photolithography technology was applied, the necessary wiring layer thickness,
A second conductive layer 17 is formed.

この発明の特徴的なところは第1絶僚層13上のPSG
 (リンドープ絶縁層14)によって、第2絶縁層16
の成長速度が高くなること全利用したものである。すな
わち、下地がPSGの第1絶縁層13のところは従来例
と比較して膜厚の成長速度が速くなる。導電層上では従
来例と膜厚の成長速度は変らない。
The characteristic feature of this invention is that the PSG on the first absolute layer 13
(phosphorous-doped insulating layer 14), the second insulating layer 16
The growth rate will be higher if it is fully utilized. That is, the growth rate of the film thickness at the first insulating layer 13 whose base is PSG is faster than that of the conventional example. On the conductive layer, the growth rate of the film thickness is the same as in the conventional example.

従って、選択的に成長することにより、第2図(e) 
2−らも明らかなように、段差部における第2絶縁層1
6の段差C’に軽減することができる。ここで、従来の
製造方法とこの発明の製造方法に二って得られた半導体
装置を表にして対比すると、次の第1表の通シである。
Therefore, by selectively growing, Fig. 2(e)
As is clear from 2- et al., the second insulating layer 1 at the stepped portion
The height difference C' can be reduced to 6. Here, when the semiconductor devices obtained by the conventional manufacturing method and the manufacturing method of the present invention are compared in a table, the results are shown in Table 1 below.

く第1表〉 この第1表において、CVD膜は、酸化膜でもリンドー
プ膜でも、この効果は変らない。この効果は実験的にC
VDの成長温度が低い程大きい。従って、CVDの反応
が生じる範囲で最も低い温度(300〜400℃ンが好
ましい。
Table 1 In Table 1, this effect remains the same whether the CVD film is an oxide film or a phosphorus-doped film. This effect was experimentally confirmed by C
The lower the VD growth temperature, the greater the effect. Therefore, the lowest temperature within the range in which the CVD reaction occurs (300 to 400° C. is preferable).

この発明では、常圧CVD膜成長速度の下地表面渥度依
存性全利用して成長を行っている。第3図(絶縁膜中の
リン量比対CVD@の成長速度比)に示すように、下地
絶縁層中のリン量が増加すると、CVD @成長速度も
増加する関係がある5、下地絶縁層中にリンを含まない
場合、(丸印の位置)に比べて、下地絶縁・層にリンを
含んだ場合は、CVD膜の成長速度が増加する5、 この現象を利用して、第2絶縁層16を常圧CVD法に
エリ形成する場合、第1絶縁層13の表面上にリンをド
ープした絶縁層を形成した時(この発明)は、第1絶縁
層13の表面上にリン全ドーグした絶縁層を形成しない
時(従来〕に比べて、CVD膜の成長速度が増加するた
め、第1絶鍬層13上のCVD膜の厚さが厚く力る。
In this invention, growth is performed by fully utilizing the dependence of the atmospheric pressure CVD film growth rate on the degree of roughness of the underlying surface. As shown in Figure 3 (Ratio of phosphorus content in insulating film to growth rate of CVD@), as the amount of phosphorus in the underlying insulating layer increases, the growth rate of CVD@ increases as well. When the base insulation/layer contains phosphorus, the growth rate of the CVD film increases compared to when it does not contain phosphorus (at the position marked with a circle)5.Using this phenomenon, the second insulation When the layer 16 is formed by an atmospheric pressure CVD method, when an insulating layer doped with phosphorus is formed on the surface of the first insulating layer 13 (this invention), the surface of the first insulating layer 13 is entirely doped with phosphorus. Since the growth rate of the CVD film is increased compared to when no insulating layer is formed (conventional), the thickness of the CVD film on the first insulating layer 13 is increased.

第4図(a)に示した従来の製造方法と第4図(b)に
示したこの発明による製造方法で形成された第2絶縁膜
16の断面図かられかるように、従来例の丸印A部に比
べて、この災施例の丸印A部では、リンをト°−プした
絶縁層を形成しているため、第2絶縁層16の膜厚が、
従来例に比べて厚くなることにニジ、導電層15a上の
第2絶縁層16の膜厚とリン全ドーグした絶縁層14上
の第2絶縁層16の膜厚差が大幅に減少する。
As can be seen from the cross-sectional views of the second insulating film 16 formed by the conventional manufacturing method shown in FIG. 4(a) and the manufacturing method according to the present invention shown in FIG. Compared to the part marked A, the thickness of the second insulating layer 16 in the part A marked with a circle in this disaster example is
In addition to being thicker than the conventional example, the difference in film thickness between the second insulating layer 16 on the conductive layer 15a and the second insulating layer 16 on the insulating layer 14 completely doped with phosphorus is significantly reduced.

従って、この発明による製造方法全使用した場合、第2
図(e)に示すように、丸印C部において、第2導電層
17が薄くなったり、切れにすすることが大幅に減少す
る。また丸印り部において、第1導電層としての導i 
@ 15 aの端の部分で、第2絶縁層16が薄くなる
ことが大幅に減少し、これにLυ導電層15aと第2導
電層17の短絡も大幅に減少する。
Therefore, when the entire manufacturing method according to the present invention is used, the second
As shown in Figure (e), at the circle C portion, the second conductive layer 17 is less likely to become thin or break off. In addition, in the circled part, the conductive i as the first conductive layer
The thinning of the second insulating layer 16 at the end portion of @15a is significantly reduced, and short circuits between the Lυ conductive layer 15a and the second conductive layer 17 are also significantly reduced.

この発明に使用したリンをドープしたリンドープ絶縁層
4上とリン全ド−プしない第1絶縁層3上のCVD膜成
長速度の違いについての詳しい現象は、まだ解明されて
いないが、第3図に示す↓うな芙験結果が得られている
。以上の利点から、半導体装置における多層配線形成が
容易にできる。
The detailed phenomenon of the difference in the CVD film growth rate on the phosphorus-doped insulating layer 4 used in this invention and on the first insulating layer 3 not fully doped with phosphorus has not yet been elucidated, but FIG. The experimental results shown below have been obtained. Due to the above advantages, multilayer wiring in a semiconductor device can be easily formed.

(発明の効果) この発明は以上説明したように、第1絶縁層の表面上に
リンドープ膜 にニジ、常圧CVD法に↓す第2絶縁層全形成する時リ
ンを含む絶縁層上のCVD膜成長速度が速いことを利用
して、第1導電層上の第2絶縁層の膜厚と第1絶e層上
の第2絶縁層の膜厚の膜厚差を減少させて第2絶縁層全
面全平坦化するようにしたので、第2導電層が薄くなっ
πシ、切れfcシすることが大幅に減少するとともに、
第1導電層と第2導電層の短絡全防止できる。
(Effects of the Invention) As explained above, the present invention is characterized in that when the entire second insulating layer is formed by applying a phosphorus-doped film on the surface of the first insulating layer using the atmospheric pressure CVD method, the CVD process is performed on the insulating layer containing phosphorus. By taking advantage of the high film growth rate, the difference in thickness between the second insulating layer on the first conductive layer and the second insulating layer on the first insulating layer is reduced. Since the entire surface of the layer is flattened, the occurrence of thinning of the second conductive layer and cutting of the second conductive layer is greatly reduced.
Short circuits between the first conductive layer and the second conductive layer can be completely prevented.

また、従来の処理工程をほとんど夏更することなく簡単
な処理の付加のみで製造できる利点を有する。
Further, it has the advantage that it can be manufactured by adding simple processing without changing the conventional processing steps.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)ないし第1図(d)はそれぞれ従来の半導
体装置の製造方法の工程説明図、第2図(a)ないし第
2図(e)はそれぞれこの発明の半導体装置の製造方法
の一実施例の工程説明図、第3図は第1絶縁層中のりン
簾比とCVD膜の成長速度比の関係を表わすグラ?、第
4図(a)は従来の半導体装置の製造方法によって得ら
れた半導体装置における第1導電層と第2絶縁層との段
差部分を説明するための図、第4図(b)はこの発明の
半導体装置の製造方法によって得られた半導体装置の製
造方法の一実施例に工っで得られた半導体装置の第1導
電層と第2絶縁層との段差部分全第4図(a)と対比し
て説明するための図である。 1.1・・・半導体基板、12・・・拡散層、13・・
・第1絶縁層、14・・・リンドープ絶縁層、15a、
15b・・・導電層、16・・・第2絶縁層、17・・
第2導電層、。 特許出願人 沖電気工業株式会社
1(a) to 1(d) are process explanatory diagrams of a conventional semiconductor device manufacturing method, respectively, and FIGS. 2(a) to 2(e) are respectively process explanatory diagrams of a semiconductor device manufacturing method of the present invention. FIG. 3 is a graph showing the relationship between the phosphorous screen ratio in the first insulating layer and the growth rate ratio of the CVD film. , FIG. 4(a) is a diagram for explaining the stepped portion between the first conductive layer and the second insulating layer in a semiconductor device obtained by a conventional semiconductor device manufacturing method, and FIG. FIG. 4(a) shows the entire stepped portion between the first conductive layer and the second insulating layer of a semiconductor device obtained by an embodiment of the semiconductor device manufacturing method of the invention. FIG. 1.1... Semiconductor substrate, 12... Diffusion layer, 13...
- First insulating layer, 14... Phosphorus-doped insulating layer, 15a,
15b... Conductive layer, 16... Second insulating layer, 17...
a second conductive layer; Patent applicant Oki Electric Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上の第1絶縁層の表面上にリンをト”−プし
たリンドープ絶縁層を形成する工程と、このリントープ
絶縁層上に第1導電層全形成する工程と、この第1導電
層を含む上記第1絶縁層お工びリンド−プ絶縁層上にC
VD@ニジ第2絶縁層全形成する工程と、上記第2絶縁
層上に第2導電層を形成する工程とニジなる半導体装置
の製造方法。
A step of forming a phosphorus-doped insulating layer on the surface of a first insulating layer on a semiconductor substrate, a step of completely forming a first conductive layer on the phosphorus-doped insulating layer, and a step of forming the first conductive layer on the surface of the first insulating layer on the semiconductor substrate. The first insulating layer containing C is formed on the phosphorus-doped insulating layer.
A method for manufacturing a semiconductor device including a step of completely forming a second insulating layer and a step of forming a second conductive layer on the second insulating layer.
JP6117584A 1984-03-30 1984-03-30 Manufacture of semiconductor device Pending JPS60206151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6117584A JPS60206151A (en) 1984-03-30 1984-03-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6117584A JPS60206151A (en) 1984-03-30 1984-03-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60206151A true JPS60206151A (en) 1985-10-17

Family

ID=13163550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6117584A Pending JPS60206151A (en) 1984-03-30 1984-03-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60206151A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447982B1 (en) * 1996-12-27 2004-11-06 주식회사 하이닉스반도체 Method for forming metal interconnection of semiconductor device using buffer layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447982B1 (en) * 1996-12-27 2004-11-06 주식회사 하이닉스반도체 Method for forming metal interconnection of semiconductor device using buffer layer

Similar Documents

Publication Publication Date Title
US4502913A (en) Total dielectric isolation for integrated circuits
US5442223A (en) Semiconductor device with stress relief
KR910007512B1 (en) Semiconductor device with compound conductor layer and manufacture thereof
JP2761685B2 (en) Method for manufacturing semiconductor device
EP0348046A2 (en) Method of producing a semiconductor device
KR910001426B1 (en) A method of manufacturing semiconductor device
US4661832A (en) Total dielectric isolation for integrated circuits
JPH0775235B2 (en) Flattening method for forming through conductors in a silicon wafer
KR100309630B1 (en) Semiconductor device manufacturing method
US6521942B2 (en) Electrically programmable memory cell
EP0324198A1 (en) Manufacturing method for electrical connections in integrated circuits
JPS60206151A (en) Manufacture of semiconductor device
US4594769A (en) Method of forming insulator of selectively varying thickness on patterned conductive layer
US6660592B2 (en) Fabricating a DMOS transistor
JPH0541457A (en) Manufacture of semiconductor device
JPS6228591B2 (en)
KR0140720B1 (en) Semiconductor contact and manufacturing method thereof
US6492214B2 (en) Method of fabricating an insulating layer
JPH0454390B2 (en)
JPS632375A (en) Manufacture of semiconductor memory
JPS59103355A (en) Semiconductor device
JPS6248027A (en) Semiconductor device
JPS6178138A (en) Manufacture of semiconductor device
JPS63168034A (en) Formation of multilayer gate electrode of semiconductor device
JPS63197365A (en) Manufacture of semiconductor device