JPS632375A - Manufacture of semiconductor memory - Google Patents

Manufacture of semiconductor memory

Info

Publication number
JPS632375A
JPS632375A JP61144858A JP14485886A JPS632375A JP S632375 A JPS632375 A JP S632375A JP 61144858 A JP61144858 A JP 61144858A JP 14485886 A JP14485886 A JP 14485886A JP S632375 A JPS632375 A JP S632375A
Authority
JP
Japan
Prior art keywords
capacitor
film
dielectric film
polycrystalline silicon
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61144858A
Other languages
Japanese (ja)
Inventor
Masami Ozawa
小沢 正実
Atsushi Hiraiwa
篤 平岩
Kunihiro Yagi
矢木 邦博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61144858A priority Critical patent/JPS632375A/en
Publication of JPS632375A publication Critical patent/JPS632375A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To form structure having no overhang section in order to prevent the lowering of breakdown strength due to the overhang section by processing a lower electrode for a stacked capacitor through oxidation by the self- alignment of a dielectric film. CONSTITUTION:The form of the end section of an silicon nitride film 10 as a dielectric film takes a parallel or slightly pushed-up wind shape because lower polycrystalline silicon 9 is oxidized by self-alignment using the silicon nitride film 10 as the dielectric film as a mask and polycrystalline silicon is converted into an oxide film 12 while being cubically expanded in the forms of the end sections of a lower electrode and the dielectric film. Consequently, the lower electrode 9 and an upper electrode 13 are not short-circuited, and the dielectric film is not shaped irregularly and no stress is applied. The lowering of capacitor breakdown strength resulting from an overhang section which has been at issue is improved, and yield and reliability are also enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体記憶装置の製造方法に関し、特にスタッ
クドキャパシタ形メモリセルの歩留す向上および信頼度
向上に好適な半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor memory device, and more particularly to a method for manufacturing a semiconductor device suitable for improving the yield and reliability of stacked capacitor memory cells. .

〔従来の技術〕[Conventional technology]

MOSメモリセルは1トランジスタ1キヤパシタ形が主
流であり、高集積化とともにセルサイズが縮小された結
果ソフトエラー発生率が高くなった。このためメモリセ
ルの構造を改良してキャパシタ容量を大きくしたスタッ
クドキャパシタ形メモリセルが使われている。この時キ
ャパシタの電極を多結晶シリコンとすると誘電体膜はシ
リコン窒化膜あるいは酸化処理されたシリコン窒化膜を
用めるのが適当である。
MOS memory cells are mainly of the one-transistor, one-capacitor type, and as a result of higher integration and smaller cell sizes, the soft error occurrence rate has increased. For this reason, a stacked capacitor type memory cell is used, in which the structure of the memory cell is improved to increase the capacitance of the capacitor. At this time, if the electrode of the capacitor is made of polycrystalline silicon, it is appropriate to use a silicon nitride film or an oxidized silicon nitride film as the dielectric film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一つのスタックドキャパシタセルてついて断面図を用い
て説明する。第2図においてシリコン基板1上に選択酸
化法を用いてフィールド酸化膜2を形成し、さらにゲー
ト酸化膜3と多結晶シリコンの第−層ゲート電極4.し
かる後に自己整合によりn9形不純物拡散領域5,6を
形成してトランジスタとする。さらに眉間絶縁膜7を5
j(hあるいはPSG等により形成し、キャパシタと導
通部8を通して第二層目の多結晶シリコン電極9と不純
物拡散領域6とを接続する。電極9は例えばリンドープ
された多結晶シリコシであり、所望のキャパシタを得る
ためにドライエッチ等の加工法を用いて領域を決める。
One stacked capacitor cell will be explained using a cross-sectional view. In FIG. 2, a field oxide film 2 is formed on a silicon substrate 1 using a selective oxidation method, and then a gate oxide film 3 and a third layer gate electrode 4 of polycrystalline silicon are formed. Thereafter, n9 type impurity diffusion regions 5 and 6 are formed by self-alignment to form a transistor. Furthermore, add the insulating film 7 between the eyebrows 5.
The second layer polycrystalline silicon electrode 9 and the impurity diffusion region 6 are connected through the capacitor and the conductive portion 8. The electrode 9 is made of, for example, phosphorus-doped polycrystalline silicon, and is formed of PSG or the like. In order to obtain a capacitor, the area is determined using processing methods such as dry etching.

その上にキャパシタの誘電体膜10をシリコン窒化膜あ
るいは酸化処理された窒化膜等で形成し、後に第三層目
の多結晶シリコンによる電極13を形成加工してスタッ
クドキャパシタの概要を作る。このようにスタックドキ
ャパシタはセルのゲート上やフィールド酸化膜2上に形
成するために、平面にレイアウトされた通常のメモリセ
ルのキャパシタに比べて面積を大きくとることができる
。よって容量が大きくなり高集積化に適用でさる。
A capacitor dielectric film 10 is formed thereon using a silicon nitride film or an oxidized nitride film, and later a third layer of polycrystalline silicon electrodes 13 is formed and processed to form a stacked capacitor. Since the stacked capacitor is thus formed on the gate of the cell or on the field oxide film 2, it can occupy a larger area than the capacitor of a normal memory cell laid out on a plane. Therefore, the capacity becomes large and it can be applied to high integration.

しかしながら第2図に示したスタックドキャパシタの電
極9の端部14においてキャパ/り耐圧の低下がみられ
、デバイス特性の劣化や歩留りに問題が発生する。第3
図に上記端部14を拡大し、耐圧低下の原因を説明する
。即ち多結晶シリコン4上の全面に気相成長によるSi
O2膜あるいはPSGIINの絶縁膜7を形成し、さら
にリンドープの多結晶シリコン9を気相成長によって形
成する。
However, a decrease in the capacitance breakdown voltage is observed at the end portion 14 of the electrode 9 of the stacked capacitor shown in FIG. 2, resulting in deterioration of device characteristics and problems in yield. Third
The end portion 14 is enlarged in the figure to explain the cause of the decrease in breakdown voltage. That is, Si is grown on the entire surface of polycrystalline silicon 4 by vapor phase growth.
An insulating film 7 of O2 film or PSGIIN is formed, and phosphorus-doped polycrystalline silicon 9 is further formed by vapor phase growth.

その後ホトレジストをマスクにして多結晶シリコン9を
加工し、キャパシタ面積分の領域を残存させる。この多
結晶シリコンの加工は通常ドライエツチング法によって
行なわれるが、パッチ内あるいはウェーハ内の加工を完
全に行なうために必ずオーバエッチとなる個所が生じて
f地絶縁膜7をもエッチすることになり、その後に形成
する誘電体膜10.および11さらにはキャパシタの上
部電極となるリンドープ多結晶シリコン13の形状が図
中丸線で囲った部分15のようにオーバーハングの形を
とる。この14で示した形が原因でΦヤパシタに印加す
る電界によって破壊が生じやす・く、結果としてキャパ
シタ耐圧の低下となる。この形状と耐圧低下の関係は下
部電甑9の端部の突起1/l界集中が発生するとか、オ
ーバーハング部への誘電体膜10.11の成長が不規則
であったりあるいは膜てストレスがかかつていると考え
られる。
Thereafter, polycrystalline silicon 9 is processed using photoresist as a mask, leaving a region equivalent to the area of the capacitor. Processing of this polycrystalline silicon is normally carried out by dry etching, but in order to completely process the inside of the patch or wafer, over-etching occurs, which means that the f-base insulating film 7 is also etched. , a dielectric film 10 to be formed thereafter. Further, the shape of the phosphorus-doped polycrystalline silicon 13 serving as the upper electrode of the capacitor takes the form of an overhang, as shown by a portion 15 surrounded by a circle in the figure. Due to the shape shown in 14, breakdown is likely to occur due to the electric field applied to the Φ capacitor, resulting in a decrease in the capacitor's breakdown voltage. The relationship between this shape and the breakdown voltage drop may be due to the occurrence of 1/l field concentration on the protrusion at the end of the lower electrode 9, irregular growth of the dielectric film 10, 11 on the overhang part, or stress on the film. It is thought that this is taking place.

本発明の目的は上記スタックドキャパシタにおいて、オ
ーバーハング部による耐圧低下を防止するためにオーバ
ーハング部のない構造を形成するための製造方法を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a manufacturing method for forming a structure without an overhang in order to prevent a drop in breakdown voltage due to the overhang in the stacked capacitor described above.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的はスタックドキャパシタの下部xiを、従来の
ドライエツチング法による加工に変えて誘電体膜(この
場合はシリコン窒化膜)の自己整合による酸化によって
加工することで達成される。
The above object is achieved by processing the lower part xi of the stacked capacitor by self-aligned oxidation of the dielectric film (silicon nitride film in this case) instead of the conventional dry etching method.

〔作用〕[Effect]

本発明によれば、スタックドキャパシタの下部電極分、
誘電体膜の自己整合による酸化によって加工するために
、オーパーツ為ングのない形状とすることかでき、キャ
パシタ絶縁耐圧の向上および歩留り向上、高信頼度のス
タックドキャパシタメモリセルが得られる。
According to the present invention, the lower electrode portion of the stacked capacitor,
Since the dielectric film is processed by self-aligned oxidation, it is possible to form a shape without overlapping, resulting in improved capacitor dielectric strength, improved yield, and a highly reliable stacked capacitor memory cell.

〔実施例〕〔Example〕

以下1図面を参照して本発明の一実施例について説明す
る。
An embodiment of the present invention will be described below with reference to one drawing.

第1図は本発明のスタックドキャパシタの断面図であり
、多結晶シリコン4上に気相成長による3iαl、PS
G等の絶縁膜7を形成し、さらにキャパシタを積み上げ
て形成する。すなわちキャパシタの下部電極9は、温度
630Cのモノシラン/ N zガス中で多結晶シリコ
ンを気相成長し、さらにオキシ塩化リンを用いたリンド
ープを行なって得る。引き続きキャパシタの誘電体膜と
するシリコン窒化膜10を760Cにおいてジクロルシ
ランとアンモニアの雰囲気中での気相成長によって得て
、ホトエッチ工程とドライエッチによってキャパシタ部
のシリコン窒化膜10を残す。次いで常圧のウェット酸
素の雰囲気で例えば950Cで55分の酸化を行なう、
あるいは高圧のウエツト酸化例えば7気圧で90002
5分の酸化を行なうと、シリコン窒化膜1oの上にシリ
コン酸化膜11が約4(nm)程度成長して誘電体膜と
なると同時にシリコン窒化膜10で被覆されていないキ
ャパシタ部以外の下部の多結晶シリコン9も酸化されて
シリコン酸化膜12に変換される。この時上記の酸化処
理によって、シリコン窒化膜lo上iC4(n m)ノ
シリコン酸化膜11が形成される条件では下部の多結晶
シリコン9では500(nm)のシリコン酸化膜12が
形成されるために、形成当初の多結晶シリコン9の膜厚
が250 (nm)以下であればシリコン窒化膜で被覆
されていない部分(コンデンサ部以外)の多結晶シリコ
ンは全てシリコン酸化膜に変換され、層間の絶縁膜とし
て有用となる。iおシリコン窒化膜9の酸化と多結晶シ
リコン9の酸化の割合はがなり広範囲に設定することが
できるため(例えば多結晶シリコン中のリン濃度の制御
とか、あるいは酸化する際の温度・雰囲気などの制御等
)、下部電極となる多結晶シリコン9の厚さは自由に設
定できる。さらにコンデンサ誘電体膜10の加工寸法に
よって下部電極となる多結晶シリコン9の寸法が決まる
、即ち誘電体膜10の自己整合によって加工されること
になるから従来の加工法に比べて加工精度が極めて良く
なるという利点がある。さらに従来のコンデンサ下部電
極の加工とgt体膜形成、そしてパターン合わせ、誘電
体膜加工とする製造工程のうち下部電極の加工工程と、
電極と誘電体膜のマスク合わせ工程の二工程が削除され
る利点もある。図中15には下部電極と誘電体膜の端部
の形状を示しである。この部の形状は誘電体膜であるシ
リコン窒化膜10をマスクとした自己整合によって下部
多結晶シリコン9が酸化され、多結晶シリコンが体積膨
張しながら酸化膜12に変換されるため誘電体膜のシリ
コン窒化膜10の端部の形状は平行もしくは僅かに押し
上げられた翼形となる。この結果第3図15に示した形
状とは大巾に異なったものになり、下地電極9と上部電
極13の間で短絡することがなくなり。
FIG. 1 is a cross-sectional view of the stacked capacitor of the present invention, in which 3iαl, PS is grown on polycrystalline silicon 4 by vapor phase growth.
An insulating film 7 of G or the like is formed, and a capacitor is further stacked and formed. That is, the lower electrode 9 of the capacitor is obtained by vapor phase growth of polycrystalline silicon in monosilane/Nz gas at a temperature of 630C, and further phosphorus doping using phosphorus oxychloride. Subsequently, a silicon nitride film 10 to be used as a dielectric film of the capacitor is obtained by vapor phase growth at 760 C in an atmosphere of dichlorosilane and ammonia, and the silicon nitride film 10 in the capacitor portion is left by photoetching and dry etching. Next, oxidation is carried out at 950C for 55 minutes in a wet oxygen atmosphere at normal pressure.
Or high pressure wet oxidation, e.g. 90002 at 7 atm.
When oxidation is performed for 5 minutes, a silicon oxide film 11 grows to a thickness of about 4 nm on the silicon nitride film 1o and becomes a dielectric film, and at the same time, the lower part of the capacitor that is not covered with the silicon nitride film 10 is removed. Polycrystalline silicon 9 is also oxidized and converted into silicon oxide film 12. At this time, under the conditions that the above oxidation process forms a silicon oxide film 11 of iC4 (nm) on the silicon nitride film lo, a silicon oxide film 12 of 500 (nm) is formed on the lower polycrystalline silicon 9. If the film thickness of the polycrystalline silicon 9 at the time of formation is 250 (nm) or less, all the polycrystalline silicon in the parts not covered with the silicon nitride film (other than the capacitor part) is converted to a silicon oxide film, and the interlayer Useful as an insulating film. The ratio of oxidation of silicon nitride film 9 and oxidation of polycrystalline silicon 9 can be set over a wide range (for example, by controlling the phosphorus concentration in polycrystalline silicon, or by controlling the temperature and atmosphere during oxidation, etc.) control, etc.), and the thickness of polycrystalline silicon 9 serving as the lower electrode can be freely set. Furthermore, the dimensions of the polycrystalline silicon 9 that will become the lower electrode are determined by the processing dimensions of the capacitor dielectric film 10. In other words, the processing is performed by self-alignment of the dielectric film 10, so processing accuracy is extremely high compared to conventional processing methods. It has the advantage of getting better. Furthermore, the lower electrode processing step of the conventional manufacturing process of capacitor lower electrode processing, GT body film formation, pattern alignment, and dielectric film processing,
There is also the advantage that the two steps of mask alignment of the electrode and dielectric film are eliminated. 15 in the figure shows the shape of the lower electrode and the end of the dielectric film. The shape of this part is such that the lower polycrystalline silicon 9 is oxidized by self-alignment using the silicon nitride film 10, which is a dielectric film, as a mask, and the polycrystalline silicon is converted into an oxide film 12 while expanding in volume. The shape of the end portion of the silicon nitride film 10 is a parallel or slightly pushed-up airfoil shape. As a result, the shape is significantly different from that shown in FIG. 3, and there is no short circuit between the base electrode 9 and the upper electrode 13.

さらには誘電体膜の形成が不規則になることもなくスト
レスのかかることもなくなる。
Furthermore, the formation of the dielectric film will not become irregular and stress will not be applied.

従来問題となってい念オーバーハング部に起因するキャ
パシタ耐圧の低下が改善され、歩留りおよび信頼度も向
上した。
The conventional problem of lower capacitor breakdown voltage caused by overhangs has been resolved, and yield and reliability have also been improved.

第4図は本発明の他の実施例を示すスタックドキャパシ
タの断面図であり、誘電体膜としてタンタル酸化膜を主
体としたシリコン窒化膜とシリコン酸化膜の組み合わせ
膜を用いている。以下断面図に従って説明すると多結晶
シリコン4上に気相成長によって5iQ2.PSG等の
絶縁膜7と下部電極の多結晶シリコン9を形成し、さら
に誘電体膜となるシリコン窒化膜10と酸化タンタル膜
16をそれぞれ気相成長とスパッタ法によって形成する
。その後ホトエッチ工程とドライエツチングによってキ
ャパシタ部となる領域のシリコン窒化膜10と酸化タン
タル膜16を残して他の領域は除去する。さらに酸化性
雰囲気中で熱処理すると酸素は酸化タンタル膜16に作
用すると同時に7リコ/窒化膜10の表面の一部を酸化
してシリコン酸化膜11に変換し、シリコン窒化膜1o
とシリコン酸化膜11と酸化タンタル膜16との三層構
造の誘電体膜を形成し、シリコン窒化膜1゜の残存しな
い領域の多結晶シリコン9を酸化してシリコン酸化膜領
域12を形成する。こうするとキャパシタの下部電極と
なる多結晶シリコン9の加工はホトエッチ等の加工法を
用いる必要がなくシリコン窒化膜10や酸化タンタル膜
16の自己整合による熱酸化によって行われるため、加
工工程が減るととも【加工精度が向上する。さらに誘電
体膜の端部の形状が第1図と同様に翼形となり多結晶シ
リコン9の下部電極と多結晶シリコン13で形成した上
部電極との間は厚いシリコン酸化膜12によって分離さ
れるためにキャパシタの短絡カナくナリ、誘電体[10
,11,16+7)形成が不規則になることもなくスト
レスのかかることもなくなる。
FIG. 4 is a sectional view of a stacked capacitor showing another embodiment of the present invention, in which a combination film of a silicon nitride film and a silicon oxide film, mainly consisting of a tantalum oxide film, is used as the dielectric film. 5iQ2. is deposited on polycrystalline silicon 4 by vapor phase growth. An insulating film 7 such as PSG and polycrystalline silicon 9 as a lower electrode are formed, and a silicon nitride film 10 and a tantalum oxide film 16, which will become dielectric films, are formed by vapor phase growth and sputtering, respectively. Thereafter, by photoetching and dry etching, the silicon nitride film 10 and tantalum oxide film 16 in the region that will become the capacitor portion are left, and the other regions are removed. Further, when heat-treated in an oxidizing atmosphere, oxygen acts on the tantalum oxide film 16 and at the same time oxidizes a part of the surface of the silicon nitride film 10 and converts it into a silicon oxide film 11.
A dielectric film having a three-layer structure of a silicon oxide film 11 and a tantalum oxide film 16 is formed, and polycrystalline silicon 9 in a region where no silicon nitride film 1° remains is oxidized to form a silicon oxide film region 12. In this way, processing of the polycrystalline silicon 9 that will become the lower electrode of the capacitor does not require the use of processing methods such as photoetching, and is performed by thermal oxidation through self-alignment of the silicon nitride film 10 and tantalum oxide film 16, which reduces the number of processing steps. [Processing accuracy improves. Furthermore, the shape of the end of the dielectric film becomes airfoil-like as in FIG. In case of short circuit of capacitor, dielectric [10
, 11, 16+7) The formation will not become irregular and stress will not be applied.

よって従来問題となっていたオーバーハング部に起因す
るキャパシタ耐圧の低下が改善され1歩留りおよび信頼
度も向上した。
Therefore, the reduction in capacitor breakdown voltage caused by the overhang portion, which has been a problem in the past, has been improved, and the yield and reliability have also been improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、スタックドキャパシタの端部構造が改
善されてオーバーハングがなくなったためキャパシタの
絶縁耐圧が向上し、その歩留りおよび信頼度も向上する
。さらKはスタックドキャパシタ形セルの製造工程が筒
路化されることおよび加工種度が一段と向上することの
効果がある。
According to the present invention, the end structure of the stacked capacitor is improved and overhang is eliminated, so that the dielectric strength of the capacitor is improved, and its yield and reliability are also improved. Moreover, K has the effect that the manufacturing process of the stacked capacitor type cell can be made into a cylindrical process and the degree of processing can be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す部分拡大断面図、第2
図は従来のスタックドキャパシタ形メモリセルの断面図
、第3図は従来のスタックドキャパシタの部分拡大断面
図、第4図は本発明の他の実施例を示す部分拡大断面図
である。 1・・・シリコン基板、2・・・フィールド酸化膜、3
・・・ゲート酸化膜、4・・・nゝ多結晶シリコン(ゲ
ート)。 5.6・・・不純物拡散領域、7・・・5iCh又はP
SG膜、8・・・ソース又はドレインコンタクト孔部、
9・・・n”多i晶シリコン(キャパシタ下i[ff1
)。 10・・・誘電体膜(シリコン窒化膜)、11・・・誘
電体膜(シリコン酸化膜)、12・・・シリコン酸化膜
。 13・・・nゝ多結晶シリコン(キャパシタ上部電極)
。 14.15・・・キャパシタの端部、16・・・酸化タ
ンタル膜。 案 l 口 lり 第 2 図 名 3国
FIG. 1 is a partially enlarged sectional view showing one embodiment of the present invention, and FIG.
3 is a partially enlarged sectional view of a conventional stacked capacitor, and FIG. 4 is a partially enlarged sectional view showing another embodiment of the present invention. 1... Silicon substrate, 2... Field oxide film, 3
...Gate oxide film, 4...n polycrystalline silicon (gate). 5.6... Impurity diffusion region, 7...5iCh or P
SG film, 8...source or drain contact hole,
9...n" polycrystalline silicon (lower capacitor i[ff1
). 10... Dielectric film (silicon nitride film), 11... Dielectric film (silicon oxide film), 12... Silicon oxide film. 13...n polycrystalline silicon (capacitor upper electrode)
. 14.15... end of capacitor, 16... tantalum oxide film. Plan 1 Words 2 Diagram name 3 countries

Claims (1)

【特許請求の範囲】 1、基板から延在する導電性薄膜上にキャパシタを形成
した積層形キャパシタを具備する半導体記憶装置の製造
方法において誘電体膜の少なくとも一部分を加工後誘電
体膜の自己整合によつて下部電極を所望の形状に加工す
ることを特徴とする半導体記憶装置の製造方法。 2、下部電極がドープされた多結晶シリコンである特許
請求の範囲第1項記載の半導体記憶装置の製造方法。 3、誘電体膜に少なくともシリコン窒化膜を含む特許請
求の範囲第1項ないし第2項記載の半導体記憶装置の製
造方法。 4、下部電極の加工を熱酸化によって行なう特許請求の
範囲第1項ないし第3項記載の半導体記憶装置の製造方
法。 5、下部電極の加工をドライエッチングと熱酸化によつ
て行なう特許請求の範囲第1項ないし第4項記載の半導
体記憶装置の製造方法。
[Claims] 1. Self-alignment of the dielectric film after processing at least a portion of the dielectric film in a method for manufacturing a semiconductor memory device including a stacked capacitor in which a capacitor is formed on a conductive thin film extending from a substrate. 1. A method of manufacturing a semiconductor memory device, comprising processing a lower electrode into a desired shape by using a method of manufacturing a semiconductor memory device. 2. The method of manufacturing a semiconductor memory device according to claim 1, wherein the lower electrode is made of doped polycrystalline silicon. 3. A method of manufacturing a semiconductor memory device according to claims 1 or 2, wherein the dielectric film includes at least a silicon nitride film. 4. A method of manufacturing a semiconductor memory device according to claims 1 to 3, wherein the lower electrode is processed by thermal oxidation. 5. A method of manufacturing a semiconductor memory device according to claims 1 to 4, wherein the lower electrode is processed by dry etching and thermal oxidation.
JP61144858A 1986-06-23 1986-06-23 Manufacture of semiconductor memory Pending JPS632375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61144858A JPS632375A (en) 1986-06-23 1986-06-23 Manufacture of semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61144858A JPS632375A (en) 1986-06-23 1986-06-23 Manufacture of semiconductor memory

Publications (1)

Publication Number Publication Date
JPS632375A true JPS632375A (en) 1988-01-07

Family

ID=15372039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61144858A Pending JPS632375A (en) 1986-06-23 1986-06-23 Manufacture of semiconductor memory

Country Status (1)

Country Link
JP (1) JPS632375A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01181448A (en) * 1988-01-11 1989-07-19 Toshiba Corp Semiconductor device
US5174785A (en) * 1990-07-17 1992-12-29 Yazaki Corporation Low insertion-withdrawal force electric connector
US5797758A (en) * 1996-02-16 1998-08-25 Yazaki Corporation Lever action-type female connector
JP2018181842A (en) * 2017-04-04 2018-11-15 ティーイー コネクティビティ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツンクTE Connectivity Germany GmbH Plug connector and method for forming plug connection

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01181448A (en) * 1988-01-11 1989-07-19 Toshiba Corp Semiconductor device
US5174785A (en) * 1990-07-17 1992-12-29 Yazaki Corporation Low insertion-withdrawal force electric connector
US5797758A (en) * 1996-02-16 1998-08-25 Yazaki Corporation Lever action-type female connector
JP2018181842A (en) * 2017-04-04 2018-11-15 ティーイー コネクティビティ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツンクTE Connectivity Germany GmbH Plug connector and method for forming plug connection

Similar Documents

Publication Publication Date Title
KR960005245B1 (en) Method for manufacturing a capacitor having a rough electrode surface
US4826781A (en) Semiconductor device and method of preparation
JPH0774317A (en) Manufacture of semiconductor device
JP2000058652A (en) Manufacture of contact hole for semiconductor device
JPH08139278A (en) Manufacture of semiconductor device
JP3173472B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPH1065122A (en) Semiconductor device and manufacture thereof
JPS632375A (en) Manufacture of semiconductor memory
JP2642364B2 (en) Semiconductor memory device and method of manufacturing the same
JPH06333944A (en) Semiconductor device
JPH0454390B2 (en)
JP3317736B2 (en) Semiconductor device and manufacturing method thereof
JP3902417B2 (en) Manufacturing method of semiconductor device
JPH04286152A (en) Manufacture of semiconductor memory
JPH0669518A (en) Manufacture of semiconductor device
JPH05102417A (en) Semiconductor device and its manufacturing method
JPH08162546A (en) Nonvolatile semiconductor memory and its manufacture
JPH04299854A (en) Semiconductor device and its manufacture
JPH05299579A (en) Manufacture of semiconductor device
JPH0435059A (en) Semiconductor capacitance element and manufacture thereof
JPH06268172A (en) Semiconductor device and its manufacture
JPH0974170A (en) Manufacture of semiconductor device
JPH0714985A (en) Fin-type stacked capacitor and manufacturing thereof
JPH0353785B2 (en)
JPS63305550A (en) Semiconductor memory device