JPH05102417A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method

Info

Publication number
JPH05102417A
JPH05102417A JP3259132A JP25913291A JPH05102417A JP H05102417 A JPH05102417 A JP H05102417A JP 3259132 A JP3259132 A JP 3259132A JP 25913291 A JP25913291 A JP 25913291A JP H05102417 A JPH05102417 A JP H05102417A
Authority
JP
Japan
Prior art keywords
capacitor
layer
poly
polysilicon layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3259132A
Other languages
Japanese (ja)
Inventor
Shoji Yo
章二 葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP3259132A priority Critical patent/JPH05102417A/en
Publication of JPH05102417A publication Critical patent/JPH05102417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To provide a structure and a manufacturing method for enlarging a capacitor surface area and increasing the capacity thereof without enlarging a cell area regarding a capacitor part of a semiconductor device with a stacked capacitor. CONSTITUTION:A polysilicon layer (dummy polysilicon layer) 13 is provided on a layer insulating film 5, a contact hole is formed therein and a capacitor lower electrode 7 and a capacitor dielectric film 8 are formed ranging from a part facing the contact hole to the upper surface of the dummy polysilicon layer 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、スタックトキャパシ
タを有する半導体装置の、そのキャパシタ部を中心とし
た構造および製法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a stacked capacitor and a structure centering around the capacitor portion and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来、DRAM(Dynamic Ra
mdom AccessMemory)のメモリセルに
はその一つとしてスタックトキャパシタ構造がある。そ
の構造を図3に示し、本発明にかかわる工程について以
下に説明する。
2. Description of the Related Art Conventionally, DRAM (Dynamic Ra)
A stacked capacitor structure is one of the memory cells of the mdom access memory). The structure is shown in FIG. 3, and the steps involved in the present invention will be described below.

【0003】図3のように、P型(100)シリコン基
板1上にフィールド酸化膜2,ワード線(ゲート電極)
(第1ポリシリコン)3,N+ 拡散層4,絶縁膜5が形
成されている構造に、絶縁膜5を通常のホトリソグラフ
ィ,エッチング技術を用い、選択的にエッチングしてレ
ジスト除去後、6のようにコンタクト用の開口部を設け
る。続いて第2Poly−Si(ポリシリコン)(以下
2Pと略すことあり)7を全面に1000〜3000Å
CVD法(Chemical VapourDepos
ition法、化学的気相成長法)により成長させる。
次にこの第2Poly−Si7にAs+ ,もしくはP+
を5E15cm-2程度イオン注入法もしくは、POCl
3 を拡散源にしてリンを拡散し、不純物を導入し導電性
をもたせる。次にこの第2Poly−Si7を通常のホ
トリソグラフィ,エッチング技術を用い選択的にエッチ
ングを行った後、レジストを除去する。続いてCVD法
を用いてキャパシタ絶縁膜となるシリコン窒化膜(Si
3 4 )8を50〜200Å程度全面に成長させる。続
いて酸素雰囲気でアニールを行い、シリコン窒化膜8上
に薄い酸化膜を成長させる(図示せず)。次に全面に第
3Poly−Si(以下3Pと略すことあり)9をCV
D法により1000〜3000Å成長させ、この第3P
oly−Si9にPOCl3 を拡散源としてリンを拡散
し導電性をもたせる。次にこの第3Poly−Si9を
通常のホトリソグラフィ,エッチング技術を用いて選択
的にエッチングを行う。尚、このエッチングの際、エッ
チングを被むる部位の第3Poly−Si9下の薄い酸
化膜、シリコン窒化膜8もエッチングされる。
As shown in FIG. 3, a field oxide film 2 and a word line (gate electrode) are formed on a P-type (100) silicon substrate 1.
In the structure in which the (first polysilicon) 3, the N + diffusion layer 4 and the insulating film 5 are formed, the insulating film 5 is selectively etched by using ordinary photolithography and etching techniques, and after removing the resist, 6 An opening for contact is provided as shown in. Then, a second Poly-Si (polysilicon) (hereinafter sometimes abbreviated as 2P) 7 is formed on the entire surface at 1000 to 3000 Å
CVD method (Chemical Vapor Depos)
and the chemical vapor deposition method).
Next, As + or P + is added to the second Poly-Si7.
About 5E15 cm -2 by ion implantation or POCl
Using 3 as a diffusion source, phosphorus is diffused and impurities are introduced to make it conductive. Next, the second Poly-Si 7 is selectively etched by using ordinary photolithography and etching techniques, and then the resist is removed. Then, using a CVD method, a silicon nitride film (Si
3 N 4 ) 8 is grown on the entire surface of about 50 to 200 Å. Then, annealing is performed in an oxygen atmosphere to grow a thin oxide film on the silicon nitride film 8 (not shown). Next, the third Poly-Si (hereinafter sometimes abbreviated as 3P) 9 is CVed on the entire surface.
1000 ~ 3000Å growth by D method,
The POLY 3 is used as a diffusion source in the poly-Si 9 so that phosphorus is diffused to make it electrically conductive. Next, this third Poly-Si 9 is selectively etched by using ordinary photolithography and etching techniques. At the time of this etching, the thin oxide film and the silicon nitride film 8 under the third Poly-Si 9 in the portion to be etched are also etched.

【0004】以上の工程により第2Poly−Si7,
第3Poly−Si9及びこの両者にはさまれた薄い酸
化膜、シリコン窒化膜8を構成要素としてキャパシタが
形成される。
Through the above steps, the second Poly-Si7,
A capacitor is formed with the third Poly-Si 9 and the thin oxide film sandwiched between the third Poly-Si 9 and the silicon nitride film 8 as constituent elements.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記作
成方法において集積度を上げようとすると、セル面積を
小さくしなければならない。面積を小さくするとキャパ
シタ容量が減少するために、回路の誤動作やソフトエラ
ーを招く欠点がある。キャパシタ容量を増加する方法と
して絶縁膜を薄くする方法があるが、その上下のキャパ
シタ電極であるポリシリコン(2P−3P)間の絶縁不
良を引き起こし、ひいては歩留を低下させるという欠点
がある。又SiO2 やSi3 4 にかわる高誘電率の絶
縁膜を使う方法もあるが、まだ実用化に供されるような
材料、プロセスがない。例えば高誘電体材料としてTa
2 5 があるがまだプロセス的に不安定である。
However, in order to increase the degree of integration in the above manufacturing method, the cell area must be reduced. When the area is reduced, the capacitance of the capacitor is reduced, which causes a malfunction of the circuit and a soft error. As a method of increasing the capacitance of the capacitor, there is a method of thinning the insulating film, but it has a drawback that it causes insulation failure between the upper and lower capacitor electrodes of polysilicon (2P-3P), and eventually lowers the yield. There is also a method of using an insulating film having a high dielectric constant, which is an alternative to SiO 2 or Si 3 N 4 , but there is no material or process that can be put to practical use. For example, Ta as a high dielectric material
There is 2 O 5, but it is still unstable in the process.

【0006】この発明は、以上述べた集積度を上げよう
とする為にキャパシタ面積を小さくし、そのために回路
の誤動作やソフトエラーを招くといった欠点を防ぐため
に、セル面積を増加させることなくキャパシタ容量を増
加可能な構造と製法を提供することを目的とする。
The present invention reduces the capacitor area in order to increase the degree of integration as described above, and thus prevents the malfunctions of the circuit and the soft error, thereby preventing the capacitor capacitance without increasing the cell area. The purpose is to provide a structure and manufacturing method that can increase

【0007】[0007]

【課題を解決するための手段】この発明は前述の目的の
ため、半導体素子の製造方法、特にDRAMのスタック
トキャパシタ構造のキャパシタ絶縁膜形成において、ダ
ミーPoly−Si層(後述)を形成した構造にして、
コンタクト開口時にその第2Poly−Si(キャパシ
タの下部電極)下の層間膜をウェットエッチングを用い
たエッチングを施こすことでキャパシタ面積を飛躍的に
増大させるようにしたものである。
For the above-mentioned purpose, the present invention has a structure in which a dummy Poly-Si layer (described later) is formed in a method of manufacturing a semiconductor device, particularly in forming a capacitor insulating film of a stacked capacitor structure of DRAM. And then
When the contact is opened, the interlayer film under the second Poly-Si (lower electrode of the capacitor) is subjected to etching using wet etching so as to dramatically increase the capacitor area.

【0008】[0008]

【作用】本発明は前述したように、ダミーPoly−S
iを設けた構造にして大きい表面積を確保するようにし
たので、セル面積を増大させることなくキャパシタ容量
を増加させることができる。
In the present invention, as described above, the dummy Poly-S is used.
Since the structure having i is provided to secure a large surface area, it is possible to increase the capacitance of the capacitor without increasing the cell area.

【0009】[0009]

【実施例】図2の(a)〜(f)は本発明の実施例の製
造工程を示す断面図であり、本発明にかかわる工程につ
いてのみ記載し前後の工程は省略する。又、図3と同一
の機能を有する個所には同一の符号を付与してある。ま
ず、P型シリコン基板1上に従来同様フィールド酸化膜
2,ワード線(ゲート電極)となる第1Poly−Si
3,ソース、ドレインとなるN+ 拡散層4を形成し、層
間SiO2 5を1000〜5000Å程度CVD法によ
り形成する(図2(a))。
2 (a) to 2 (f) are sectional views showing a manufacturing process of an embodiment of the present invention, in which only steps related to the present invention are described and the preceding and following steps are omitted. Further, the same reference numerals are given to the parts having the same functions as those in FIG. First, on the P-type silicon substrate 1, the field oxide film 2 and the word line (gate electrode) are formed on the P-type silicon substrate 1 in the same manner as in the past.
3. An N + diffusion layer 4 serving as a source and a drain is formed, and an interlayer SiO 2 5 is formed by a CVD method at about 1000 to 5000 Å (FIG. 2A).

【0010】次に図2(b)のように、Poly−Si
13を減圧CVD法により1000〜3000Å程度成
長させる。これを本項ではダミーPoly−Si層と称
す。次にコンタクト孔を形成するために、レジスト15
を塗布してパターニングし、前記ダミーPoly−Si
層13を通常のホトリソグラフィ,エッチング技術を用
いてパターニングする。
Next, as shown in FIG. 2B, Poly-Si is used.
13 is grown by the low pressure CVD method to about 1000 to 3000 Å. This is referred to as a dummy Poly-Si layer in this section. Next, in order to form a contact hole, a resist 15 is formed.
Is applied and patterned to form the dummy Poly-Si.
Layer 13 is patterned using conventional photolithography and etching techniques.

【0011】次に図2(c)のように、前項のPoly
−Si13のエッチングで用いたレジスト15をそのま
ま除去せずにコンタクトエッチング用マスクとして用い
て、層間SiO2 5をフッ酸溶液を使用してWet(ウ
ェット)等方エッチングを2000Å程度施こす。
Next, as shown in FIG. 2 (c), the above-mentioned Poly
Using the resist 15 used for the etching of Si13 as it is as a mask for contact etching, wet SiO 2 isotropic etching is applied to the interlayer SiO 2 5 by using a hydrofluoric acid solution at about 2000 Å.

【0012】次にドライエッチング(異方性エッチン
グ)を用いて残りの層間SiO2 5をエッチングし、コ
ンタクトを開口する。その後レジスト15を除去すれば
図2(d)のような構造を得る。つまり前記コンタクト
開口部の層間膜5がPoly−Si膜13の開口部の下
でアンダーカットの形となる。
Next, the remaining interlayer SiO 2 5 is etched by dry etching (anisotropic etching) to open a contact. After that, the resist 15 is removed to obtain a structure as shown in FIG. That is, the interlayer film 5 in the contact opening is undercut below the opening in the Poly-Si film 13.

【0013】次に図2(e)のように、第2Poly−
Siを1000〜3000Å程度CVD法で全面に形成
する。そして、この第2Poly−Si7にAs+ もし
くはP+ を5E15cm-2程度イオン注入法により不純
物を導入する。その後850℃程度のN2 雰囲気で30
分程アニールをすることで、不純物の活性化をうなが
す。次に通常のホトリソグラフィ,エッチング技術を用
いてパターニングを施こす。このときエッチングを被む
る部位のダミーPory−Si層13もエッチングによ
り除去される。従って図2(e)のような構造を得る。
Next, as shown in FIG. 2E, the second Poly-
Si is formed on the entire surface by a CVD method at about 1000 to 3000Å. Then, impurities of As + or P + of about 5E15 cm −2 are introduced into the second Poly-Si 7 by an ion implantation method. After that, in an N 2 atmosphere at about 850 ° C., 30
By annealing for a while, activation of impurities is promoted. Next, patterning is performed using ordinary photolithography and etching techniques. At this time, the portion of the dummy Poly-Si layer 13 that is to be etched is also removed by etching. Therefore, the structure as shown in FIG.

【0014】次に図2(f)のように、減圧CVD法に
よりキャパシタ用誘電体膜であるシリコン窒化膜8を5
0〜200Å程度堆積させる。続いて酸化雰囲気でアニ
ールを行い、シリコン窒化膜8上に薄い酸化膜を成長さ
せる(図示せず)。次に第3Poly−Si9を200
0〜3000Å程度(コンタクト部の段差が覆われるま
で)減圧CVD法により堆積させ、リンを5×1020
-3程度の濃度でドープし、第2Poly−Si7と同
様な方法でパターニングし図2(f)のような構造を得
る。以下、従来同様層間SiO2 (II)10(以下の記
号は図1参照)を堆積させ、ビットコンタクト11を通
常のホトリソグラフィ,エッチング技術を用いて開口
し、ビット線12をパターニングし図1に示す構造を得
るものである。即ち、ダミーPoly−Si層13を設
けたことにより、コンタクト孔に面する層間膜5が前述
したようにアンダーカットの形となり、その部分の表面
から前記ダミーPoly−Si13のコンタクト孔に面
する側面そして上面に至るまで、キャパシタを形成でき
る構造となる。つまりセル面積を広げることなく、いわ
ば立体的にキャパシタ面積を広くできる。以降通常のプ
ロセス技術により本実施例によるスタックトキャパシタ
構造の半導体メモリ素子を完成するものである。
Next, as shown in FIG. 2 (f), a silicon nitride film 8 which is a dielectric film for capacitors is formed by low pressure CVD.
Deposit 0 to 200Å. Then, annealing is performed in an oxidizing atmosphere to grow a thin oxide film on the silicon nitride film 8 (not shown). Next, the third Poly-Si 9 is added to 200
About 0 to 3000 Å (until the step of the contact part is covered) is deposited by the low pressure CVD method, and phosphorus is added at 5 × 10 20 c
Doping is performed at a concentration of about m −3 , and patterning is performed by the same method as for the second Poly-Si 7 to obtain a structure as shown in FIG. Thereafter, an interlayer SiO 2 (II) 10 (refer to FIG. 1 for the following symbols) is deposited in the same manner as in the prior art, the bit contact 11 is opened by using a normal photolithography and etching technique, and the bit line 12 is patterned to form the structure shown in FIG. To obtain the structure shown. That is, since the dummy Poly-Si layer 13 is provided, the interlayer film 5 facing the contact hole has an undercut shape as described above, and the side surface facing the contact hole of the dummy Poly-Si 13 from the surface of that portion. Then, the structure is such that a capacitor can be formed up to the upper surface. That is, the capacitor area can be increased in a three-dimensional manner without increasing the cell area. Thereafter, the semiconductor memory device having the stacked capacitor structure according to the present embodiment is completed by a normal process technique.

【0015】[0015]

【発明の効果】以上、説明したように、この発明によれ
ば、ダミーPoly−Si層を設け、2P(第2Pol
y−Si層、即ちキャパシタ下部電極)上面と2P側面
に加えて2Pの周辺の下面及びウェットエッチングによ
って層間SiO2 (I)5部の2P上面においても大き
く表面積を確保し、キャパシタ用誘電体膜であるシリコ
ン窒化膜を形成するようにしたので、セル面積を増大さ
せることなくキャパシタ容量を増加させることができ、
これによって従来の半導体装置と比較して回路の誤動作
やソフトエラーの低減が期待できる。また複雑な工程を
必要としないので作業性に関しても従来とほとんど変わ
らない信頼性を有することが期待できる。
As described above, according to the present invention, a dummy Poly-Si layer is provided and 2P (second Pol) is provided.
In addition to the y-Si layer, that is, the upper surface of the capacitor lower electrode) and the 2P side surface, a large surface area is secured not only on the lower surface around the 2P and on the 2P upper surface of the interlayer SiO 2 (I) 5 part by wet etching, and the dielectric film for the capacitor Since the silicon nitride film is formed, it is possible to increase the capacitance of the capacitor without increasing the cell area,
This can be expected to reduce circuit malfunctions and soft errors as compared to conventional semiconductor devices. Further, since no complicated process is required, it can be expected that the workability is almost the same as the conventional one.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の構造FIG. 1 is a structure of an embodiment of the present invention.

【図2】本発明の実施例の製造工程FIG. 2 is a manufacturing process of an embodiment of the present invention.

【図3】従来例FIG. 3 Conventional example

【符号の説明】[Explanation of symbols]

5 層間SiO2 (I) 6 コンタクト 7 第2Poly−Si 8 Si3 4 (窒化膜) 9 第3Poly−Si 13 Poly−Si5 Interlayer SiO 2 (I) 6 Contact 7 Second Poly-Si 8 Si 3 N 4 (Nitride film) 9 Third Poly-Si 13 Poly-Si

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 スタックトキャパシタ構造を有する半導
体装置の製造方法として、 (a)半導体基板上に少なくともトランジスタのゲート
電極となる層とソース、ドレインとなる拡散層を形成す
る工程と、 (b)前記構造の上に層間絶縁膜を形成した後、その上
にポリシリコン層を形成する工程と、 (c)前記拡散層上の前記ポリシリコン層と層間絶縁膜
にコンタクト孔を開口する工程と、 (d)前記開口されたコンタクト孔に面した部分から前
記ポリシリコン層の上面に至るまで、キャパシタ下部電
極となる層を形成し、前記ポリシリコン層と前記キャパ
シタ下部電極層をパターニングする工程と、 (e)少なくとも、前記キャパシタ下部電極層上にキャ
パシタ用誘電体膜を形成し、その上にキャパシタ上部電
極層を形成する工程とを含むことを特徴とする半導体装
置の製造方法。
1. A method of manufacturing a semiconductor device having a stacked capacitor structure, comprising: (a) forming at least a layer to be a gate electrode of a transistor and a diffusion layer to be a source and a drain on a semiconductor substrate; and (b) Forming an interlayer insulating film on the structure and then forming a polysilicon layer on the interlayer insulating film; (c) forming contact holes in the polysilicon layer on the diffusion layer and the interlayer insulating film; (D) forming a layer to be a capacitor lower electrode from a portion facing the opened contact hole to an upper surface of the polysilicon layer, and patterning the polysilicon layer and the capacitor lower electrode layer; (E) at least including a step of forming a capacitor dielectric film on the capacitor lower electrode layer and forming a capacitor upper electrode layer thereon. The method of manufacturing a semiconductor device, characterized in that.
【請求項2】 スタックトキャパシタ構造を有する半導
体装置のキャパシタ部の構造として、 半導体基板上に形成されている層間絶縁膜とその上に形
成されているポリシリコン層とに、前記半導体基板に形
成されている拡散層上にコンタクト孔が開口されてお
り、少なくとも該コンタクト孔に面する部分から前記ポ
リシリコン層の上面に至るまで、キャパシタ下部電極と
キャパシタ用誘電体膜が形成されていることを特徴とす
る半導体装置。
2. As a structure of a capacitor portion of a semiconductor device having a stacked capacitor structure, an interlayer insulating film formed on a semiconductor substrate and a polysilicon layer formed on the interlayer insulating film are formed on the semiconductor substrate. A contact hole is formed on the diffusion layer, and the capacitor lower electrode and the capacitor dielectric film are formed at least from the portion facing the contact hole to the upper surface of the polysilicon layer. Characteristic semiconductor device.
JP3259132A 1991-10-07 1991-10-07 Semiconductor device and its manufacturing method Pending JPH05102417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3259132A JPH05102417A (en) 1991-10-07 1991-10-07 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3259132A JPH05102417A (en) 1991-10-07 1991-10-07 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JPH05102417A true JPH05102417A (en) 1993-04-23

Family

ID=17329768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3259132A Pending JPH05102417A (en) 1991-10-07 1991-10-07 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH05102417A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069379A (en) * 1994-12-08 2000-05-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069379A (en) * 1994-12-08 2000-05-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US6214664B1 (en) 1994-12-08 2001-04-10 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
KR930001736B1 (en) Manufacturing method of semiconductor device
JP3887433B2 (en) Method for forming capacitor of semiconductor device
JPH0774317A (en) Manufacture of semiconductor device
JPH08153858A (en) Manufacture of semiconductor device
US5656529A (en) Method for manufacturing highly-integrated capacitor
JPH09283724A (en) Capacitor manufacturing method for stack type dram cell
JPH04317358A (en) Manufacture of semiconductor device
JP2002124649A (en) Semiconductor integrated circuit device and the manufacturing method therefor
KR0141950B1 (en) Manufacturing method of semiconductor device
JPH0629463A (en) Manufacture of semiconductor element
JP2772375B2 (en) Semiconductor storage device
JPH05102417A (en) Semiconductor device and its manufacturing method
JP2917894B2 (en) Method for manufacturing semiconductor device
JP4328396B2 (en) Manufacturing method of memory cell in DRAM
JP3085831B2 (en) Method for manufacturing semiconductor device
JPH02152274A (en) Manufacture of semiconductor memory
JPH0278270A (en) Semiconductor memory device and manufacture thereof
JPH03234051A (en) Manufacture of capacitive element
JP3317736B2 (en) Semiconductor device and manufacturing method thereof
JPS632375A (en) Manufacture of semiconductor memory
JPH05299579A (en) Manufacture of semiconductor device
KR100413755B1 (en) Method for fabricating capacitor of semiconductor device and capacitor fabricated thereby
JP3111961B2 (en) Method for manufacturing semiconductor device
KR100447981B1 (en) Capacitors in Semiconductor Devices and Manufacturing Methods Thereof
JP2556155B2 (en) Method for manufacturing semiconductor device