JPS60206064A - Manufacture of solid-state image pickup device - Google Patents

Manufacture of solid-state image pickup device

Info

Publication number
JPS60206064A
JPS60206064A JP59060760A JP6076084A JPS60206064A JP S60206064 A JPS60206064 A JP S60206064A JP 59060760 A JP59060760 A JP 59060760A JP 6076084 A JP6076084 A JP 6076084A JP S60206064 A JPS60206064 A JP S60206064A
Authority
JP
Japan
Prior art keywords
electrode
film
oxide film
crystal grain
charge storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59060760A
Other languages
Japanese (ja)
Inventor
Masayuki Kakegawa
掛川 正幸
Makoto Shibusawa
誠 渋沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59060760A priority Critical patent/JPS60206064A/en
Publication of JPS60206064A publication Critical patent/JPS60206064A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Abstract

PURPOSE:To prevent image-picture defect, deterioration in photosensitivity, after images, and the like by making the crystal grain coarse by heat treatment of an electrode on which a photoconductive film is to be formed. CONSTITUTION:An n<+> type vertical CCD2 and a charge accumulated diode 3 are formed in a p type Si substrate 1 by adjacency. Next, a poly Si electrode 4 serving as a transfer gate electrode is formed on the CCD2. Then, an oxide film 5 is so formed as to bury the electrode 4. An electrode 6 is formed on the film 5 and the diode 3. Then, an oxide film 7 is formed flatly over the whole surface. A flat electrode 8 is formed on the film 7 and the top of the electrode 6. Sweep is performed in the direction of an arrow mark by irradiating the electrode 8 with laser beams. Thereby, the crystals of the electrode 8 grow and the crystal grain becomes coarse. An amorphous Si film 9 with a thickness necessary for photoelectric conversion is formed, and a transparent conductive film 10 is formed thereon. This manufacture enables the increase in size of the crystal grain of the electrode 8, resulting in the prevention of the systematic defect formation of the film 9 ascribing to the crystal grain boundary of the electrode 8.

Description

【発明の詳細な説明】 光導電体と電荷転送素子あるいは光導電体と固体軽量、
低消費電力の撮像装置ができる利点が6.6、経時変化
の少ない、高信頼性の画像を得ることができる。
[Detailed description of the invention] A photoconductor and a charge transfer element or a photoconductor and a solid lightweight,
Advantage 6.6: It is possible to create an imaging device with low power consumption, and it is possible to obtain highly reliable images with little change over time.

しかしながら、固体撮像装置として8i ウェハ上に形
成され、使用可能々感度波長領域が可視を中心にして限
定される問題点、更には光電変換を行うp−nホトタ゛
イオードの有効感光部と信号転送部の無効感光部があり
、感度の低下やモアレなどの偽信光が出やすいなどの撮
像管には見ら来の固体撮像講走査部に使用し、その上部
に図によシ説明する。
However, since it is formed on an 8i wafer as a solid-state imaging device, there are problems in that the usable sensitivity wavelength range is limited mainly to visible wavelengths, and there are also problems in that the effective photosensitive area and signal transfer area of the p-n photodiode that performs photoelectric conversion are Image pickup tubes have an ineffective photosensitive area and are prone to reduced sensitivity and false light such as moiré, and are used in conventional solid-state imaging scanning units, as shown in the diagram above.

即ち、P形シリコン基板(1)の−・面にはn+形の埋
め込みチャンネルCODからなる垂直C0D(21と、
同じ(n+型の電荷蓄積ダイオード(3)が隣接 して
形成されている。この垂直C0D(2)上には転送用ゲ
ート電極となるポリシリコン電極(4)が第1酸化膜(
5)に埋設されている。また電荷蓄積ダイオード(3)
の部分では熱酸化膜を含む第1の酸化膜(5)にエツチ
ングを行ない電荷蓄積ダイオード(3)が露出するよう
なされた後、例えばアルミニウムの第1電極(6)が所
定の形状に形成されている。次に全体の表面がほぼ平担
になるように第2酸化膜(7)を形成し、更にこの第2
酸化膜(7)忙エツチングを行ない第1電極(6)の一
部を露出させる。次に第2酸化膜(7)及び第1電極(
6)の一部上に第2電極(8)を所定の形状に形成する
。次に、この第2電極(8)上にアルモファスシリコン
などからなる光導電膜(9)をスパッタリングやグロー
放電法で形成する。次にとの光導(8)の部分が一画素
として有効な光電変換を行うことが可能であり、光導電
膜(9)を使用しないものに光導電膜(9)を形成して
も可能であるが、ポリシリコン電極(4)及び第1酸化
膜(5)の厚みによる表面凹凸段差が2乃至4μm程度
あるため光導電膜(9)がこれらの段差により不連続に
なること、更には、光導電膜(9)の膜質変化や異常成
長をきたすことにより、画像欠陥や極端な場合には感度
が得られず、出画不良となり易い。
That is, on the - face of the P-type silicon substrate (1), there are vertical C0D (21 and
Charge storage diodes (3) of the same (n+ type) are formed adjacent to each other. On this vertical C0D (2), a polysilicon electrode (4) which becomes a transfer gate electrode is formed with a first oxide film (
5) is buried. Also charge storage diode (3)
After the first oxide film (5) including the thermal oxide film is etched to expose the charge storage diode (3), a first electrode (6) made of, for example, aluminum is formed in a predetermined shape. ing. Next, a second oxide film (7) is formed so that the entire surface is almost flat, and then this second oxide film (7) is formed so that the entire surface is almost flat.
The oxide film (7) is etched to expose a part of the first electrode (6). Next, the second oxide film (7) and the first electrode (
6), a second electrode (8) is formed in a predetermined shape on a part of the electrode. Next, a photoconductive film (9) made of amorphous silicon or the like is formed on this second electrode (8) by sputtering or a glow discharge method. Next, it is possible to perform effective photoelectric conversion on the light guide (8) as one pixel, and it is also possible to form a photoconductive film (9) on a device that does not use a photoconductive film (9). However, since the surface unevenness level difference due to the thickness of the polysilicon electrode (4) and the first oxide film (5) is about 2 to 4 μm, the photoconductive film (9) becomes discontinuous due to these level differences. Due to changes in the film quality or abnormal growth of the photoconductive film (9), image defects or, in extreme cases, sensitivity may not be obtained, which tends to result in poor image output.

とれを防止するには第1図に示すように第2酸化膜(7
)を用いて段差をなくし、この平担な第2酸化膜(7)
上に蒸着法やスパッタリング法により、第2電極(8)
を形成し、更に、この電極(8)上に光導電膜(9)を
形成する手段がとられている。
To prevent peeling, a second oxide film (7
) to eliminate the step difference and create this flat second oxide film (7).
A second electrode (8) is formed on the top by vapor deposition or sputtering.
, and further, a photoconductive film (9) is formed on this electrode (8).

しかしながら、このような構成においても第2電極(8
)上に形成される光“導電膜(9)には組織的欠陥を生
じ易く画像欠陥や残像、焼付などを招きやすい問題点が
ある。この光導電膜(9)のlf4織的欠陥は光導電膜
(9)が形成される第2@極(6)の組織的欠陥、特に
結晶粒界の存在に起因することが発明者らの実験の結果
、明らかに橙っだ。
However, even in such a configuration, the second electrode (8
) The photoconductive film (9) formed on the photoconductive film (9) has a problem in that it is susceptible to structural defects, leading to image defects, afterimages, and burn-in. As a result of experiments conducted by the inventors, the orange color was clearly caused by structural defects, particularly the presence of crystal grain boundaries, in the second @ pole (6) on which the conductive film (9) is formed.

すなわち、第2電極(8)上の結晶粒界近傍に成長した
光導電膜(9)中には多くの組織的欠陥、例えばアモル
ファスシリコン膜の場合、ダングリングボンド、SL 
−H2+ (5i−Hl)n等の結合が多く存在度劣化
を招くのみならず、残像、焼付などを招き易い問題点を
有している。
That is, there are many structural defects in the photoconductive film (9) grown near the grain boundaries on the second electrode (8), such as dangling bonds and SL in the case of an amorphous silicon film.
There are many bonds such as -H2+ (5i-Hl)n, which not only cause deterioration in abundance but also tend to cause afterimages and burn-in.

〔発明の目的〕[Purpose of the invention]

本発明は前述した問題点、実験結果に基きなさ〔発明の
概要〕 即ち、本発明は半導体基板の一面に形成された電荷蓄積
〆イオードと、この電荷蓄積ダイオードに隣した半導体
基板の一面及びこの−面上の第1絶縁層に埋設された走
査回路と、この走査回路上に頂部を有し、電荷蓄積ダイ
オードとの接続部に底部を有する凹凸面上に形成された
枳1電極と、この第1電極上忙頂部を残して形成された
第2絶縁膜と、この第2絶縁膜上及び頂部の第1電極上
に形成された第2電極と、この第2@極上に形成おいて
、第2電極を熱処理して結晶粒を粗大化する工程を少く
とも有することを特徴としておシ第2m極が平面状であ
ることを実施態様としている◎例を第2図によシ詳細に
説明する。図中第1図と同一部は同一部を示している。
The present invention is not based on the above-mentioned problems and experimental results. [Summary of the Invention] That is, the present invention is based on a charge storage diode formed on one surface of a semiconductor substrate, and a charge storage diode formed on one surface of the semiconductor substrate adjacent to the charge storage diode. - a scanning circuit embedded in the first insulating layer on the surface; a first electrode formed on the uneven surface having a top on the scanning circuit and a bottom on the connection with the charge storage diode; A second insulating film formed leaving a top portion on the first electrode, a second electrode formed on the second insulating film and the first electrode at the top, and a second electrode formed on the second electrode, The second electrode is characterized by having at least a step of heat-treating the second electrode to coarsen the crystal grains, and the second m-pole is planar. An example is explained in detail in FIG. 2. do. In the figure, the same parts as in FIG. 1 indicate the same parts.

即ち先ず第2図(、)のようにP形シリコン基板(1)
にはn+形の埋め込みチャンネルCODからなる垂直c
 CD(21と、同じくn形の電荷蓄積ダイオード(3
)を隣接して形成する。次に、との垂直COD (2)
上には転送用ゲート電極となるポリシリコン電極(4)
を設ける。次にこのポリシリコン電極(4)を埋設する
ように熱酸化膜を含む第1酸化膜(5)を形成する、次
にこの第11化膜(5)を電荷蓄積ダイオード(3)の
部分を露出するように選択エツチングしたのち、第1酸
化膜(5)上及び電荷蓄積ダイオード(3)の露出部分
上に例えばアルミニウムとシリコンの合金の蒸着あるい
はスパッタリングによりh「定の形状の第1電極(6)
を形成する。
That is, first, as shown in Fig. 2 (,), a P-type silicon substrate (1) is
is a vertical c consisting of an n+ type buried channel COD.
CD (21) and the same n-type charge storage diode (3
) are formed adjacent to each other. Then, the vertical COD with (2)
On top is a polysilicon electrode (4) that will serve as the transfer gate electrode.
will be established. Next, a first oxide film (5) including a thermal oxide film is formed so as to bury this polysilicon electrode (4), and then this 11th oxide film (5) is used to cover the portion of the charge storage diode (3). After selectively etching to expose the first oxide film (5) and the exposed portion of the charge storage diode (3), a first electrode (with a constant shape) is formed by vapor deposition or sputtering of an alloy of aluminum and silicon, for example. 6)
form.

次に、第2図(b)のように第1電極(6)及びこの第
1電極(6)を設けて力い部分の表面上に第2酸化膜(
7)を第1電極(6)の凹凸段差の2倍程度の厚さにな
るように形成する。次にスピンナーによりホトレジスト
膜鰺を第2酸化膜(力の凹部には厚く、凸部には薄く形
成し、表面をできる限り平担に形成するO 次に第2図(CりのようにRIE を用い、レジスト膜
Q21および第2酸化膜(力のエツチング速度が同一に
なる条件によりエツチングを行ないレジスト膜a2が完
全に除去された第2に化膜(7)を得る。このエツチン
グは第1電極(6)の頂上部と0.5μm程度の距離を
有する点で終了させる。
Next, as shown in FIG. 2(b), a first electrode (6) is provided and a second oxide film (
7) is formed to have a thickness approximately twice that of the uneven step of the first electrode (6). Next, use a spinner to apply a photoresist film to a second oxide film (thick on the concave parts and thin on the convex parts, and make the surface as flat as possible). The resist film Q21 and the second oxide film are etched under conditions such that the etching rate is the same to obtain a second oxide film (7) in which the resist film a2 is completely removed. It ends at a point having a distance of about 0.5 μm from the top of the electrode (6).

次に、第2図(d)のように第2酸化膜(7)上にMO
を蒸着し、さらに写真蝕刻法を用いて画素に対応したΔ
(0のパターニングを行い、所定部のり、4.o (1
:lのみを残存させる。
Next, as shown in FIG. 2(d), MO is placed on the second oxide film (7).
Δ corresponding to the pixel is deposited using photolithography.
(Perform patterning of 0, glue the specified part, 4.o (1
: Only 1 remains.

次に第2図(、)のようにMo (13)をマスクとし
てRIEにより、第2酸化膜(7)のエツチングを行な
い第1電極(6)の一部を露出させる。
Next, as shown in FIG. 2(,), the second oxide film (7) is etched by RIE using Mo (13) as a mask to expose a part of the first electrode (6).

次に第2図(f)のようにMo Q3をCDEで除去し
たのち、蒸着、スパッタリングあるいはこれらとメッキ
法の併用に第2電極となる第1導電膜(8、)を形成さ
せる。
Next, as shown in FIG. 2(f), after Mo Q3 is removed by CDE, a first conductive film (8), which will become a second electrode, is formed by vapor deposition, sputtering, or a combination of these and plating methods.

次に第2図(g)のように電気化学的あるいは機械的研
摩法。さらにはこれらの併用によシ画素分離のための酸
化膜(111が露出するまで研摩し、平滑な第2電極(
8)を形成させる。この平滑な第2電極(8)はその周
辺を画素分離の為の酸化膜α1)で囲まれ、さらに下部
はその一部が第1電極(6)と接している。
Next, electrochemical or mechanical polishing is performed as shown in Figure 2 (g). Furthermore, by using these in combination, the oxide film (111) for pixel separation is polished until it is exposed, and a smooth second electrode (
8) is formed. This smooth second electrode (8) is surrounded by an oxide film α1) for pixel isolation, and a portion of its lower part is in contact with the first electrode (6).

次に第2図(h)のように第2電極(8)として必要な
形状あるいはスボ′ット形状してレーザ光を照射し矢印
方向忙掃引する。こうすることによりレーザ光と共に移
動する第2電極(8)の固液界面の温度分布が第1電極
(6)の周辺部で高く、中心部で低くなシ第2電極(8
)の結晶成長が行われる。このようにして得られた第2
電極の結晶粒径は、選択性腐食液を用いてエツチングし
顕微鏡観察した結果、結晶粒径は1μm以上であり、従
来の製造方法による結晶粒径(0,1μm程度)に比較
し明確な結晶粒粗大化が認められた。なお上述の製造方
法によシ粗大結晶粒を得るためにはレーザ出力、し゛−
ザ光形状、掃引速罠等に工夫を加えることが必要である
Next, as shown in FIG. 2(h), the shape required for the second electrode (8) or the shape of a slit is irradiated with laser light and swept in the direction of the arrow. By doing this, the temperature distribution at the solid-liquid interface of the second electrode (8), which moves with the laser beam, is high at the periphery of the first electrode (6) and low at the center.
) crystal growth is performed. The second result obtained in this way
The crystal grain size of the electrode was etched using a selective etching solution and observed under a microscope, and the crystal grain size was 1 μm or more, which was clear compared to the crystal grain size (about 0.1 μm) produced by conventional manufacturing methods. Grain coarsening was observed. In addition, in order to obtain coarse crystal grains by the above-mentioned manufacturing method, the laser output,
It is necessary to add some ingenuity to the shape of the light, the sweep speed trap, etc.

次にレーザ朋射による熱歪を除去するためにアニールを
施した後菓2図(i)のように光電変換に必要な3μm
厚キのアモルファスシリコンII (9)をグロ製造方
法によればアモルファスシリコン膜(9)が形成される
第2電極(8)の結晶粒を従来の製造方法と比較して極
めて粗大化することが可能となり、その結果第2電極(
8)の結晶粒界に起因するアモルファスシリコンの組織
的欠陥、即ちダングリングボンドや8iH2及び(8t
H2) n結合等の欠陥形成を極力防止することができ
、各画素ごとの均一性が改善されると共に、良好な光電
変換特性が得られ、残像、焼付等が著るしく改善され、
良質な画像特性を得ることができる。
Next, annealing was performed to remove thermal distortion caused by laser beam radiation.
When the thick amorphous silicon II (9) is produced using the grosmetically-produced method, the crystal grains of the second electrode (8) on which the amorphous silicon film (9) is formed can be made extremely coarse compared to the conventional production method. As a result, the second electrode (
8) Structural defects in amorphous silicon caused by grain boundaries, such as dangling bonds, 8iH2 and (8t
H2) The formation of defects such as n-bonds can be prevented as much as possible, the uniformity of each pixel is improved, good photoelectric conversion characteristics are obtained, and afterimages, burn-in, etc. are significantly improved.
Good image characteristics can be obtained.

上述した実施例においてはアモルファスシリコン膜(9
)を3μm堆積させたが素地電標結晶粒界のアモルファ
スシリコン膜(9)の組織的欠陥形成におよぼす影響は
アモルファスシリコン膜(9)の膜厚が薄い程大きく、
1μm程度の膜厚の場合には、その影響が特に顕著であ
った。
In the embodiment described above, an amorphous silicon film (9
) was deposited to a thickness of 3 μm, but the effect on the formation of structural defects in the amorphous silicon film (9) at the crystal grain boundaries of the substrate becomes larger as the thickness of the amorphous silicon film (9) becomes thinner.
In the case of a film thickness of about 1 μm, the effect was particularly significant.

また上述した実施例においては第2w、極(8)として
アルミニウムを使用したが、これに限定されるものでは
なく、Mo + Ti + Cr等の導電性金属も適用
可能であ)、更にAl−8iのような共晶点の低い合金
を用いることにより容易に粗大結晶粒電極を得ることが
できる。またCVD伊)るいはスパッタ法で形成したア
モルファスシリコン膜を用いることも有用である。
Furthermore, although aluminum was used as the second w and the pole (8) in the above-mentioned embodiments, it is not limited to this, and conductive metals such as Mo + Ti + Cr are also applicable), and furthermore, Al- By using an alloy with a low eutectic point such as 8i, a coarse grain electrode can be easily obtained. It is also useful to use an amorphous silicon film formed by CVD or sputtering.

また上述した実施例においては第2電極(8)の加熱法
としてレーザ光を用いたが、これは電子ビームによって
も同杼な効果が得られるし、また共晶合金のような低融
点金属の場合は基板全体の加熱によっても同様な効果が
荷られる。
In addition, in the above embodiment, laser light was used as a heating method for the second electrode (8), but the same effect can be obtained by using an electron beam, and low melting point metals such as eutectic alloys can also be heated. In this case, heating the entire substrate can have a similar effect.

更に上述し、た実施例においては光導電膜としてアモル
ファスシリコンの例を述べたが、これに限らず、撮像管
用の光電変換材料として用いられているSb283 、
 Se −As −Te 、 CdSeや、CdZnT
eなども使用できることは明らかであり、InSb 、
 InSb。
Furthermore, in the embodiments described above, amorphous silicon was used as the photoconductive film, but the invention is not limited to this, and Sb283, which is used as a photoelectric conversion material for image pickup tubes,
Se-As-Te, CdSe, CdZnT
It is clear that InSb, etc. can also be used.
InSb.

Pb Sn Te 、 Cd Hg Heなどの赤外用
光電相料も使用できる。
Infrared photovoltaic materials such as Pb Sn Te and Cd Hg He can also be used.

なお走査部としてもインターライン転送形CCDの例を
示したが、これに限定されるものではなく、フレーム転
送形COD、MO8形CIDやBBDあるいはこれらの
組合せでもよい。更に絶縁膜も酸化膜の他にSiN、膜
や酸化膜とSiN4.JFAの複合層でも良いことは説
明する迄もない。
Although an example of an interline transfer type CCD has been shown as the scanning unit, it is not limited to this, and a frame transfer type COD, MO8 type CID, BBD, or a combination thereof may be used. In addition to the oxide film, the insulating film also includes SiN, a film, an oxide film, and SiN4. There is no need to explain that a composite layer of JFA is also suitable.

ることかできる。I can do that.

実施例を工程順に示す説すi」用断面図である。FIG. 3 is a cross-sectional view showing an embodiment in the order of steps.

I P形Si基板 2・・垂直CCD 3・・電荷蓄積ダイオード4 ・ボ’JSi市4極5・
・第1酸化膜 6−・・第1電極 7・・第2酸化膜 8・第2電極(第1導電膜) 9・・・光導電膜 10・・・第3電極としての透明導電膜(第2導電膜)
11・・・電極分離酸化膜 12・・・レジスト膜13
・・・Moマスク 代理人 弁理士 井 上 −力 筒、 1 図
IP type Si substrate 2... Vertical CCD 3... Charge storage diode 4 ・ Bo'JSi city 4 pole 5 ・
- First oxide film 6-... First electrode 7... Second oxide film 8 - Second electrode (first conductive film) 9... Photoconductive film 10... Transparent conductive film as third electrode ( second conductive film)
11... Electrode isolation oxide film 12... Resist film 13
... Mo mask agent Patent attorney Inoue-Rikitsutsu, 1 Figure

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板の一面に形成された電荷蓄積ダイオー
ドと、との電荷蓄積ダイオードに隣接した前記半導体基
板の一面及びこの−面上の第1絶縁膜に埋設された走査
回路と、この走査回路上に頂部を有し、前記電荷蓄積ダ
イオードとの接続部忙底部を有する凹凸面上に形成され
た第1電極と、この第1電極上に、前記頂部を残して形
成された第2絶縁膜と、前記第2絶縁膜上及び前記頂部
の前記第1電極上に形成された第2の電極と、この第2
の電極上に形成された光導電膜と、この光導電して結晶
粒を粗大化する工程と、前記第2電極上に前記光導電膜
を形成する工程と、この光導電膜(2) 第2電極が平
面状に形成されてなることを特徴とする特許請求の範囲
第1項記載の固体撮像装置の製造方法。
(1) A charge storage diode formed on one surface of a semiconductor substrate, a scanning circuit embedded in one surface of the semiconductor substrate adjacent to the charge storage diode and a first insulating film on the negative surface of the semiconductor substrate, and this scanning circuit. A first electrode formed on an uneven surface having a top portion thereon and a bottom portion connecting to the charge storage diode, and a second insulating film formed on the first electrode with the top portion remaining. a second electrode formed on the second insulating film and the first electrode on the top;
a photoconductive film formed on the second electrode; a step of photoconducting the photoconductive film to coarsen crystal grains; a step of forming the photoconductive film on the second electrode; 2. The method of manufacturing a solid-state imaging device according to claim 1, wherein the two electrodes are formed in a planar shape.
JP59060760A 1984-03-30 1984-03-30 Manufacture of solid-state image pickup device Pending JPS60206064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59060760A JPS60206064A (en) 1984-03-30 1984-03-30 Manufacture of solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59060760A JPS60206064A (en) 1984-03-30 1984-03-30 Manufacture of solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS60206064A true JPS60206064A (en) 1985-10-17

Family

ID=13151550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59060760A Pending JPS60206064A (en) 1984-03-30 1984-03-30 Manufacture of solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS60206064A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1113499A2 (en) * 1999-12-28 2001-07-04 Xerox Corporation High fill factor image array having a continuous amorphous silicon sensor layer and a doped poly-silicon back contact

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1113499A2 (en) * 1999-12-28 2001-07-04 Xerox Corporation High fill factor image array having a continuous amorphous silicon sensor layer and a doped poly-silicon back contact
EP1113499A3 (en) * 1999-12-28 2003-04-16 Xerox Corporation High fill factor image array having a continuous amorphous silicon sensor layer and a doped poly-silicon back contact

Similar Documents

Publication Publication Date Title
JP2838318B2 (en) Photosensitive device and manufacturing method thereof
US8299510B2 (en) Solid state imaging device and fabrication method for the same
US20030160172A1 (en) Multispectral monolithic infrared focal plane array detectors
JPS6366117B2 (en)
JPS5935489A (en) Manufacture of photo semiconductor device
JP2006186118A (en) Solid-state imaging element, manufacturing method thereof, and imaging device
JPS60206064A (en) Manufacture of solid-state image pickup device
EP0023079B1 (en) Method of producing a solid state photoelectric device
JPH01295457A (en) Laminated type solid-state image sensing device and manufacture thereof
JPS5861663A (en) Manufacture of solid-state image pickup device
JPS59119980A (en) Solid state image pickup device
JPH09261671A (en) Laminated solid-state image pickup device and color camera using the device
KR900001981B1 (en) Manufacturing method of semiconductor film
JPH0669483A (en) Picture element of solid-state image pickup and its operation and production
Tsukada et al. Solid-state color imager using an a-Si: H photoconductive film
JPS62193277A (en) Solid-state image pickup device
JPS59107583A (en) Manufacture of semiconductor photodetector
JPH08204164A (en) Multilayered solid-state image sensing device and its manufacture
JPS58192367A (en) Solid-state image pickup device
JPS6051376A (en) Solid-state image pickup device
JPH06260626A (en) Image scanner
JPS6030280A (en) Solid-state image pickup device
JPH0864796A (en) Manufacture of solid-state image sensing device
JPS6262068B2 (en)
JPS59151575A (en) Solid-state image pickup element