JPS6020584A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6020584A
JPS6020584A JP12766983A JP12766983A JPS6020584A JP S6020584 A JPS6020584 A JP S6020584A JP 12766983 A JP12766983 A JP 12766983A JP 12766983 A JP12766983 A JP 12766983A JP S6020584 A JPS6020584 A JP S6020584A
Authority
JP
Japan
Prior art keywords
gate
pattern
gaas
ion implantation
gate pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12766983A
Other languages
Japanese (ja)
Inventor
Masaru Miyazaki
勝 宮崎
Nobuo Kodera
小寺 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12766983A priority Critical patent/JPS6020584A/en
Publication of JPS6020584A publication Critical patent/JPS6020584A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To form the ohmic electrodes of an N<+> GaAs region and a source and drain by self alignment for a gate by a method wherein a gate pattern is processed under the condition that it will becomes anisotropic to control the measurement of a gate length accurately, after which a coating material for the gate is thicken into T-shape of cross section. CONSTITUTION:An N type active layer 2 is formed in a semi-insulating GaAs 1 by ion implantation and annealing treatment, followed by vapor deposition or spattering to coat it with W 3 and Si 4. Then a gate pattern 5 is formed by dry etching with plasma consisting of CF4. After that, ion implantation of Si ions is performed by using a gate pattern 7 as a mask, and after removing the resist 7, annealing is done in AsH3 gas atmosphere to form a high-concentration GaAs layer 6. Then, the Si 4 pattern is oxidized to be made into SiO2 8 by oxygen plasma discharge. After that, a photoresist pattern 9 is formed and the ohmic metal 10 and 11 consisting of AuGe is vapor-deposited. At this time, the ohmic electrodes 10 and 11 and a gate electrode 3 are separated by the SiO2 8 pattern.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置および集積回路等の製法に係り、特
にセルフアラインメントに好適な上記の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for manufacturing semiconductor devices, integrated circuits, etc., and particularly to the above-mentioned manufacturing method suitable for self-alignment.

〔発明の背景〕[Background of the invention]

高速・高周波用の電界効果トランジスタ(FET)では
性能向上のため、ゲート長を短かくし、ゲートに近接す
るソース・ドレイン領域を設ける必要がある。この改善
策の1つとして、ゲートにソース・ドレインをセルフ・
アラインメント方式で形成する技術が使われている。
In order to improve the performance of field effect transistors (FETs) for high speed and high frequency applications, it is necessary to shorten the gate length and provide source/drain regions close to the gate. One of the ways to improve this is to connect the source and drain to the gate using a self-contained structure.
A technology that uses an alignment method is used.

従来のセルフ・アラインメント方式は耐熱性の優れたゲ
ート金属(例えばWやW8jxなど)をG a A s
基板結晶上に形成したあと、上記ゲート金属なマスクに
して8iイオンを打込んでアニールし、高濃度(nl)
領域をゲート近傍に形成するものであった。その後、ソ
ース・ドレインのオーミック電極を通常のマスク合せに
ょシ上記n゛領域上に形成していたが、” QaA8の
比抵抗は10゛3Ω(7)とやや高く、ソース・ドレイ
ンのオーミック電極とゲート電学間の短離をさらに短か
くすることが望まれていた。
In the conventional self-alignment method, a gate metal with excellent heat resistance (such as W or W8jx) is used as a gate metal.
After forming on the substrate crystal, 8i ions are implanted and annealed using the gate metal mask as described above to form a high concentration (nl)
The area was formed near the gate. After that, ohmic electrodes for the source and drain were formed on the above n' region using normal mask alignment. It has been desired to further shorten the distance between gate electronics.

〔発明の目的〕[Purpose of the invention]

本発明の目的はゲートに対して” GaAs領域をセル
フ・アラインメントで形成し、さらにゲートに対してソ
ース・ドレインのオーミック電極をセルフ・、アライン
メントで形成する半導体装置の製法を提供することにあ
る。
An object of the present invention is to provide a method for manufacturing a semiconductor device in which a GaAs region is formed in a self-aligned manner with respect to a gate, and ohmic electrodes for source and drain are formed in a self-aligned manner with respect to the gate.

〔発明の概要〕[Summary of the invention]

本発明によるゲートパターンの構造は、少なくとも高耐
熱性金属とSiなどの2層以上に積層されたものから成
シ、上記金属層はG a A sとショットキ接合を形
成し800層以上のアニールに耐え、Biなどの層は酸
素プラズマ放電によって8102層に加工することによ
ってパターン寸法を増加させ、T形断面形状のゲートパ
ターンに変形させたあとソース・ドレイン電極をセルフ
・アインメントで形成することを特徴としている・ 〔発明の実施例〕 以下、本発明の一実施例を第1図によシ説明する。第1
図はGaAs−FETの製造工程を示したものである。
The structure of the gate pattern according to the present invention is made of at least two or more laminated layers such as a high heat-resistant metal and Si, and the metal layer forms a Schottky junction with GaAs and is annealed for more than 800 layers. The pattern size is increased by processing the Bi and other layers into 8102 layers using oxygen plasma discharge, and after transforming the gate pattern into a T-shaped cross-sectional shape, the source and drain electrodes are formed by self-alignment. Features・ [Embodiment of the Invention] An embodiment of the present invention will be described below with reference to FIG. 1. 1st
The figure shows the manufacturing process of GaAs-FET.

半絶縁性GaAs1にn形能動層2をイオン打込み/ア
ニール工程で形成し、蒸着又はスパッタによりW3(0
,3μmn厚さ)と5i4(0,3μm厚さ)を被着し
、ホトリソグラフィ工程によシゲートパターン5をCF
4からなるプラズマのドライエッチで形成する。その後
、ゲートパターン7をマスクにしてSiイオンを〜20
0KeV、〜5X10” 7cm”の条件で打込んで、
レジスト7を除去後、ASH3ガス雰囲気のもとで5o
ot:のアニールをして高濃度(n”)GaAs層6を
形成する(同図(a))。その後、酸素プラズマ放電に
よりSi4パターンを酸化させて、5i028とする。
An n-type active layer 2 is formed on semi-insulating GaAs 1 by ion implantation/annealing process, and W3 (0
, 3 μm thick) and 5i4 (0.3 μm thick), and the siginate pattern 5 was formed using a photolithography process.
4 by plasma dry etching. After that, using the gate pattern 7 as a mask, ~20% of Si ions are applied.
Input under the conditions of 0KeV, ~5X10"7cm",
After removing the resist 7, it was heated at 5o under an ASH3 gas atmosphere.
ot: is annealed to form a high concentration (n'') GaAs layer 6 (FIG. 4(a)). Thereafter, the Si4 pattern is oxidized to 5i028 by oxygen plasma discharge.

この操作によってゲートパターン50B4部分は処理時
間に比例して体積を増大させ、W3パターン長よ如りだ
け寸法が長くなる。このDをここでは0.2μm程度と
した(同図(b))。その後、ホトレジパターン9を形
成し、AuGeを主体としたオーミック金属to、ii
を約0゜2μmの厚さに蒸着する。この蒸着操作は蒸着
源と半導体結晶を十分離して指向性で被着するようにし
ている。このとき5i028パターンによってオーミン
ク電極10゜11とゲート電極3が分離される。(同図
(C))。
By this operation, the volume of the gate pattern 50B4 portion increases in proportion to the processing time, and the dimension becomes longer by the length of the W3 pattern. Here, this D was set to about 0.2 μm (FIG. 6(b)). After that, a photoresist pattern 9 is formed, and an ohmic metal mainly composed of AuGe is formed.
is deposited to a thickness of approximately 0.2 μm. In this evaporation operation, the evaporation source and the semiconductor crystal are separated sufficiently to achieve directional deposition. At this time, the ohmink electrode 10°11 and the gate electrode 3 are separated by the 5i028 pattern. (Figure (C)).

その後、レジスト9を溶解し、レジスト上の不要のAu
Ge系金属12を除去(リフトオフ)する。
After that, resist 9 is dissolved and unnecessary Au on the resist is dissolved.
The Ge-based metal 12 is removed (lifted off).

その後、この表面に層間絶縁膜を被着して、ソー ス・
ドレイン電極、及びゲート電極上にコンタクトホールを
形成しIi’ E Tとその集積回路を形成する。
After that, an interlayer insulating film is deposited on this surface, and the source
Contact holes are formed on the drain electrode and gate electrode to form Ii' ET and its integrated circuit.

第2図は他の実施例を説明するためでGaAsFETの
製造工程を示す図である。第1図の(a)と同様にゲー
トパターン25はwsiza(o、aμm厚さ)とs 
i24 (0,3μm厚さ)の積層で形成、加工し、こ
のパターンをマスクに高濃度Siイオンを打込んで、つ
づいてキャップ材5jN20その後、キャンプ材5iN
20を異方性ドライエツチング(CF’、系几IE装置
)で除去してゲ第1図と第2図で述べたように本発明は
ゲートパターンを異方性となる条件で加工し、ゲート長
の寸法を正確に制御したのち、ゲート被覆材を太らせて
T形断面形状とすることを特徴としている。
FIG. 2 is a diagram showing the manufacturing process of a GaAsFET for explaining another embodiment. As in FIG. 1(a), the gate pattern 25 has wsiza (o, aμm thickness) and s
i24 (0.3 μm thick) is formed and processed, using this pattern as a mask, high concentration Si ions are implanted, followed by cap material 5jN20, and then camping material 5iN.
As described in FIGS. 1 and 2, the present invention processes the gate pattern under conditions that make it anisotropic. It is characterized by accurately controlling the length dimension and then thickening the gate covering material to form a T-shaped cross-section.

T形断面形状を得るには異方性の条件でゲートパターン
を加工したあと、等方性となる条件でゲート金属をオー
バエツチング(サイドのみを削る)することも出来るが
、経験的にサイドエツチングの制御は悪く、ウェハ面内
分布とロット間ばらつきが大きいことが欠点であったの
で本発明ではこれを解決した。
To obtain a T-shaped cross-sectional shape, it is possible to process the gate pattern under anisotropic conditions and then over-etch the gate metal (shaving off only the sides) under isotropic conditions, but from experience we found that side etching The drawbacks were poor control of the wafer and large in-wafer distribution and lot-to-lot variations, which were solved by the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ゲート電極に対してn9高濃度層およ
びソース・ドレイン電極がセルフ・アラインメントされ
るので、直列抵抗が大幅に低減されFETの特性改善の
効果がある。ゲート長はゲートパターンの加工精度で決
められるので、寸法ばらつきはサイドエツチングする方
法よシ小さい。
According to the present invention, since the n9 high concentration layer and the source/drain electrodes are self-aligned with respect to the gate electrode, the series resistance is significantly reduced and the characteristics of the FET are improved. Since the gate length is determined by the processing accuracy of the gate pattern, dimensional variations are smaller than with the side etching method.

T形断面形状は上述したようにソース・ドレイン電極を
セルフアラインメントで形成するためにショート金防ぐ
目的で必要である。03層のイオン打込みにはこのひさ
しが無いほうが集子の性能向上に優れ、イオン打込み後
にこのひさしをflilJ XIして加工する方法を本
発明の特徴としている。このためひさしとなる拐質には
実施例で述べたSiの他AtNbなどもよく限定するも
のでない。また酸化または窒化゛の方法は、実施例で述
べたプラズマ中の陽極酸化の他に、例えばAtを水やア
ルカリ溶液中でAt203にする方法もあることを附言
する。
The T-shaped cross-sectional shape is necessary for the purpose of preventing short circuits in order to form the source/drain electrodes in self-alignment as described above. In the ion implantation of the 03 layer, the performance of the collector is better when the eaves are not provided, and the present invention is characterized by a method in which the eaves are processed by flilJ XI after ion implantation. For this reason, the material for forming the eaves is not limited to AtNb or the like other than Si as described in the embodiment. It should be added that the oxidation or nitridation method includes, for example, a method of converting At into At203 in water or an alkaline solution, in addition to the anodic oxidation in plasma described in the embodiment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は本発明のそれぞれ1実施例の工程別の
断面図である。 1・・・半導体基板結晶、3.23・・・高耐熱性金属
(ゲート電極)、4,24・・・ゲート被覆材、8゜2
8・・・酸化したゲート材、10,100・・・ソース
%1 図
FIGS. 1 and 2 are cross-sectional views of each process of an embodiment of the present invention. 1...Semiconductor substrate crystal, 3.23...High heat-resistant metal (gate electrode), 4,24...Gate covering material, 8゜2
8... Oxidized gate material, 10,100... Source%1 Figure

Claims (1)

【特許請求の範囲】[Claims] 1、少なくともゲート金属とゲート被覆材の二層構造か
ら成るゲートパターンを用い、高ドーズのイオン打込み
をゲートパターンを覆い囲むが如くおこない、アニール
を行う工程と、上記ゲート被覆材を酸化もしくは窒化処
理によって体積を増化せしめる工程と、上記変形させた
ゲートパターンによってゲート金属にソース・ドレイン
電極をセルフ・アラインメントする工程とから成ること
を特徴とする半導体装置の製法。
1. Using a gate pattern consisting of at least a two-layer structure of gate metal and gate coating material, performing high-dose ion implantation so as to cover and surround the gate pattern, and annealing the gate coating material, and oxidizing or nitriding the gate coating material. A method for manufacturing a semiconductor device comprising the steps of: increasing the volume by using the deformed gate pattern; and self-aligning source and drain electrodes to the gate metal using the deformed gate pattern.
JP12766983A 1983-07-15 1983-07-15 Manufacture of semiconductor device Pending JPS6020584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12766983A JPS6020584A (en) 1983-07-15 1983-07-15 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12766983A JPS6020584A (en) 1983-07-15 1983-07-15 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6020584A true JPS6020584A (en) 1985-02-01

Family

ID=14965787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12766983A Pending JPS6020584A (en) 1983-07-15 1983-07-15 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6020584A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4770143A (en) * 1986-02-14 1988-09-13 Nissan Motor Company, Limited System and method for controlling ignition timing for an internal combustion engine
JPS6424163A (en) * 1987-07-20 1989-01-26 Mitsubishi Motors Corp Knock control device
JPH021139A (en) * 1988-01-08 1990-01-05 Toshiba Corp Compound semiconductor device and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4770143A (en) * 1986-02-14 1988-09-13 Nissan Motor Company, Limited System and method for controlling ignition timing for an internal combustion engine
JPS6424163A (en) * 1987-07-20 1989-01-26 Mitsubishi Motors Corp Knock control device
JPH021139A (en) * 1988-01-08 1990-01-05 Toshiba Corp Compound semiconductor device and its manufacture

Similar Documents

Publication Publication Date Title
JPS6310589B2 (en)
JPH0260217B2 (en)
US4997779A (en) Method of making asymmetrical gate field effect transistor
US4520553A (en) Process for manufacturing an integrated insulated-gate field-effect transistor
US5585289A (en) Method of producing metal semiconductor field effect transistor
JPS6020584A (en) Manufacture of semiconductor device
US4216573A (en) Three mask process for making field effect transistors
JPS6292481A (en) Manufacture of semiconductor device
JPS6261345A (en) Manufacture of semiconductor device
JPS6155967A (en) Manufacture of field-effect transistor
JPH02302034A (en) Manufacture of semiconductor device
JPS6169176A (en) Manufacture of semiconductor device
JPH0513458A (en) Manufacture of semiconductor device
JPS59195874A (en) Manufacture of field-effect transistor
JPS59114826A (en) Manufacture of semiconductor device
JPH01107577A (en) Manufacture of field effect transistor
JPS6190470A (en) Manufacture of compound semiconductor device
JPS6112084A (en) Manufacture of semiconductor device
JPH0439772B2 (en)
JPS6336149B2 (en)
JPS635572A (en) Manufacture of junction type fieldeffect transistor
JPH0233939A (en) Manufacture of field-effect transistor
JPS62132369A (en) Schottky gate field effect transistor
JPS63197380A (en) Manufacture of junction field effect transistor
JPS5898979A (en) Manufacture of fet