JPS60205363A - Method for determining quantitatively carbon dioxide contained in combustible gas - Google Patents

Method for determining quantitatively carbon dioxide contained in combustible gas

Info

Publication number
JPS60205363A
JPS60205363A JP59064376A JP6437684A JPS60205363A JP S60205363 A JPS60205363 A JP S60205363A JP 59064376 A JP59064376 A JP 59064376A JP 6437684 A JP6437684 A JP 6437684A JP S60205363 A JPS60205363 A JP S60205363A
Authority
JP
Japan
Prior art keywords
gas
carbon dioxide
content
combustible gas
combustible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59064376A
Other languages
Japanese (ja)
Inventor
Chiyota Inaba
稲葉 千代太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59064376A priority Critical patent/JPS60205363A/en
Publication of JPS60205363A publication Critical patent/JPS60205363A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/004CO or CO2
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0031General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array
    • G01N33/0032General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array using two or more different physical functioning modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To measure quickly the content of the carbon dioxide mixed with a combustible gas by using an interferometer gas detector and combustible gas detector. CONSTITUTION:A gaseous mixture composed of a combustible gas and carbon dioxide is introduced through gas introducing ports 23, 27 into respective gas detectors. The gas from the port 23 is converted to quantity of electricity by an interferometer gas detector 24 and is displayed or recorded by a signal regulator 25 and an output transducer 26. The value is of the gaseous mixture composed of the combustible gas and carbon dioxide but the display is corrected by the content of methane. On the other hand, the gas from the port 27 is converted to quantity of electricity by a combustible gas detector 28 and the amt. of the combustible gas is displayed or recorded by a signal regulator 29 and an output transducer 30. The electric signals corresponding to the contents of the gases from the regulators 25, 29 are taken into an operator 33 which operates 33 the content of the gas from the regulator 29 from the content of the gas from the regulator 25. If a coefft. is operated 34 with the value, the content of carbon dioxide is displayed and recorded on an output transducer 35 and is outputted 36 to the outside.

Description

【発明の詳細な説明】 本発明は可燃性ガス中に、可燃性ガスと二酸化炭素の混
合ガスに能動する干渉計形ガス81度計と可燃性ガスと
二酸化炭素の混合ガスのうち、可燃性ガスのみに能動す
る可燃性ガス+!1度81を配設し、両濃度計の含有m
を減法演算し、この値に干渉計形ガス濃度削が校正され
た目盛以外の成分ガスを測定する際に用いる補正係数を
乗法演算し、可燃性ガス中に含有される二酸化炭素の含
有量を定mする方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses an interferometer-type gas 81 degree meter that operates on a mixed gas of flammable gas and carbon dioxide, and Flammable gas + active only for gas! 81 is installed once, and the content m of both concentration meters is
This value is multiplied by the correction coefficient used when measuring component gases other than those on which the interferometer type gas concentration scale is calibrated, and the content of carbon dioxide contained in the combustible gas is calculated. This relates to a method for determining m.

溶鉱炉や内燃i関等では、その燃焼反応の状態を観察す
るのに二酸化炭素の含有mを測定する方法がとられる。
In blast furnaces, internal combustion engines, etc., a method of measuring the carbon dioxide content m is used to observe the state of the combustion reaction.

また、炭鉱坑内にあっては、石炭の自然発火及び坑内火
災等で燃焼反応の拡大あるいは縮小または停止の状況を
把握するために、可燃性ガス、なかでもメタン、−酸化
炭素等の炭化水素系ガスが有力な指標となっているが、
これらのガスは石炭の破砕時にも発生ずるので、自然発
火及び坑内火災を特定するには、別に採炭作業の有無の
確認が必要となる。このようなとき燃焼時に発生する二
酸化炭素の含有量を指標ガスの系列に加えることができ
れば、より精度の向上が期待できる。
In addition, in coal mines, combustible gases, especially hydrocarbons such as methane and carbon oxide Gas is a powerful indicator, but
These gases are also generated when coal is crushed, so in order to identify spontaneous combustion and underground fires, it is necessary to separately confirm whether coal mining operations are occurring. In such cases, if the content of carbon dioxide generated during combustion can be added to the series of index gases, further improvement in accuracy can be expected.

しかし、現状においては二酸化炭素の含有量の測定には
、気体の熱伝導率、赤外線吸収率、屈折率の差を利用す
るもの、ガスクロントゲラフ、検短管等がある。これら
の中で坑内用の自動III測できる削測器は限定される
。混合ガス中に二酸化炭素が含有されている場合、熱伝
導率または屈折率の差を利用するものでは、吸収剤を用
いて、吸収剤使用前後の測定v1から含有量を1算1ノ
る方法がとられているが、吸収剤を用いる場合には、交
換する煩雑さのほかに吸収剤のスj命の問題があって、
自動計測、なかでも連続監視するような場所での測定に
は不向きである。特に炭鉱坑内にあっては可燃性ガス中
で使用されるので、爆発防1トに対しているいろなa、
II限があり、このため、m造、形状、電力さらに構造
によ−)では設置制限を受けるのが実状である。
However, currently, there are methods for measuring the carbon dioxide content, such as those that utilize differences in thermal conductivity, infrared absorption, and refractive index of gases, gas chronographs, probe tubes, and the like. Among these, drilling tools capable of performing automatic III-level measurements for underground use are limited. When carbon dioxide is contained in the mixed gas, a method that uses the difference in thermal conductivity or refractive index uses an absorbent and calculates the content from v1 measured before and after using the absorbent. However, when using an absorbent, in addition to the hassle of replacing it, there is a problem with the life of the absorbent.
It is not suitable for automatic measurement, especially for measurements in places where continuous monitoring is required. Particularly in coal mines, where it is used in flammable gas, various types of a,
Therefore, the actual situation is that installation is limited depending on construction, shape, power, and structure.

本発明は以上の事情に鑑みてなされたもので、その目的
とするところは炭鉱坑内でのガス計測の円滑化をはかる
ことであるが、異なる2形式のガス検出器により各別に
同−試料中に含有する2成分ガスを同時測定し、各々の
測定値から二酸化炭素含有量を得る測定法を提供せんと
するものであり、可燃性ガス、特にメタンを主成分とす
る炭鉱坑内に湧出、流動する坑内ガス中に含まれる二酸
化炭素を検出することを主目的とする。また他の目的は
坑内火災発生時にお1ノる燃焼生成分中のガス成分中か
ら火災を特定しようとする小型ガス応答装置を提供する
にある。
The present invention was made in view of the above circumstances, and its purpose is to facilitate gas measurement inside a coal mine. The aim is to provide a measurement method that simultaneously measures two component gases contained in coal mines and obtains the carbon dioxide content from each measurement value. The main purpose is to detect carbon dioxide contained in underground gas. Another object of the present invention is to provide a small gas response device that is capable of identifying a fire from among the gas components contained in combustion products when a fire occurs in a mine.

即ら、本発明は可燃性ガスと二酸化炭素の混合ガスの総
偵を干渉1形ガス検出器ぐ検出し、可燃性ガスと二酸化
炭素の混合ガス中の可燃性ガスのみを検出する可燃性ガ
ス検出器で検出し、干渉計形ガス検出器によるガス含有
量から可燃性ガス検出器によるガス含有量を減法llJ
算し、この値に干渉計形ガス検出器が採用する測定対象
ガスによる係数を乗法演粋1Jることにより二酸化炭素
の含有量を得るというガス検出方法に係るものである。
That is, the present invention detects all of the mixed gas of flammable gas and carbon dioxide using an interference type 1 gas detector, and detects only the combustible gas in the mixed gas of flammable gas and carbon dioxide. Detected by a detector and subtracted the gas content measured by the combustible gas detector from the gas content measured by the interferometer type gas detectorllJ
This relates to a gas detection method in which the content of carbon dioxide is obtained by multiplying this value by a coefficient determined by the gas to be measured adopted by the interferometer type gas detector.

本発明は測定原理の異なる2形式のガス検出器を利用す
るもので、第1図の干渉計形ガス濃度計について説明す
る。
The present invention utilizes two types of gas detectors with different measurement principles, and the interferometer type gas concentration meter shown in FIG. 1 will be explained.

干渉il形ガス濃度計は異なる211類の屈折率の差か
らガス含有量を測定するものであるが、いま2種類以■
−のガス及び蒸気が混合したものの屈折率を考えてみる
。ガス△及びBの屈折率をそれぞれna 、 nb 、
 混合ガスの屈折率を72/nどし、混合の割合は△、
Bが百分比で4及び100− (2,4: ’?l−る
と、次の関係が成り立つ。
Interferometric IL-type gas concentration meters measure gas content from the difference in refractive index of different Class 211 types.
- Consider the refractive index of a mixture of gas and vapor. Let the refractive indices of gases △ and B be na , nb ,
The refractive index of the mixed gas is 72/n, and the mixing ratio is △,
When B is 4 and 100-(2,4:'?l-) in percentage, the following relationship holds true.

例えば、空気中にあるガスがX%混入していたとする。For example, assume that X% of gas is mixed in the air.

空気及び混入ガスの屈折率をそれぞれna、n〃とする
と、この混合ガスの屈折率71mは、71aX72g 
が既知であり、77mが測定し得たとすれば、(2)式
からXをめることができる。
If the refractive indexes of air and mixed gas are na and n, respectively, then the refractive index of this mixed gas, 71m, is 71aX72g.
is known and 77 m can be measured, then X can be calculated from equation (2).

干渉t1形ガスfIIi度計はガス、蒸気の屈折率の差
から含有量を知るものであるから、空気とメタンの屈折
率の関係で校正されたもので、空気と二酸5− 化炭素の測定もできる。ただし、この場合、ガス濃度目
盛はあくまで空気→メタンの関係のものであるから補正
しな【プればならない。即ち、空気の屈折率/’2(2
、メタンの屈折率ηm、二酸化炭素の屈折率nIとする
とガス濃度81の指示値Xとの関係は、 であられされ、mを指示率と呼ぶ。
The interference t1 type gas fIIi meter determines the content from the difference in the refractive index of gas and steam, so it is calibrated based on the relationship between the refractive index of air and methane, and the difference between air and carbon dioxide 5-carbon. It can also be measured. However, in this case, the gas concentration scale is based on the relationship between air and methane, so it must be corrected. That is, the refractive index of air/'2(2
, the refractive index ηm of methane, and the refractive index nI of carbon dioxide, the relationship between the gas concentration 81 and the indicated value X is as follows, where m is called the indicated index.

真のガス濃度はガス濃度計の指示値Xに1/iを乗じた
ものである。空気→メタンの関係で校正されたガス濃度
計で空気→二酸化炭素を測定した場合は、指示率+11
 = 1.0!iとなり、1/ 1.05を乗じること
になる。
The true gas concentration is the indicated value X of the gas concentration meter multiplied by 1/i. When measuring air → carbon dioxide with a gas concentration meter calibrated according to the relationship between air → methane, the reading rate +11
= 1.0! It becomes i and is multiplied by 1/1.05.

次に第2図の可燃性ガス濃度計、この場合、燃焼法の接
触燃焼式のガス濃度計について説明する。
Next, the combustible gas concentration meter shown in FIG. 2, in this case a catalytic combustion type gas concentration meter using the combustion method, will be explained.

燃焼法によるガス検出器において、ガス熱線条のガス燃
焼によって生じる電気抵抗の変化は、ガスの燃焼によっ
て生じる温度に比例するので、△q =a−△r=t−
tsx7c =z−a ・m −Q/C(96− で与えられる。
In a gas detector using the combustion method, the change in electrical resistance caused by the combustion of the gas in the gas heating wire is proportional to the temperature caused by the combustion of the gas, so △q = a - △r = t -
tsx7c = z-a ・m -Q/C (given by 96-).

ここに ΔR:熱線条のガスの燃焼による電気抵抗の変
化 α:熱線条の゛1h気抵抗の温度変化 △T:ガスの燃焼にょる温皮上胃 Δ11:ガスの燃焼によって生じる発熱…C:C線熱の
熱容帛 11:ガスの製電 Q:ガスの分子燃焼熱 むブリッヂ回路を構成しておLJば、ガス濃度の変化は
、ブリッヂ回路の偏位電流の変化として測定することが
できる。ただし、この場合ガスの種類及びイの濃度とブ
リッヂの偏位電流との関係をあらかじめ測定しておく必
要がある。
Here, ΔR: Change in electrical resistance due to combustion of gas in hot streak α: Temperature change in 1h air resistance of hot streak △T: Warm epigastric stomach due to combustion of gas Δ11: Heat generated by combustion of gas...C: Heat Capacity of C-Line Heat 11: Electricity Production of Gas Q: If a bridge circuit is constructed in which molecules of gas burn and heat, changes in gas concentration can be measured as changes in the deflection current of the bridge circuit. can. However, in this case, it is necessary to measure the relationship between the type of gas, the concentration of gas, and the deflection current of the bridge in advance.

本発明実施の態様を第3図について詳述伏れば、23は
干渉1形ガス検出器に試料ガスを導入するガス導入口、
24は干渉計1形ガス検出器、25は干渉11形ガス検
出器で検出したガスを電気層に変換し、増幅あるいはリ
ニヤライズする信号調整器、26は混合ガス含右鑞を表
示・記録する出カドランスジュー4Jでメタンの含有量
を表示するよう校正されている。27は可燃性ガス検出
器に試料ガスを導入するガス導入口、28は可燃性ガス
検出器、29は可燃性ガス検出器で検出したガスを電気
量に変換し、増幅あるいはリニヤライズする信号調整器
、30は可燃性ガス含有量を表示・記録づる出カドラン
スジューサ、メタン含イjmを表示するよう校正されて
いる。31は干渉計1形ガス検出器で検出した混合ガス
含有催外部出力端子、32は可燃性ガス検出器で検出し
た可燃性ガス含有量外部出力端子、33は干渉計形ガス
検出器で検出した混合ガス含有m hsら可燃性ガス検
出器で検出した可燃性ガスを減法する演算器、34は3
3で得られた鎖に係数を乗法1Jる演算器、35は二酸
化炭素含有」を表示・記録する出力トランスジコーけ、
3Gは二酸化炭素含右隋外部出力端子、37は入力電源
、38は補助電源である。
The embodiment of the present invention will be described in detail with reference to FIG. 3. Reference numeral 23 denotes a gas inlet port for introducing sample gas into the interference type 1 gas detector;
24 is an interferometer type 1 gas detector, 25 is a signal conditioner that converts the gas detected by the interference type 11 gas detector into an electric layer and amplifies or linearizes it, and 26 is an output that displays and records the mixed gas content. It has been calibrated to display the methane content using the Quadran Ju 4J. 27 is a gas inlet for introducing sample gas into the combustible gas detector, 28 is a combustible gas detector, and 29 is a signal conditioner that converts the gas detected by the combustible gas detector into an electrical quantity and amplifies or linearizes it. , 30 is an output juicer that displays and records the combustible gas content, and is calibrated to display methane content. 31 is an external output terminal for mixed gas containing gas detected by an interferometer type 1 gas detector, 32 is an external output terminal for combustible gas content detected by a combustible gas detector, and 33 is an external output terminal for mixed gas content detected by an interferometer type gas detector. A computing unit that subtracts the combustible gas detected by the combustible gas detector including mixed gas mhs, 34 is 3
A calculator that multiplies the chain obtained in step 3 by a coefficient, 35 is an output transformer that displays and records "contains carbon dioxide."
3G is a carbon dioxide-containing external output terminal, 37 is an input power source, and 38 is an auxiliary power source.

即ち、可燃性ガスと二酸化炭素の混合ガスはガス導入口
23.27からそれぞれのガス検出器に導入される。導
入口23からのガスはガス検出器24によって電気量に
変換され、信号調整器25、出力トランスジコーサ26
によって表示あるいは記録される。
That is, a mixed gas of combustible gas and carbon dioxide is introduced into each gas detector from the gas inlet 23.27. The gas from the inlet 23 is converted into an electrical quantity by the gas detector 24, and then sent to the signal conditioner 25 and the output transformer 26.
displayed or recorded by

この値は可燃性ガスと二酸化炭素の混合ガスであるが、
表示はメタン含有間で校正されている。いっぽう、ガス
導入口27からのガスはガス検出器28によって電気m
に変換され、信号調整器29、出カドランスジューサ3
0によって可燃性ガス愚か表示あるいは記録される。こ
のとぎ信号調整器25.29からガス含有量に応じた電
気信号が演算器33に取り込まれ、信号調整器25から
のガス含有量から信号調整器29からのガス含有量を演
算器33で減法する。この値に(5)式で得られた係数
1/ 1.059− を演算器34に乗法演算すれば、出カドランスジ:J−
サ35に二酸化炭素含有量が表示・配録され、外部出力
端子36から外部出力される。
This value is a mixture of flammable gas and carbon dioxide,
Display is calibrated for methane content. On the other hand, the gas from the gas inlet 27 is converted to electricity by the gas detector 28.
signal conditioner 29, output reducer 3
Flammable gas is indicated or recorded by 0. An electric signal corresponding to the gas content is taken in from the signal regulator 25, 29 to the computing unit 33, and the computing unit 33 subtracts the gas content from the signal regulator 29 from the gas content from the signal regulator 25. do. If this value is multiplied by the coefficient 1/1.059- obtained from equation (5) in the arithmetic unit 34, the output voltage is J-
The carbon dioxide content is displayed and recorded on the sensor 35 and outputted from the external output terminal 36.

本発明は、可燃性ガス中に混合している二酸化炭素の含
有量を2形式のガス検出器を用いて、迅速に測定するこ
とができ、精度に関して完全に満足でかつ有効な測定方
法を提供する。この好ましい結果は、炭鉱坑内にあって
石炭の自然発火または坑内火災の前兆の予知、災害発生
後の諸処Wに役立ち、各種火災検知器の誤動作チェック
にも活用でき、さらにガス感応型火災検知法にも適用で
き、工業的効果、特に炭鉱における諸災害の防止に寄与
することができる。
The present invention provides a completely satisfactory and effective measuring method in terms of accuracy, which allows the content of carbon dioxide mixed in combustible gases to be determined rapidly using two types of gas detectors. do. This favorable result is useful for predicting the spontaneous combustion of coal or signs of underground fires in coal mines, for various areas after a disaster occurs, and can be used to check malfunction of various fire detectors, as well as for gas-sensitive fire detection methods. It can also be applied to industrial effects, especially contributing to the prevention of various disasters in coal mines.

本発明の実施例として可燃性ガス検出器として接触燃焼
式について説明したが、半導体等による可燃性ガス感応
体を用いても差支えない。
Although a catalytic combustion type combustible gas detector has been described as an embodiment of the present invention, a combustible gas sensitive body made of a semiconductor or the like may also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は干渉H1形ガス濃度對の構成を示すブロック図
、第2図は可燃性ガス濃度計の構成を示すブロック図、
第3図は本発明実施例を示すブ臼ツ10− り図である。 1・・光源ランプ 2・・集光レンズ 3・・平行平面鏡 4・・ガス室 5.5−・・ll!準ガス室 6・・被測定ガス室1・
・メインプリズム 8・・光路補償1[9・・対物レン
ズ 10・・光導電体 11・・電源 12・・メータ 13・・固定抵抗 14・・ガス検知中熱線条15・・
4J[へ1熱線条 16.17 ・・固定抵抗18.1
9 ・・可変抵抗 20・・電源21・・メータ 22
・・固定抵抗 23・・ガス導入IN 24・・]渉品1形ガス検出器
25・・信号調整器 26・出力トランスジューリ27
・・ガス導入[128・・n1燃竹ガス検出器29・・
信号調整器 30・出力1〜ランスジl −+J31.
32 ・・外部出力端子 33.34 ・・演粋器35
・出カドランスジコーリ 3G・・外部出力端子37・
・入力電IQ38・・補助電源 11− 第1図 〈− 第2図
Fig. 1 is a block diagram showing the configuration of the interference H1 type gas concentration meter, Fig. 2 is a block diagram showing the configuration of the combustible gas concentration meter,
FIG. 3 is a perspective view of a mortar 10 showing an embodiment of the present invention. 1...Light source lamp 2...Condensing lens 3...Parallel plane mirror 4...Gas chamber 5.5-...ll! Semi-gas chamber 6. Gas chamber to be measured 1.
- Main prism 8 - Optical path compensation 1 [9 - Objective lens 10 - Photoconductor 11 - Power supply 12 - Meter 13 - Fixed resistance 14 - Gas detection heating line 15 -
4J[He1 heat wire 16.17 ・・Fixed resistance 18.1
9...Variable resistance 20...Power supply 21...Meter 22
・・Fixed resistance 23・・Gas introduction IN 24・・・Product type 1 gas detector 25・・Signal conditioner 26・Output transduer 27
...Gas introduction [128...n1 firewood gas detector 29...
Signal conditioner 30・Output 1 ~ Lancer l -+J31.
32...External output terminal 33.34...Director 35
・Output power output terminal 3G・・External output terminal 37・
・Input power IQ38... Auxiliary power supply 11- Fig. 1〈- Fig. 2

Claims (1)

【特許請求の範囲】[Claims] (1)可燃性ガスと二酸化炭素とを含む混合ガス中の二
酸化炭素含右蟲を定m′!lるにあたり、可燃性ガス及
び二酸化炭素を含む混合ガスに干渉1形ガス検出器、可
燃性ガスにのみ感応する可燃性ガス検出器を配設し、干
渉1形ガス検出器による含有量から可燃性ガス検出器に
よる含有間を減法演算し、この値に校正目盛による係数
を乗法演算することを特徴とする二酸化炭素の含有mを
定量する方法。
(1) Determine the amount of carbon dioxide in a mixed gas containing flammable gas and carbon dioxide. In order to detect combustible gases, we install an interference type 1 gas detector for mixed gases containing flammable gases and carbon dioxide, and a combustible gas detector that is sensitive only to combustible gases. 1. A method for quantifying carbon dioxide content m, which comprises subtracting the content measured by a gas detector and multiplying this value by a coefficient based on a calibration scale.
JP59064376A 1984-03-30 1984-03-30 Method for determining quantitatively carbon dioxide contained in combustible gas Pending JPS60205363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59064376A JPS60205363A (en) 1984-03-30 1984-03-30 Method for determining quantitatively carbon dioxide contained in combustible gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59064376A JPS60205363A (en) 1984-03-30 1984-03-30 Method for determining quantitatively carbon dioxide contained in combustible gas

Publications (1)

Publication Number Publication Date
JPS60205363A true JPS60205363A (en) 1985-10-16

Family

ID=13256518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59064376A Pending JPS60205363A (en) 1984-03-30 1984-03-30 Method for determining quantitatively carbon dioxide contained in combustible gas

Country Status (1)

Country Link
JP (1) JPS60205363A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5389799A (en) * 1977-01-18 1978-08-07 Mitsubishi Electric Corp Combustible gas detector
JPS5582958A (en) * 1978-12-19 1980-06-23 Matsushita Electric Ind Co Ltd Inflammable gas detector
JPS5851617A (en) * 1981-09-22 1983-03-26 Nec Corp Parallel-serial conversion system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5389799A (en) * 1977-01-18 1978-08-07 Mitsubishi Electric Corp Combustible gas detector
JPS5582958A (en) * 1978-12-19 1980-06-23 Matsushita Electric Ind Co Ltd Inflammable gas detector
JPS5851617A (en) * 1981-09-22 1983-03-26 Nec Corp Parallel-serial conversion system

Similar Documents

Publication Publication Date Title
US3514377A (en) Measurement of oxygen-containing gas compositions and apparatus therefor
US6319375B1 (en) Apparatus for identifying a gas
US6435003B1 (en) Method of identifying a gas and associated apparatus
US20190360963A1 (en) Oxygen sensor for co breakthrough measurements
US6490908B2 (en) Method and device for determining the gas properties of a combustible gas
US6489787B1 (en) Gas detection circuit
GB2064780B (en) Apparatus for measuring the efficiency of combustion appliances
US3519391A (en) Method of and apparatus for measuring combustible constituents of gas samples
US4996431A (en) Selective gas detecting apparatus
US4315430A (en) Gas calorific content analyzing apparatus
Ivanov et al. Expanding catalytic sensor capabilities to combustible gas mixtures monitoring
US4664886A (en) Trimode gas detection instrument
JPS60205363A (en) Method for determining quantitatively carbon dioxide contained in combustible gas
US4394240A (en) Combined sulfur oxide/oxygen measuring apparatus
GB1584830A (en) Apparatus and method for measuring the amounts of oxygen and combustibles in a gaseous sample
US20210148853A1 (en) In_situ oxygen analyzer with solid electrolyte oxygen sensor and ancillary output
US3435678A (en) Apparatus for flow monitoring
GB1575767A (en) Apparatus for the unambiguous indication of the proportion of combustibles in a gaseous sample
McCarter A new technique for thermal analysis of vapor‐producing reactions
JPH01124753A (en) Combustible gas detection method and apparatus
JP2600077B2 (en) Method and apparatus for continuous measurement of calorific value of organic gas
CN110361518B (en) On-line monitoring system for fuel entering furnace for low-calorific-value coal power generation
JP2698399B2 (en) Acoustic combustion gas temperature measurement device
US4826770A (en) Carbon dioxide monitoring of composites
EP0460029A1 (en) Environmental monitoring device and method