JPS60202926A - Epitaxial wafer - Google Patents

Epitaxial wafer

Info

Publication number
JPS60202926A
JPS60202926A JP59059738A JP5973884A JPS60202926A JP S60202926 A JPS60202926 A JP S60202926A JP 59059738 A JP59059738 A JP 59059738A JP 5973884 A JP5973884 A JP 5973884A JP S60202926 A JPS60202926 A JP S60202926A
Authority
JP
Japan
Prior art keywords
layer
concentration
epitaxial
xpx
type impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59059738A
Other languages
Japanese (ja)
Other versions
JPH079883B2 (en
Inventor
Masahisa Endo
遠藤 正久
Nobuhiko Noto
宣彦 能登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP5973884A priority Critical patent/JPH079883B2/en
Publication of JPS60202926A publication Critical patent/JPS60202926A/en
Publication of JPH079883B2 publication Critical patent/JPH079883B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To improve the quality of a crystal, and to increase luminance by forming an ND slow reducing layer in an indirect transition type gallium phosphide arsenide epitaxial wafer for a light-emitting diode. CONSTITUTION:A GaP epitaxial layer 2, a GaAs1-xPx (0<1-x<=0.5) arsenic component composition ratio increasing layer 3 and a GaAs1-xPx (0<1-x<=0.5) composition constant layer 4 are formed on a GaP single crystal substrate 1, and an ND slow reducing layer 5, ND therein is reduced gradually up to desired low concentration B from high concentration A, and an ND constant layer 6, ND therein is fixed in desired low concentration B, are shaped on the layer 4. According to such constitution, the quality of a crystal can be made better than conventional epitaxial wafers, ND therein is altered steeply to low concentration B from high concentration A, thus improving luminance.

Description

【発明の詳細な説明】 本発明は高輝度の発光ダイオード用間接遷移型燐化砒化
ガリウム(GaAsx−xPx + 0 < i −x
≦0.5)エピタキシャルウェーハに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides indirect transition type gallium arsenide phosphide (GaAsx-xPx + 0 < i-x
≦0.5) Regarding epitaxial wafers.

黄色から赤色発光ダイオード用1−V族化合物半専体の
気相エピタキシャルウェーハとして、燐化ガリウム(G
aP)等の単結晶基板上に砒素成分組成率1−Xが(1
<i −x≦0.5の範囲である間接遷移型燐化砒化ガ
リウム(GaAs1−XPx)エピタキシャル膜を設け
たものが従来から用いられている。
Gallium phosphide (G
aP) with an arsenic component composition ratio of 1-X (1
Conventionally, a device provided with an indirect transition type gallium arsenide phosphide (GaAs1-XPx) epitaxial film in the range <i-x≦0.5 has been used.

本発明者等はこのエピタキシャルウェーハを用いて発光
ダイオードを製造する場合、実用的な発光効率を得るた
めに、アイソエレクトロニック・トラップとしての窒素
を添加する方法を提案したが(昭和59年3月6日特許
出願)この窒素の添加時、キャリアの注入効率をあげる
ため、すなわち、高輝度化するため、GaAs 1.K
PXエピタキシャル膜中のn型不純物濃度(以下ND 
という)を高濃度(約I×10 原子/m)から低濃度
(約1×10 原子/i)に低下させることが行われて
いる(図1−1および図1−2参照)。キャリアの注入
効率をあげるだけのためなら、エピタキシャル膜全体に
わたりNDを約1×10 原子/dにすればよいが、こ
の低NDでは発光ダイオード順方向立上り電圧V、が高
すぎて実用上問題をきたすため、前述のようなND分布
をとっている。
The present inventors proposed a method of adding nitrogen as an isoelectronic trap in order to obtain practical luminous efficiency when manufacturing light emitting diodes using this epitaxial wafer (March 6, 1980). (Japanese Patent Application) When adding nitrogen, GaAs 1. K
N-type impurity concentration (hereinafter referred to as ND) in the PX epitaxial film
It is being carried out to lower the concentration (about 1 x 10 atoms/i) from a high concentration (about 1 x 10 atoms/m) to a low concentration (about 1 x 10 atoms/i) (see Figures 1-1 and 1-2). If only to increase the carrier injection efficiency, it is sufficient to set the ND to about 1 x 10 atoms/d over the entire epitaxial film, but with this low ND, the forward rise voltage V of the light emitting diode is too high, causing a practical problem. In order to achieve this, the above-mentioned ND distribution is adopted.

この従来法によるGaASl、cPx(0<1−x≦0
.5)エピタキシャル膜の成長について図面で説明する
と、図1−1は黄色発光ダイオード用GaAs t−x
 pxエピタキシャルウェーへの断面図の1例を、図1
−2はそのND分布及び窒素濃度(以下NN という)
分布の1例を示したものである。
GaASl, cPx (0<1-x≦0
.. 5) To explain the growth of epitaxial film using drawings, Figure 1-1 shows GaAs t-x for yellow light emitting diode.
An example of a cross-sectional view of a px epitaxial wafer is shown in Figure 1.
-2 is its ND distribution and nitrogen concentration (hereinafter referred to as NN)
An example of the distribution is shown.

図1−1及び図1−2において1′は厚さ約300ミク
ロンφ)のGaP 単結晶基板、2′は厚さ5μのGa
Pエピタキシャル層、3′は結晶不整歪緩和技術を用い
て、砒素成分組成率1−Xを0から約0.15まで増加
させた厚さ35μのGaAs1−x px砒素成分組成
率増加層、4は1−Xが約0.15と一定な厚さ15μ
のC)aAs P 組成−窓層、ゴ−XX および6′は窒素原子の添加されたGaAs P 組−
xx 成−窓層(ただし結晶組成は層イと同じ)であって、5
′は図1−2に示す如<NN をOから所望の値まで徐
々に増加させた厚さ5μのNN 徐増加層、窓層である
。ただしこの方法においては、図1−2に示す如く、層
5′の形成開始と回腸にNDを高濃度から低濃度へ急峻
に変化させている。
In Figures 1-1 and 1-2, 1' is a GaP single crystal substrate with a thickness of approximately 300 microns φ), and 2' is a GaP single crystal substrate with a thickness of 5 μm.
P epitaxial layer 3' is a GaAs 1-x px layer with increased arsenic composition ratio of 35 μm in which the arsenic composition ratio 1-X is increased from 0 to about 0.15 using a crystal misalignment strain relaxation technique, 4 has a constant thickness of 15μ with 1-X of approximately 0.15
C) aAs P composition - Window layer, Go-XX and 6' are GaAs P groups doped with nitrogen atoms -
xx is a growth window layer (however, the crystal composition is the same as layer A), and 5
' is a window layer, which is a gradually increasing layer of NN with a thickness of 5 μm, in which <NN is gradually increased from O to a desired value, as shown in FIGS. 1-2. However, in this method, as shown in FIGS. 1-2, the concentration of ND is abruptly changed from high to low concentration in the ileum after the formation of layer 5' begins.

本発明者らは少なくとも窒素原子が添加されたGaAs
 1−XPXの組成−窓層において、層中のNDを低く
することはキャリアの注入効率を高めるという効果ばか
りでなく、これを急峻に減じなければGaAs 1−X
 PX 層の結晶品質を良くするという効果があること
に着目して、高結晶品質の発光ダイオード用間接遷移型
GaA3□−x”xエピタキシャル膜を得べく研究を重
ねた結果、本発明に到達したものである。
The present inventors have discovered that GaAs doped with at least nitrogen atoms
Composition of 1-XPX - In the window layer, lowering the ND in the layer not only has the effect of increasing the carrier injection efficiency, but if this is not sharply reduced, GaAs 1-X
Focusing on the effect of improving the crystal quality of the PX layer, the present invention was achieved as a result of repeated research to obtain an indirect transition type GaA3□-x"x epitaxial film for light-emitting diodes with high crystal quality. It is something.

すなわち、通常、アイソエレクトロニック・トラップと
しての窒素原子およびn型不純物(硫黄S、テルルTe
等)は共に三元系化合物半尋体GaA31−xpx結晶
の■族原子の位置に置換されるので、この結晶中に窒素
原子が添加される時、NDは可能なかぎり低濃度(発光
再結合に支障をきたさない範囲内で)にした方が高品質
の結晶が得られるが、このND の減少を急線に行うと
、結晶性改善の効果が薄い、ということが研究の結果判
明した。前記n型不純物の低濃度効果を有効に発揮させ
るため、下記の方法、すなわち、NDを高濃度(約1×
10 原子/d)から低濃邸(約1×6 10 原子/d)にする初期段階において、その濃度を
徐々に減少させたND 徐減少層もしくは前記No 徐
減少層中も二少なくとも一層以上ND が−定である層
を有するND徐城少層を設けることにより、晶結晶品質
のGaAs1−x pXエピタキシャル膜を有するウェ
ーハを得ることができ、これにより発光ダイオードの輝
度向上が達せられる。
That is, nitrogen atoms and n-type impurities (sulfur S, tellurium Te) are usually used as isoelectronic traps.
etc.) are both substituted at the group II atom position of the ternary compound hemihyposome GaA31-xpx crystal, so when nitrogen atoms are added to this crystal, NDs are added at the lowest possible concentration (radiative recombination). However, research has revealed that if the ND is reduced too rapidly, the effect of improving crystallinity is weak. In order to effectively exhibit the low concentration effect of the n-type impurity, the following method is used:
10 atoms/d) to a low concentration (approximately 1 x 6 10 atoms/d) in the initial stage, the concentration of ND is gradually decreased. By providing the ND thin layer having a layer with a constant value, it is possible to obtain a wafer having a GaAs1-x pX epitaxial film of crystalline quality, thereby achieving an improvement in the brightness of the light emitting diode.

窒素原子の添加に関しても、急峻に添加すると結晶欠陥
等が急増して結晶品質を悪くするので、これを防止する
ため窒素原子添加の初期段階において、NNを所望の値
まで徐々に増加させたNN徐増加層を設けることが必要
である。
Regarding the addition of nitrogen atoms, if they are added too quickly, crystal defects etc. will rapidly increase and the crystal quality will deteriorate.To prevent this, in the initial stage of nitrogen atom addition, NN is gradually increased to a desired value. It is necessary to provide a gradually increasing layer.

以下これを図面をもって詳しく説明する。本発明におけ
る単結晶基板はGaP単独を使用すればよいがGaPの
エピタキシャル層を有するGaP単結晶基板であっても
よい。
This will be explained in detail below with reference to the drawings. Although GaP alone may be used as the single crystal substrate in the present invention, a GaP single crystal substrate having an epitaxial layer of GaP may also be used.

図2−1は本発明による黄色発光ダイオード用oaA8
1− x Px エピタキシャルウェーハの断面図の1
例を、図2−2はそのND分布およびNN分布の1例を
示したものである。図2−1および図2−2において層
1〜4はそれぞれ従来法による図1−1、図1−2の各
層1′〜4゛と同じ組成および厚さのものであるがらこ
の説明は省略する。層5はNDを高濃度Aから所望の低
濃度Bまで徐々に減少させた厚さ5μのND徐減少層(
この層の形成時、図2−2に示す如く、NNは0から所
望の値まで徐々に増加させる)、層6はNDを所望の低
濃度Bに固定した厚さ20μのND−窓層(窒素連間も
所望の値Cに一定とする)である、次に実施例および比
較例に基づいて本発明を説明するが、こ\にあげた実施
例によって本発明が限定されないことは勿論である。
Figure 2-1 shows oaA8 for yellow light emitting diode according to the present invention.
1- x Px Cross-sectional view of epitaxial wafer 1
As an example, FIG. 2-2 shows an example of the ND distribution and NN distribution. Although layers 1 to 4 in FIGS. 2-1 and 2-2 have the same composition and thickness as layers 1' to 4' in FIGS. 1-1 and 1-2 according to the conventional method, this explanation is omitted. do. Layer 5 is a 5μ thick ND gradually decreasing layer (
During the formation of this layer, as shown in Figure 2-2, NN is gradually increased from 0 to a desired value), layer 6 is a 20μ thick ND-window layer with ND fixed at a desired low concentration B ( The present invention will now be explained based on Examples and Comparative Examples, but it goes without saying that the present invention is not limited to these Examples. be.

〔実施例1〕 下記の方法によって黄色発光ダイオード用GaAs1−
’X PX エビタキVヤルウエーへを製造した。
[Example 1] GaAs1- for yellow light emitting diode was prepared by the following method.
'X PX Ebitaki V Yaruuehe was manufactured.

テルル(Te)を2.3XIQ 原子/cIl添加シタ
結晶方位<100>のGaP単結晶を(1υυ)より<
110>の方向に5°偏位をもつように厚さ350μに
スライスした後、通常の化学エツチングと機械化学研摩
をほどこした厚さ約300μのGaP @面つェーへを
エピタキシャル基板として用いた。
GaP single crystal with tellurium (Te) doped with 2.3XIQ atoms/cIl crystal orientation <100> from (1υυ)<
After slicing to a thickness of 350 μm with a 5° deviation in the direction of 110>, a GaP layer with a thickness of about 300 μm was used as an epitaxial substrate after being subjected to conventional chemical etching and mechanochemical polishing. .

また反応ガスとして水素(H2)、水素希釈の濃度5 
(l ppmの硫化水素(H2S、 n型不純(財)、
H2希釈の1%の砒化水素(AsH3)、H2希釈の1
0%の燐化水素(PHa)、高純度塩化水素ガス(EO
l)および高純度アンモニアガス(NHs )を用いた
In addition, hydrogen (H2) is used as a reaction gas, and the concentration of hydrogen dilution is 5
(1 ppm hydrogen sulfide (H2S, n-type impurity),
1% hydrogen arsenide (AsH3) in H2 dilution, 1% in H2 dilution
0% hydrogen phosphide (PHa), high purity hydrogen chloride gas (EO
l) and high purity ammonia gas (NHs).

以後上記反応ガスを各々H2、H28/ H2,AsH
a/H2。
Thereafter, the above reaction gases were converted to H2, H28/H2, AsH, respectively.
a/H2.

PH3/H2,HOIおよびNH,と略記する。Abbreviated as PH3/H2, HOI and NH.

上記GaP単結晶基板を洗浄した後、気相エピタキシャ
ル反応機内の所定の場所に前記()aP単結晶基板と高
純度Ga入り石英容器をセットする。
After cleaning the GaP single crystal substrate, the ()aP single crystal substrate and the high-purity Ga-containing quartz container are set at a predetermined location in the vapor phase epitaxial reactor.

反応機内に高純度窒素ガス(N、)、ついでキャリアガ
スとしての高純度水素ガス(H2)を導入して反応機内
を充分に置換した後、昇温を開始した。
After introducing high-purity nitrogen gas (N) and then high-purity hydrogen gas (H2) as a carrier gas into the reactor to sufficiently replace the inside of the reactor, temperature elevation was started.

上記GaP単結晶基板セット領域の温度が880℃に達
したことを確認した後、黄色発光ダイオード用Ga”o
、ts Po、ssエピタキシャル膜の気相成長を開始
した。
After confirming that the temperature of the GaP single crystal substrate set area has reached 880℃, the Ga”O for yellow light emitting diode is
, ts Po, ss vapor phase growth of epitaxial films was started.

まず初めにH2S/H,を5Qcc/分の流量で導入し
、他方HOIを45cc/分の流量で導入して石英容器
中のGaと反応させてGaolを形成させ、同時に導入
した流量250ee/分のPH37H2とによりGaP
単結晶基板上にGaPエピタキシャル層2を成長させた
First, H2S/H was introduced at a flow rate of 5 Qcc/min, and on the other hand, HOI was introduced at a flow rate of 45 cc/min to react with Ga in the quartz container to form Gaol, and at the same time, HOI was introduced at a flow rate of 250 ee/min. GaP with PH37H2
A GaP epitaxial layer 2 was grown on a single crystal substrate.

つぎに、上記GaPエピタキシャル層2上に砒素成分組
成率増加層3を成長させた。最初に前記H2S / H
2、HOIおよびPH3/ H2の流量を各々50cc
/分、45Ce/分および25Uee/分に保ちながら
ABH,/ H2の流量をocc1分より260cc/
分まで徐々に増加させて、1−Xが0から約0.15ま
で変化する砒素成分組成率増加層3を形成した。ASH
3/H,の流量がOcc/分から170ce/分に変化
する間、基板セット領域の温度を880℃より820℃
に徐々に、かつ連続的に低下させた。以後、この基板セ
ット領域の温度はエピタキシャル成長終了まで820℃
に固定した。
Next, a layer 3 with an increased arsenic composition ratio was grown on the GaP epitaxial layer 2. First the H2S/H
2. HOI and PH3/H2 flow rate each 50cc
/min, 45Ce/min and 25Uee/min while increasing the flow rate of ABH,/H2 from occ1 min to 260cc/min.
The arsenic composition ratio increased layer 3 in which 1-X varied from 0 to about 0.15 was formed by gradually increasing the arsenic content to 0.15. ASH
3/H, while the flow rate changes from Occ/min to 170ce/min, the temperature of the board setting area is changed from 880°C to 820°C.
gradually and continuously decreased. From then on, the temperature of this substrate set area was kept at 820°C until the epitaxial growth was completed.
Fixed.

ついで、上記H2S/H2,HOI 、 PH3/H2
およびAsH3/H2の流量を各々5 Q Ce 7分
、45 C,C7分、250 CC/分および260C
e/分に固定しGaAs17’X PX組成−電層4す
なわち””0.15PO,l15層を成長させた。
Then, the above H2S/H2, HOI, PH3/H2
and AsH3/H2 flow rates were 5 Q Ce 7 min, 45 C, C 7 min, 250 CC/min and 260 C, respectively.
GaAs 17'X PX composition-electrical layer 4, ie, 0.15 PO, 115 layer, was grown at a fixed speed of 2.3 m/min.

つぎにHOI、 PH3/H2およびAsH3/H2の
流用を各々45cc/分、250eC/分および260
cc/分に保ちながら図3に示す如<H28/H2の流
量を59 Ce 7分から10eC/分まで徐々に減少
させ、またこの間、NH3は流量な0007分から4 
fl Q cc 7分まで図3に示すような変化をとっ
て徐々に増加させて、本発明に基づ<No徐減少層5を
形成させた。最後にH2S/H2,HOl、 PH8/
H2゜ASH3/H2およびNH3の流量を各々IQc
c/分、45cc/分、25oce/分、260cc/
分および400CC/分に固定して所望の濃度にn型不
純物および窒素原子が添加されたND一定GaAs P
−XX 組成−電層6を形成し、黄色発光ダイオード用間接遷移
型GaAs1−x pxエピタキシャル膜の成長を終了
させ、エピタキシャルウェーハを得た。
Next, HOI, PH3/H2 and AsH3/H2 were diverted at 45 cc/min, 250 eC/min and 260 eC/min, respectively.
cc/min, the flow rate of
fl Q cc was gradually increased up to 7 minutes using the changes shown in FIG. 3 to form a <No gradual decreasing layer 5 according to the present invention. Finally, H2S/H2, HOl, PH8/
H2゜ASH3/H2 and NH3 flow rates are each IQc
c/min, 45cc/min, 25oc/min, 260cc/min
ND constant GaAs P doped with n-type impurities and nitrogen atoms to the desired concentration fixed at 400 CC/min.
-XX Composition - The electrical layer 6 was formed, and the growth of the indirect transition type GaAs1-x px epitaxial film for yellow light emitting diodes was completed to obtain an epitaxial wafer.

〔実施例2〕 H2S / H2の導入方法を図4に示す如く変えた以
外は実施例1と同一の条件でGaA8o、15Po、a
5エピタキシャルウェー八を試作した。
[Example 2] GaA8o, 15Po, a
5 epitaxial wafer 8 was prototyped.

〔実施例3〕 H2S/H2の導入方法を図5に示す如く変えたこと以
外は実施例1と同一の条件でGaA30.11tP0.
85エピタキシヤルウエーハを試作した。図より明らか
なように層4の初めの10μはH2S/H2の流風が5
0CC/分と一定であるが、次の5μは徐々に変化させ
た。
[Example 3] GaA30.11tP0.
A 85 epitaxial wafer was prototyped. As is clear from the figure, the first 10μ of layer 4 has a flow of H2S/H2 of 5
Although it was constant at 0 CC/min, the next 5 μ was gradually changed.

〔実施例4〕 H28/H2の導入方法を図6に示す如く変えたこと以
外は実施例1と同一条件でGaAS o、□5”O,a
5エピタキシャルウェー八を試作した。図より明らかな
ようにJl:!j4の初めの10μはH2S/H2の流
量が50CC/分と一定であるか、次の5μは図のよう
に変化させて導入した。
[Example 4] GaAs o, □5"O, a was produced under the same conditions as in Example 1 except that the method of introducing H28/H2 was changed as shown in FIG.
5 epitaxial wafer 8 was prototyped. As is clear from the figure, Jl:! The flow rate of H2S/H2 was kept constant at 50 CC/min for the first 10μ of j4, or was introduced while changing the flow rate for the next 5μ as shown in the figure.

〔比較例〕[Comparative example]

図7に示す如く、H2S/H2の減少を急峻に行なった
こと以外は実施例Iと同一の条件でGaAs、1゜PO
,85エピタキシヤルウエーハを試作した。
As shown in FIG. 7, GaAs, 1°PO
,85 epitaxial wafer was prototyped.

次に、上記ウェーハにZn拡散を行なってP−N接合を
形成し黄色発行ダイオードを製作したところ、この黄色
発光ダイオード(樹脂コートなし)の輝度(ミリカンデ
ラ、mad)は第1表に示す如くであった。
Next, Zn was diffused into the wafer to form a P-N junction to produce a yellow light emitting diode.The brightness (millicandela, mad) of this yellow light emitting diode (without resin coating) was as shown in Table 1. Met.

第 1 表 *順方向電流密度:10A/m 輝度値=10ランの平均 上記第1表に示した如く、本発明のND除徐減少法実施
例1〜4)は息遣な紘少法(比較例)に比べ、約20%
の輝度向上が連成され、本発明の方法による効果が確認
された。
Table 1 * Forward current density: 10 A/m Luminance value = average of 10 runs As shown in Table 1 above, the ND removal gradual reduction method Examples 1 to 4) of the present invention are based on the breathable Kosho method ( Approximately 20% compared to comparative example)
This coupled with the improvement in brightness, confirming the effect of the method of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

図1−1は従来法による黄色発光ダイオード用GaAs
 、−xPxエピタキシャルウェーハの断面図、図1−
2はそのクエーへのND 分布およびNN分布を示す説
明図、図2−1は本発明に係る黄色発光ダイオード用(
)aAs t −xPx エピタキシャルウェーへの断
面図、図2−2はそのウェーハのND分布およびN、分
布を示す説明図である。また、図3.4.5.6および
7は各々実施例1.2.3.4および比較例に係るn型
不純物(H2S/Hz )およびアンモニアガス(NH
a )の導入方法を示す説明図である。 1.1・・・GaP単結晶基板 2.2・・・GaPエピタキシャル層 3.3・・・()aAs 、−xPxの砒素成分組成率
増加層4.4・・・GaAs、xPX組成一定層(ただ
し、図5および6における最終5μはND徐減少層)5
.5・・・NN徐増加GaAs 1−XPx組成一定(
−(ただし、図3.4の場合ND 徐減少層、図7の場
合No急d減少層) 6.6・・・ND が低濃度で一定なNN一定GaAs
 t−x Px組成一定層 A、 A・・・所望のn型不純物亮濃度値B、田・・所
望のn型不純物低濃度値 C2d・・・所望の島値 特許出願人 信越半導体株式会社 う1 ■ 図3 @ ’BJ4
Figure 1-1 shows GaAs for yellow light emitting diode made by conventional method.
, - Cross-sectional view of xPx epitaxial wafer, Figure 1-
2 is an explanatory diagram showing the ND distribution and NN distribution for the quay, and FIG. 2-1 is an explanatory diagram showing the ND distribution and NN distribution for the quay.
)aAs t -xPx A cross-sectional view of an epitaxial wafer, FIG. 2-2 is an explanatory diagram showing the ND distribution and N distribution of the wafer. In addition, Figures 3.4.5.6 and 7 show n-type impurity (H2S/Hz) and ammonia gas (NH
It is an explanatory view showing the introduction method of a). 1.1...GaP single crystal substrate 2.2...GaP epitaxial layer 3.3...()aAs, -xPx increasing arsenic composition ratio layer 4.4...GaAs, xPX constant composition layer (However, the final 5μ in Figures 5 and 6 is the ND gradually decreasing layer)5
.. 5...NN gradually increasing GaAs 1-XPx composition constant (
- (However, in the case of Fig. 3.4, the ND gradually decreasing layer, in the case of Fig. 7, the No rapidly decreasing layer) 6.6... NN constant GaAs where ND is constant at low concentration
t-x Px constant composition layer A, A... Desired n-type impurity high concentration value B, T... Desired n-type impurity low concentration value C2d... Desired island value Patent applicant Shin-Etsu Semiconductor Co., Ltd. 1 ■ Figure 3 @ 'BJ4

Claims (1)

【特許請求の範囲】 1、 周期律表第1族及び第V族からなる化合物半導体
単結晶基板と該基板と同一成分からなるエピタキシャル
層、三元系化合物半導体GaAs、−エPxの砒素成分
組成率増加層(ただしg<t−X≦05)、GaAa 
1−xPxの組成率一定M(ただしQ<1−z≦0.5
)及びキャリアの発光再結合領域に窒素原子の添加され
たGaAs□−XPxの組成−窓層(ただし0<1−X
≦0.5)を有するエピタキシャル膜とからなり、少な
くとも、窒素原子が添加された()aAs 1−xPx
の組成−窓層において、エピタキシャル膜中のn型不純
物濃度を高濃度から所望の低濃度にする際、その初期段
階において徐々にn型不純物濃度を減するn型不純物濃
度徐減少層を有してなるエピタキシャルウェーハ。 2、n型不純物濃度徐減少層中に少なくとも−j−以上
n型不純物a度が一定であるエピタキシャル層を有する
n型不純物濃度徐減少層を設けることを特徴とする特許
請求の範囲fA1項記載のエピタキシャルウェーハ。 3、窒素原子の添加されたGaASl−xPX の組成
−窓層が、窒素濃度な0から所望の値まで徐々に増加さ
せた窒素濃度徐増加層もしくは窒素薯度徐増71D層中
に少なくとも一層以上窒素濃度が一定であるエピタキシ
ャル層を有する窒素濃度徐増加層と窒素濃度を所望の値
に固定された窒素濃度−窓層とからなることを特徴とす
る特許請求の範囲第1項または第2項記載のエピタキシ
ャルウェーハ。 4、単結晶基板が燐化ガリウム(GaP)であることを
特徴とする特許請求の範囲第1項または第2項記載のエ
ピタキシャルウェーハ。
[Claims] 1. Arsenic component composition of a compound semiconductor single crystal substrate consisting of Groups 1 and V of the periodic table, an epitaxial layer consisting of the same components as the substrate, and ternary compound semiconductors GaAs and -EPx rate increasing layer (however, g<t-X≦05), GaAa
1-xPx composition ratio constant M (however, Q<1-z≦0.5
) and composition of GaAs□-XPx doped with nitrogen atoms in the radiative recombination region of carriers - window layer (however, 0<1-X
≦0.5), and at least nitrogen atoms are added ()aAs 1-xPx
Composition - The window layer has an n-type impurity concentration gradual decreasing layer that gradually reduces the n-type impurity concentration in the initial stage when the n-type impurity concentration in the epitaxial film is changed from a high concentration to a desired low concentration. epitaxial wafer. 2. The n-type impurity concentration gradually decreasing layer is characterized in that the n-type impurity concentration gradually decreasing layer is provided with an epitaxial layer in which the n-type impurity concentration a is constant at least -j- or more. epitaxial wafer. 3. Composition of GaASl-xPX doped with nitrogen atoms - The window layer is at least one layer in a gradually increasing nitrogen concentration layer or a gradually increasing nitrogen concentration 71D layer in which the nitrogen concentration is gradually increased from 0 to a desired value. Claim 1 or 2, characterized in that it consists of a gradually increasing nitrogen concentration layer having an epitaxial layer with a constant nitrogen concentration and a nitrogen concentration window layer in which the nitrogen concentration is fixed at a desired value. Epitaxial wafer described. 4. The epitaxial wafer according to claim 1 or 2, wherein the single crystal substrate is gallium phosphide (GaP).
JP5973884A 1984-03-28 1984-03-28 Method of manufacturing epitaxial wafer Expired - Lifetime JPH079883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5973884A JPH079883B2 (en) 1984-03-28 1984-03-28 Method of manufacturing epitaxial wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5973884A JPH079883B2 (en) 1984-03-28 1984-03-28 Method of manufacturing epitaxial wafer

Publications (2)

Publication Number Publication Date
JPS60202926A true JPS60202926A (en) 1985-10-14
JPH079883B2 JPH079883B2 (en) 1995-02-01

Family

ID=13121855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5973884A Expired - Lifetime JPH079883B2 (en) 1984-03-28 1984-03-28 Method of manufacturing epitaxial wafer

Country Status (1)

Country Link
JP (1) JPH079883B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364488A (en) * 1976-11-22 1978-06-08 Mitsubishi Monsanto Chem Method of producing electric light emitting substance
JPS53131764A (en) * 1977-04-21 1978-11-16 Mitsubishi Monsanto Chem Method of producing compound semiconductor
JPS5453977A (en) * 1977-10-07 1979-04-27 Toshiba Corp Manufacture for gallium phosphide green light emitting element
JPS599981A (en) * 1982-07-07 1984-01-19 Sumitomo Electric Ind Ltd Semiconductor light emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364488A (en) * 1976-11-22 1978-06-08 Mitsubishi Monsanto Chem Method of producing electric light emitting substance
JPS53131764A (en) * 1977-04-21 1978-11-16 Mitsubishi Monsanto Chem Method of producing compound semiconductor
JPS5453977A (en) * 1977-10-07 1979-04-27 Toshiba Corp Manufacture for gallium phosphide green light emitting element
JPS599981A (en) * 1982-07-07 1984-01-19 Sumitomo Electric Ind Ltd Semiconductor light emitting device

Also Published As

Publication number Publication date
JPH079883B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
US3931631A (en) Gallium phosphide light-emitting diodes
US4001056A (en) Epitaxial deposition of iii-v compounds containing isoelectronic impurities
JPH05243614A (en) Method of growing compound semiconductor, its light-emitting device, and the manufacture
US4216484A (en) Method of manufacturing electroluminescent compound semiconductor wafer
US5445897A (en) Epitaxial wafer and process for producing the same
JPH0579163B2 (en)
JP3143040B2 (en) Epitaxial wafer and method for manufacturing the same
US4218270A (en) Method of fabricating electroluminescent element utilizing multi-stage epitaxial deposition and substrate removal techniques
JP3146874B2 (en) Light emitting diode
KR100210758B1 (en) Epitaxial wafer and process for producing the same
JPS60202926A (en) Epitaxial wafer
JPH0463040B2 (en)
US6057592A (en) Compound semiconductor epitaxial wafer
JPH10163523A (en) Manufacturing iii-v compd. semiconductor and light-emitting element
JP3301371B2 (en) Method for manufacturing compound semiconductor epitaxial wafer
JP3752739B2 (en) Light emitting element
JP4010318B2 (en) Light emitting element
JP3633806B2 (en) Epitaxial wafer and light-emitting diode manufactured using the same
US5653801A (en) Method for reducing contamination in semiconductor by selenium doping
JPH0719747B2 (en) Epitaxy wafer
JP2804093B2 (en) Optical semiconductor device
JP2841849B2 (en) Manufacturing method of epitaxial wafer
JPH03161981A (en) Manufacture of semiconductor device and ii-vi compound semiconductor crystal layer
JP2001036137A (en) Epitaxial wafer and light emitting diode
USRE29648E (en) Process for the preparation of electroluminescent III-V materials containing isoelectronic impurities

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term