JPS60202356A - Ultrasonic transmitting-receiving apparatus - Google Patents

Ultrasonic transmitting-receiving apparatus

Info

Publication number
JPS60202356A
JPS60202356A JP59058261A JP5826184A JPS60202356A JP S60202356 A JPS60202356 A JP S60202356A JP 59058261 A JP59058261 A JP 59058261A JP 5826184 A JP5826184 A JP 5826184A JP S60202356 A JPS60202356 A JP S60202356A
Authority
JP
Japan
Prior art keywords
signal
circuit
pulse
frequency
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59058261A
Other languages
Japanese (ja)
Other versions
JPH0327069B2 (en
Inventor
Hiroshi Kanda
浩 神田
Kiyoshi Ishikawa
潔 石川
Kageyoshi Katakura
景義 片倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59058261A priority Critical patent/JPS60202356A/en
Publication of JPS60202356A publication Critical patent/JPS60202356A/en
Publication of JPH0327069B2 publication Critical patent/JPH0327069B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/348Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enhance an ON/OFF ratio, by forming two ultrasonic transmitting pulses by changing over two operation frequencies and forming one frequency out of the frequency band zone of a transmitting and receiving circuit. CONSTITUTION:A VCO oscillator 210 is controlled by a VCO control circuit 200 and, for example, repeats oscillation of 500MHz during a pulse width of 100nsec and that of 1,300MHz in other time regions to apply both oscillations to a power amplifier 230 through an analogue switch 220 turned ON and OFF by a pulse signal. This RF pulse electric signal is applied to a probe system 260 through a directionality coupler 240 and a matching circuit 250. The reflected signal through the circuit 250 and the coupler 240 is amplified by a receiving amplifier 270 having a band zone of 100MHz-1GHz and a component of 1,300MHz present in a base other than a reflected echo is removed. Output is amplified by an AGC amplifier 280 and converted to a video signal by a RF detector 290 and formed into an image signal by a sampling circuit 300. By this method, an ON/ OFF ratio can enhanced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、高周波超音波エネルギーを用いた撮像装置、
特に超音波顕微鏡の送受信回路に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an imaging device using high-frequency ultrasonic energy;
In particular, it relates to transmitter/receiver circuits for ultrasonic microscopes.

〔発明の背景〕[Background of the invention]

近年、I G Hzに及ぶ高い周波数の音波の発生、検
出が可能となり、水中で約1μmの青波長が実現できる
事になり、その結果、高い分解能の音波撮像装置が得ら
れることなった。即ち、凹面レンズを用いて集束音波ビ
ームを作り、1μmに及ぶ高い分解能を実現するのであ
る。5かかるビーム中に試料をそう入し、試料による反
射、透過音波を検出して試料の弾性的性質を反映した情
報を得、あるいは、試料又は上記ビームを発生するセン
サを相対的に機械走査した2次元画像を作成するのであ
る。(R,A、レモン氏とC,F、クエーツ氏のA S
canning Acoustic Microsco
peと題するI EEE cat、Na73CH148
29SU−pp423−426.1973年所載の論文
)。
In recent years, it has become possible to generate and detect sound waves with high frequencies up to I GHz, and it has become possible to realize a blue wavelength of about 1 μm underwater, and as a result, it has become possible to obtain a high-resolution sound wave imaging device. That is, a concave lens is used to create a focused sound wave beam, achieving a high resolution of 1 μm. 5 A sample is placed in such a beam, and information reflecting the elastic properties of the sample is obtained by detecting the reflected and transmitted sound waves by the sample, or the sample or a sensor generating the beam is relatively mechanically scanned. It creates a two-dimensional image. (R, A, Mr. Lemon and C, F, Mr. Quates' A S
canning acoustic microsco
I EEE cat entitled pe, Na73CH148
29SU-pp423-426. Paper published in 1973).

このような音波像を得る超音波顕微鏡の従来例を第1.
第2図を用いて説明する。
A conventional example of an ultrasound microscope that obtains such a sound wave image is described in Section 1.
This will be explained using FIG.

第1図は、試料から反射信号を得るための探触子系の概
略構成を示す図である。図において、音波レンズ(例え
ば、サファイア、石英などの円柱状物質)20は一端面
が光学研摩された平面であり、他端面は凹面状の球面穴
30が形成されている。上記平面に形成された圧電薄膜
10にパルス発振器5によって印加されたRFパルス電
気信号により音波レンズ20内に平面波状のRFパルス
音波が放射される。この平面状音波は、上記球面穴30
に到達すると、球面穴30と媒質40の界面で形成され
た正の集束レンズ(従って、球面穴がレンズの口径とな
る)により所定焦点におかれた試料50上に集束超音波
を照射する。試料50により反射された音波は同じレン
ズにより集音され平面波に変換されて音波レンズ20内
を伝播し、ついには圧電薄膜10により再びRF電気信
号に変換される。この受信信号の様子を上記RF電気信
号を検波した後のビデオ帯域でみると、第2図の如くな
る。
FIG. 1 is a diagram showing a schematic configuration of a probe system for obtaining reflected signals from a sample. In the figure, a sound wave lens (for example, a cylindrical material such as sapphire or quartz) 20 has one end surface that is optically polished and a flat surface, and a concave spherical hole 30 formed in the other end surface. An RF pulsed electric signal applied by the pulse oscillator 5 to the piezoelectric thin film 10 formed on the plane causes an RF pulsed sound wave in the form of a plane wave to be radiated into the sound wave lens 20 . This planar sound wave is transmitted through the spherical hole 30
When reaching the point, focused ultrasound is irradiated onto the sample 50 placed at a predetermined focus by a positive focusing lens formed at the interface between the spherical hole 30 and the medium 40 (therefore, the spherical hole becomes the aperture of the lens). The sound waves reflected by the sample 50 are collected by the same lens, converted into plane waves, propagated within the sound wave lens 20, and finally converted back into RF electric signals by the piezoelectric thin film 10. When looking at the state of this received signal in the video band after detecting the RF electric signal, it becomes as shown in FIG.

ここで、横軸は時間軸を、たて軸は信号強度を表わして
いる。第2図において、波形Aは打ち出し信号(上記印
加信号)を、波形Bはレンズ30と媒質40との界面か
らのエコー(echo)を、又、波形Cは試料50から
の反射エコー(echo)を示している。この様な波形
は、繰り返し時間1Rで反復される。反射エコーCは、
試料の場所での音響的性質や試料の走査によって繰り返
し毎に変化するから、この反射エコーCを繰り返し周期
に同期して受信回路6により標本化して、その強度のみ
をとり出し、画像信号とするのである。即ち、試料を機
械走査系60によって17面内で走査し、上記画像信号
をこの機械走査と同期してブラウン管70上に表示すれ
ば音波像が得られるわけである。
Here, the horizontal axis represents the time axis, and the vertical axis represents the signal strength. In FIG. 2, waveform A is the launch signal (the above applied signal), waveform B is the echo from the interface between the lens 30 and medium 40, and waveform C is the reflected echo from the sample 50. It shows. Such a waveform is repeated with a repetition time of 1R. The reflected echo C is
Since it changes with each repetition depending on the acoustic properties at the sample location and the scanning of the sample, this reflected echo C is sampled by the receiving circuit 6 in synchronization with the repetition period, and only its intensity is extracted and used as an image signal. It is. That is, if the sample is scanned in 17 planes by the mechanical scanning system 60 and the image signal is displayed on the cathode ray tube 70 in synchronization with this mechanical scanning, a sound wave image can be obtained.

ところで、かかる超音波顕微鏡において、試料からの反
射エコーCのみを標本化する為には、他のエコー(上記
レンズ界面からのエコーや多重反射信号などのスプリア
ス信号)と時間的に弁別する為に極めて短いRFパルス
電気信号を送受信する必要があるのである。
By the way, in such an ultrasound microscope, in order to sample only the reflected echo C from the sample, it is necessary to temporally distinguish it from other echoes (spurious signals such as echoes from the lens interface and multiple reflection signals). It is necessary to transmit and receive extremely short RF pulse electrical signals.

本発明者等は、かかる短パルスRF電気信号の送受信回
路において、従来例には難点があることを見出した。第
3図は、従来の超音波送受信回路の1例を示しているが
、RF連続波発振器100の出力を、RFアナログスイ
ッチ110により繰り返し周期t□で、継続時間t、の
RFパルス信号に変換し、これをパワーアンプ120で
増巾後、方向性結合器125を介してレンズや圧電簿膜
からなる探触子系130に印加する。試料からの反射超
音波信号(第2図の如き)を含むRF電気信号は、再び
方向性結合器12゛5を介して、可変RF増巾器140
にて増巾された後、RF検波器150でダイオード検波
されて、ビデオ信号に変換され、標本化回路160(サ
ンプル・ホールド回路など)によりエコーCのみの大き
さが取り出されてCRTへの画像信号となるのである。
The present inventors have discovered that the conventional example has a drawback in such a short pulse RF electric signal transmitting/receiving circuit. FIG. 3 shows an example of a conventional ultrasonic transmitting/receiving circuit, in which the output of an RF continuous wave oscillator 100 is converted into an RF pulse signal with a repetition period t□ and a duration t by an RF analog switch 110. After amplifying this signal with a power amplifier 120, it is applied via a directional coupler 125 to a probe system 130 consisting of a lens and a piezoelectric film. The RF electrical signal, including the reflected ultrasound signal (as shown in FIG. 2) from the sample, is again passed through the directional coupler 12'5 to the variable RF amplifier 140.
After being amplified by the RF detector 150, it is diode-detected and converted into a video signal, and the sampling circuit 160 (sample and hold circuit, etc.) extracts the magnitude of only the echo C and sends the image to the CRT. It becomes a signal.

かかる構成において、RFアナログスイッチ110はR
F連続波発振器100の出力RF倍信号充分にオン・オ
フする事が必要である。例えば、連続波発振器100の
出力レベルをOdBm、パワー・アンプ120の増巾度
を40dB、アナログ・スイッチのオン・オフ比を60
dBとすれば、継続時間t、の間は、出力レベル+40
 d B niでその他の時間は一20dBmの出力レ
ベルのRFパルス信号が探触子系130に印加されるこ
とになる。ところで、試料からの反射信号の大きさと印
加したRFパルス信号の大きさの比、即ち探触子系の感
度は、通例−70dB程度であるから、上記条件下では
、通例−30dBmの強度の反射信号が得られることに
なるが、この大きさは上記のオフ時の印加信号レベルよ
り小さくなってしまい、このオフ時のRF倍信号加算さ
れて、互いに干渉しあうのである。第4図は、この状況
を示したもので、検波信号は、第2図のように、本来は
波線の如くなるべき場合に、上記干渉により実線のよう
に小さくなったり、時には負の信号を発生させたりする
のである。又、本来、信号の得られない時間領域にも上
記オフ信号が検出されて一定のベース信号を与え、これ
は受信系に発振などの悪影響を及ぼすのである。市販の
RFアナログ・スイッチのオン・オフ比は60dB程度
であることから、従来は、かかるアナログ・スイッチを
2〜3段、直列接続し、全体で120〜180dBのオ
ン・オフ比を得る試みがなされている。かかるときは上
記オフ信号は、−80dBm〜−140dBmとなり、
常用の受信器のノイズ・レベル以下になり、上記干渉現
象による悪影響を除去することができるからである。と
ころが、かかる構成においても連続波発振器100は、
常時発振しているから、この発振器のリーク信号や電磁
伝播の量を、同じく−80〜−120dB以下に低減す
る必要があり、発振器の電磁シールドや接続ケーブルの
電磁シールドに多大の努力が要求され、コストも高くな
るのが通例であった。
In such a configuration, the RF analog switch 110
It is necessary to sufficiently turn on and off the output RF multiplied signal of the F continuous wave oscillator 100. For example, the output level of the continuous wave oscillator 100 is set to OdBm, the amplification degree of the power amplifier 120 is set to 40dB, and the on/off ratio of the analog switch is set to 60dB.
dB, the output level is +40 during the duration t.
At d B ni, an RF pulse signal with an output level of -20 dBm is applied to the probe system 130 for the rest of the time. By the way, since the ratio of the magnitude of the reflected signal from the sample to the magnitude of the applied RF pulse signal, that is, the sensitivity of the probe system, is usually about -70 dB, under the above conditions, the reflection with an intensity of -30 dBm is usually Although a signal is obtained, the magnitude of this signal is smaller than the above-mentioned applied signal level when off, and the RF multiplied signals during off are added and they interfere with each other. Figure 4 shows this situation.As shown in Figure 2, when the detected signal should normally be like a wavy line, due to the above interference it becomes smaller as shown in the solid line, or sometimes becomes a negative signal. It causes it to occur. Furthermore, the off-signal is detected even in a time domain where no signal is normally obtained, and a constant base signal is provided, which has an adverse effect on the receiving system, such as oscillation. Since the on/off ratio of commercially available RF analog switches is about 60 dB, conventional attempts have been made to connect two or three stages of such analog switches in series to obtain an overall on/off ratio of 120 to 180 dB. being done. In such a case, the above off signal will be -80dBm to -140dBm,
This is because the noise level is lower than that of a commonly used receiver, and the adverse effects of the above-mentioned interference phenomenon can be removed. However, even in such a configuration, the continuous wave oscillator 100
Since it is constantly oscillating, it is necessary to reduce the amount of leakage signals and electromagnetic propagation of this oscillator to below -80 to -120 dB, which requires a great deal of effort in the electromagnetic shielding of the oscillator and the electromagnetic shielding of the connecting cable. However, the cost was also usually high.

〔発明の目的〕[Purpose of the invention]

本発明は、かかる点を鑑みてなされてもので、簡単な構
成で短かいRFパルス電気信号を送受信することを可能
にし、上記リークRF信号を排除してオン/オフ比の優
れた超音波送受信回路を提供することを目的とする。
The present invention has been made in view of these points, and makes it possible to transmit and receive short RF pulse electric signals with a simple configuration, eliminates the leakage RF signal, and achieves ultrasonic transmission and reception with an excellent on/off ratio. The purpose is to provide circuits.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、連続波発振器の出力信号の周波数を切
りかえることにより、オン時は使用超音波周波数で発振
させ、オフ時は該周波数により充分に離れた周波数で発
振させることにより上記目的を達せんとするものである
。以下、図面を用いて本発明の実施例をもとに、詳しく
説明する。
The gist of the present invention is to achieve the above object by switching the frequency of the output signal of the continuous wave oscillator, so that when it is on, it oscillates at the used ultrasonic frequency, and when it is off, it oscillates at a sufficiently distant frequency. This is what I am trying to do. DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

〔発明の実施例〕[Embodiments of the invention]

第5図は、本発明の1実施例を示すもので、VCO(V
oltage Controlled 0scilla
tor)発振器210、RFアナログ・スイッチ220
゜VCO制御回路200、パワアンプ230、方向性結
合器240、整合器250、探触子系260、RF受信
アンプ270、A G C(A utomaticGa
in Comtroll )回路280、RF検波波2
90及び標本化回路300からなる。vCO制御回路2
00は、主として700発振器210の周波数制御電圧
端子に、可変振111のパルス波形を印加する働きを荷
っている。700発振器210の電圧−周波数特性が例
えば第6図の如き場合、最大v1、最小v0のパルス形
(第7図(a))が加えられると、700発振器210
は、周波数f。
FIG. 5 shows one embodiment of the present invention, in which VCO (V
oltage Controlled 0scilla
tor) oscillator 210, RF analog switch 220
゜VCO control circuit 200, power amplifier 230, directional coupler 240, matching box 250, probe system 260, RF receiving amplifier 270, AGC (AutomaticGa
(in Control) circuit 280, RF detection wave 2
90 and a sampling circuit 300. vCO control circuit 2
00 mainly has the function of applying a pulse waveform of variable oscillation 111 to the frequency control voltage terminal of the 700 oscillator 210. For example, if the voltage-frequency characteristics of the 700 oscillator 210 are as shown in FIG.
is the frequency f.

とjoの発振を交互に繰り返すことになる。本実施例で
は、送受信の周波数帯域として100MHz〜IGHz
でパルス巾t−=100naecを実現しているのであ
るが、700発振器として周波数制御電圧として0〜1
5voltで、Q voltのとき300MHz、2 
voltのとき500MHz、15voltのとき13
00MHzの特性のものを用いている。VCO制御信号
としテVt = 15volt、■、 = 2 vol
tのパルス波形(t a = 100 n5ec)を用
いると、700発振器210は継続時間t1の間は、5
00MHzで、又その他の時間域では1300MHzの
発振を繰り返すことになる。
The oscillations of and jo are repeated alternately. In this embodiment, the frequency band for transmission and reception is 100MHz to IGHz.
The pulse width t-=100naec is achieved with 700 oscillator, and the frequency control voltage is 0 to 1.
5 volt, Q volt 300MHz, 2
500MHz for volt, 13 for 15volt
00MHz characteristic is used. As a VCO control signal, Vt = 15 volts, ■, = 2 vol
Using a pulse waveform of t (t a = 100 n5ec), the 700 oscillator 210 generates 5
At 00 MHz, oscillation at 1300 MHz is repeated in other time ranges.

かかる700発振器の出力を、第7図(c)の如きパル
ス信号でオン・オフされるアナログスイッチ220を介
してパワー・アンプ230に印加するのである。従って
、パワー・アンプの出力は第7図(d)の如くなる6 かかるRFパルス電気信号を方向性結合器240、整合
回路250を介して探触子系260に印加すると整合器
250、方向性結合器240を介して第7図(e)の如
く、周波数f。(=500MHz)の反射信号が得られ
る。この信号が、受信アンプ270で増巾される際、こ
のアンプの帯域を100M Hz〜IGHzに選ぶと(
これはアンプの選択又は帯域フィルタによって実現され
る)、反射エコー以外のベースに存在する周波数f□ 
(= 1300M Hz )の成分は、除去されること
になるのである。受信アンプのかかる出力は、従来と同
様、AGCアンプ280で増巾後、RF検波器290で
ビデオ信号に変換され、標本化回路300によって、エ
コーCのみ取り出され画像信号を提供するのである。
The output of the 700 oscillator is applied to a power amplifier 230 via an analog switch 220 that is turned on and off by a pulse signal as shown in FIG. 7(c). Therefore, the output of the power amplifier becomes as shown in FIG. As shown in FIG. 7(e), the frequency f is transmitted through the coupler 240. (=500MHz) reflected signal is obtained. When this signal is amplified by the receiving amplifier 270, if the band of this amplifier is selected from 100 MHz to IGHz (
This is achieved by amplifier selection or bandpass filters), the frequencies present at the base other than the reflected echo f□
(=1300MHz) component will be removed. As in the conventional case, the output of the receiving amplifier is amplified by the AGC amplifier 280, converted to a video signal by the RF detector 290, and only the echo C is extracted by the sampling circuit 300 to provide an image signal.

以上の説明で明らかな如く、本発明では、従来のように
単一の周波数成分を有するRF倍信号オン・オフするの
とは異なり、送受信システムの実効的な帯域内の周波数
成分子。と、帯域外の周波数成分子、とを切り換える方
式を採用することにより、印加信号の継続時間t、以外
の時刻には帯域内周波数成分子0を完全に除鶴すること
を可能にし、前記のオフ時の同一周波数成分と反射エコ
ー間の干渉などの悪影響を除去する手段を提供す 、。
As is clear from the above description, in the present invention, unlike the conventional method of turning on and off an RF multiplied signal having a single frequency component, the present invention uses frequency components within the effective band of the transmitting/receiving system. By adopting a method of switching between 0 and 0 of the frequency component outside the band, it is possible to completely eliminate the in-band frequency component 0 at times other than the duration t of the applied signal, and the above-mentioned Provides a means to eliminate negative effects such as interference between the same frequency component and reflected echoes when off.

るのである。かかる構成は、従来構成に、■CO制御信
号回路200を付加するだけで実現でき、しかも本質的
に電磁シールドによる同一周波数成分の混入の除去が不
要であることから、簡便かつ安価に実現することができ
る。
It is. Such a configuration can be realized simply by adding the CO control signal circuit 200 to the conventional configuration, and since it is essentially unnecessary to remove the mixing of the same frequency components by electromagnetic shielding, it can be realized easily and inexpensively. Can be done.

上記VCO制御回路200は、常用のTTL(T ra
ngistor T ransistor L ogi
c)素子を用いて容易に作成することができる。第8図
は、かかる制御回路の一実施例を示すものであるが、第
9図(a)の如き基本クロックより、ワン・ショット4
00により第9図(b)の如き、継続時間t1のパルス
波形を発生する。この出力は、例えば、オープン・コレ
クタのTTL素子410とダイオード430.可変抵抗
440からなる回路により、Lowレベルを0〜15v
oltの任意の電圧にクランプすることにより、第9図
(C)の如く、highレベルが15voltでlow
レベルがVvoltのVCO制御電圧信号に変換される
のである。ここで、コンデンサ420は、クランプの基
準電圧Vがダイオード440のオン・オフによりふられ
るのを防ぐ為にそう入しである。
The VCO control circuit 200 is a commonly used TTL (Tra
ngistor transistor logi
c) It can be easily created using elements. FIG. 8 shows an embodiment of such a control circuit, in which one-shot 4
00, a pulse waveform of duration t1 as shown in FIG. 9(b) is generated. This output is, for example, an open collector TTL element 410 and a diode 430 . A circuit consisting of variable resistor 440 adjusts the low level from 0 to 15V.
By clamping to an arbitrary voltage of olt, the high level becomes low at 15 volts as shown in Figure 9 (C).
The level is converted to a VCO control voltage signal of Vvolt. Here, the capacitor 420 is inserted in order to prevent the reference voltage V of the clamp from being fluctuated by turning on and off the diode 440.

以上述べた如く、本発明によれば、安価で簡単なりCO
制御回路を付加することにより、従来の多段アナログス
イッチ方式で得られないような、オン・オフ比を提供し
、RFリーク信号や、残留RFの成分を除去することに
より、これらの信号と所望の反応信号との間の干渉によ
る誤検出を除去する回路構成を提供するものである。勿
論、かかる効果を具現する制御回路としては、上記実施
例以外の、本質的に発振周波数をシフト・キーイングす
るものであれば公知の技術的手段を用いてもよいこと、
又、オフ周波数f、として、オン周波数j0より小さな
値(前記実施例では、f、=500MHzに対しf、=
30MHz)を用いても同等な効果が得られることは明
らかであろう。
As described above, according to the present invention, it is inexpensive, simple, and CO
By adding a control circuit, we can provide an on-off ratio that cannot be obtained with conventional multi-stage analog switch systems, and by removing RF leak signals and residual RF components, we can connect these signals to the desired This provides a circuit configuration that eliminates false detections due to interference with reaction signals. Of course, as a control circuit to realize such an effect, any known technical means other than the above-mentioned embodiments may be used as long as it essentially shifts and keys the oscillation frequency.
Also, the off-frequency f is a value smaller than the on-frequency j0 (in the above embodiment, f,=500MHz and f,=500MHz).
It is clear that the same effect can be obtained even if the frequency is 30 MHz).

又、本実施例では、超音波顕微鏡として反射型構成につ
いてのみ述べたが、透過型や干渉Bモード、位相差など
、本質的にパルス波形の超音波の送受信の必要な構成で
も、本発明が大きな効果を発揮することを付言したい。
Further, in this embodiment, only a reflection type configuration was described as an ultrasound microscope, but the present invention can also be applied to configurations that essentially require transmission and reception of pulse waveform ultrasonic waves, such as transmission type, interference B mode, and phase difference. I would like to add that it has a great effect.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によればオン/オフ比の優れた超
音波送受波回路が得られ、探触子からの受波信号に対す
るリーク信号や電磁伝播による信号の干渉を容易に排除
することができる。
As described above, according to the present invention, an ultrasonic wave transmitting/receiving circuit with an excellent on/off ratio can be obtained, and it is possible to easily eliminate leakage signals and signal interference due to electromagnetic propagation with respect to the received signal from the probe. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図を本発明を適用する超音波顕微鏡の構成
、及び動作波形を示す図、第3図は従来の送受信回路を
示すブロック図、第4図は第3図の回路による干渉を示
す動作波形図、第5図〜第9図は本発明の実施例及びそ
の動作波形を示すブロック図及び波形図である。 200−VCO制御回路、210・VCO発振器、22
0・・・アナログ・スイッチ、230・・・パワー・ア
ンプ、240・・・方向性結合器、250・・・整合器
、260・・・探触子系、270・・・RF受信アンプ
、280・・・AGC回路、290・・・RF検波器、
300・・・標本化回路6 冨1図 ヤ 〕 第 2 図 Z3図 ¥J 4 囲 ”l!1i71121 ■ 7 図 扁 6 図 1 q 図
Figures 1 and 2 are diagrams showing the configuration and operating waveforms of an ultrasound microscope to which the present invention is applied, Figure 3 is a block diagram showing a conventional transmitting/receiving circuit, and Figure 4 is interference caused by the circuit in Figure 3. FIGS. 5 to 9 are block diagrams and waveform diagrams showing an embodiment of the present invention and its operating waveforms. 200-VCO control circuit, 210-VCO oscillator, 22
0... Analog switch, 230... Power amplifier, 240... Directional coupler, 250... Matching box, 260... Probe system, 270... RF receiving amplifier, 280 ...AGC circuit, 290...RF detector,
300... Sampling circuit 6 1 Figure

Claims (1)

【特許請求の範囲】[Claims] 1、パルス超音波を用いる超音波送受信回路において、
超音波送信パルスが、2つの動作周波数の切り換えによ
り構成され、該周波数の1つが、送受信回路の周波数帯
域の外にあることを特徴とする超音波送受信装置。
1. In an ultrasonic transmitter/receiver circuit using pulsed ultrasonic waves,
An ultrasonic transmitting/receiving device characterized in that an ultrasonic transmitting pulse is constituted by switching between two operating frequencies, one of the frequencies being outside the frequency band of the transmitting/receiving circuit.
JP59058261A 1984-03-28 1984-03-28 Ultrasonic transmitting-receiving apparatus Granted JPS60202356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59058261A JPS60202356A (en) 1984-03-28 1984-03-28 Ultrasonic transmitting-receiving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59058261A JPS60202356A (en) 1984-03-28 1984-03-28 Ultrasonic transmitting-receiving apparatus

Publications (2)

Publication Number Publication Date
JPS60202356A true JPS60202356A (en) 1985-10-12
JPH0327069B2 JPH0327069B2 (en) 1991-04-12

Family

ID=13079211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59058261A Granted JPS60202356A (en) 1984-03-28 1984-03-28 Ultrasonic transmitting-receiving apparatus

Country Status (1)

Country Link
JP (1) JPS60202356A (en)

Also Published As

Publication number Publication date
JPH0327069B2 (en) 1991-04-12

Similar Documents

Publication Publication Date Title
KR100406097B1 (en) Ultrasound imaging system and method using the weighted chirp signals
Olver et al. FMCW radar for hidden object detection
CA2383515C (en) Ultrasonic transmitter/receiver by pulse compression
JPS60202356A (en) Ultrasonic transmitting-receiving apparatus
US3231852A (en) Combination radio receiver and underwater doppler acoustical device
US4386530A (en) Ultrasonic imaging equipment
JPS6322522Y2 (en)
US4512196A (en) Ultrasound imaging with FM detection
JPS60260845A (en) Ultrasonic transmitting and receiving device
Shibata et al. C-mode ultrasonic imaging by an electronically scanned coaxial circular spherical receiving array
CN214122744U (en) Novel low-voltage frequency domain synthesis type ultrasonic microscope circuit
JPH0518943A (en) Method and device for detecting internal defect
JPH0232579B2 (en)
Meriläinen et al. Acoustic interference microscope
SU1682779A1 (en) Method for examination of microspecimens with the aid of focused supersonic waves
JPH02310463A (en) Ultrasonic microscope
US4096467A (en) Ultrasonic image conversion
JPH0323864B2 (en)
JPH11311669A (en) Distance measuring device
JPS6218170B2 (en)
JPS5950937B2 (en) ultrasound microscope
CN112881535A (en) Novel low-voltage frequency domain synthesis type ultrasonic microscope circuit design method
RU1815615C (en) Parametric acoustic locator
JPS60200183A (en) Method and apparatus for removing ringing of embedded article searching apparatus
WO1997048501A1 (en) Ultrasonic transducer using tone burst pulses