JPS60200109A - Automatic measurement of three-dimensional shape - Google Patents

Automatic measurement of three-dimensional shape

Info

Publication number
JPS60200109A
JPS60200109A JP5528284A JP5528284A JPS60200109A JP S60200109 A JPS60200109 A JP S60200109A JP 5528284 A JP5528284 A JP 5528284A JP 5528284 A JP5528284 A JP 5528284A JP S60200109 A JPS60200109 A JP S60200109A
Authority
JP
Japan
Prior art keywords
axis
robot
light receiving
position detector
receiving position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5528284A
Other languages
Japanese (ja)
Inventor
Shinichi Watari
亘 晋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Jidosha Kogyo KK
Original Assignee
Kanto Jidosha Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Jidosha Kogyo KK filed Critical Kanto Jidosha Kogyo KK
Priority to JP5528284A priority Critical patent/JPS60200109A/en
Publication of JPS60200109A publication Critical patent/JPS60200109A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Abstract

PURPOSE:To make it possible to automatically measure a three-dimensional shape in a non-contact state, by attaching an optical system equipped with a light source and a light receiving position detector to the leading end of a robot and performing the measurement of a distance in an orthogonal axial direction while the robot is allowed to perform surface scanning. CONSTITUTION:X-axis and Y-axis coordinates data for prescribing the operative position of a robot 10 and Z-axis coordinates data for locating an optical system consisting of a light source 2 and a light receiving position detector 5 in the operable range of an object 1 to be measured are inputted to a robot control apparatus 15 prior to measurement and the optical system is made movable on one axis among X-, Y- and Z-axis by servo control so as to bring the output signal of the light receiving position detector 5 to zero. In measurement, the light receiving position detector 5 is operated every when the robot 10 is moved to each operative position for the purpose of surface scanning to move the robot 10 on one axis and the coordinates value of one axis, at the point of time when the zero signal is generated, is detected and coordinates data of remaining two axes at each operation position are taken out.

Description

【発明の詳細な説明】 本発明は、自動車の外板等三次元曲面の形状を自動的に
Al1定する三次元形状の自動測定方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic three-dimensional shape measuring method for automatically determining Al1 of the shape of a three-dimensional curved surface such as an outer panel of an automobile.

従来、三次元形状を測定する場合水平及び垂直面で移動
可能な触針を手で逐次測定点にセットして、その時のX
、Y及びZ軸の座標値を位置検出器で読取っていた。し
たがって、測定対象物を触針で損傷する恐れがあるだけ
でなく、自動測定は不可能であった。
Conventionally, when measuring a three-dimensional shape, a stylus that is movable in horizontal and vertical planes is manually set at successive measurement points, and the X
, Y and Z axis coordinate values were read with a position detector. Therefore, not only is there a risk that the object to be measured may be damaged by the stylus, but automatic measurement is also impossible.

よって、本発明は非接触でしかも三次元形状を自動測定
する方法を提供することを目的とする6本発明はロボッ
ト先端に非接触測距用の光学系を取イ1け、そしてロボ
ットに面走査させることにより、面走査用の2軸の座標
データと各動作位置での直交軸方向の測距データとを測
定データとすることにより前記目的を達成した。また、
非接触測距用光学系は、第1図に示すように測定対象物
1へ光ビームを照射する光源2と、結像レンズ3を通っ
て反射してきたスポット像の受光軸4に対する一致及び
ずれを検出する受光位置検出器5とから構成する。そし
てこの検出器の出力信号が一致によりゼロとなるように
ロボットを直交軸方向に移動させ、その移動量を基に測
距を行なう。
Therefore, it is an object of the present invention to provide a method for automatically measuring three-dimensional shapes in a non-contact manner. By scanning, the above object was achieved by using two-axis coordinate data for surface scanning and distance measurement data in orthogonal axis directions at each operating position as measurement data. Also,
As shown in FIG. 1, the non-contact distance measuring optical system includes a light source 2 that irradiates a light beam onto a measurement object 1, and a spot image reflected through an imaging lens 3, which measures the coincidence and misalignment of a spot image with respect to a light receiving axis 4. and a light receiving position detector 5 for detecting the light receiving position. Then, the robot is moved in the orthogonal axis direction so that the output signal of this detector becomes zero due to coincidence, and distance measurement is performed based on the amount of movement.

次に本発明をこれを実施するだめの装置を基に説明する
Next, the present invention will be explained based on an apparatus for carrying out the invention.

第2図において、11はロボット10の本体の伸縮及び
回転可能な胴、12はスライド可能なアーム。
In FIG. 2, 11 is a telescopic and rotatable body of the robot 10, and 12 is a slidable arm.

13はアーム12に数句けられたハンドである。このハ
ンドには、第1図に示したような測定対象物1を光ビー
ムで照射する光源、例えばレーザ発振器2と、測定対象
物1からの反射スポット光の結像レンズ3及びそのスポ
y)像を受光する受光位置検出器5を含むカメラとから
成る光学系がド方に向けられて数句けられている。受光
位置検出器5は、例えば光スポットの位置検出用センサ
として周知のシリコンフォトダイオードを応用したPS
D(Position 5ensitiveDevic
e)を利用し、PSDの出力電流を演算回路により電圧
変換を行ない、スポ・ント像が受光軸と一致したときは
ゼロ信号、そして上又は下へずれると正又は負の対応し
たレベルの位置信号を発生させる。15はロポッ)10
の動作位置を制御するロボット制御装置であり、胴11
の伸縮によりZ軸上の移動、胴11の回転及びアームI
2のスライドによりX軸及びY軸により規定される面の
走査を行わせる。
13 is a hand that was played several times by arm 12. This hand includes a light source such as a laser oscillator 2 that irradiates the measurement object 1 with a light beam as shown in FIG. An optical system consisting of a camera including a light-receiving position detector 5 for receiving an image is shown facing toward the camera. The light receiving position detector 5 is, for example, a PS using a well-known silicon photodiode as a sensor for detecting the position of a light spot.
D (Position 5 sensitiveDevice
Using e), the output current of the PSD is converted into voltage by an arithmetic circuit, and when the spot image coincides with the light receiving axis, it becomes a zero signal, and when it shifts upward or downward, it becomes the position of the corresponding positive or negative level. generate a signal. 15 is Ropop) 10
It is a robot control device that controls the operating position of the trunk 11.
Movement on the Z axis, rotation of the trunk 11 and arm I due to the expansion and contraction of
A surface defined by the X-axis and the Y-axis is scanned by the second slide.

第3図は、ロボット制御装置15のうち胴11の伸縮駆
動を行うサーボモータ7を制御するZ軸制御部20と、
本発明による付加回路部3oとを示す。Z軸制御部20
のうち、21はサーボモータ7に連動して胴11のZ軸
位置に相当する信号を発生する位置検出器例えばロータ
リエンコーダ8の指示値とY軸の各座標データAnとを
比較する比較器、22はD/Aコンバータ、23はトラ
イ八である。付加回路部30のうち、 31は受光位置
検出器5の出力信号とセロレベルとを比較する比較器、
32は増幅器、33はアナログスイッチ、34は増幅器
32のゼロ出力を検出するゼロ検出回路、35はこのゼ
ロ出力の発生時点で位置検出器8の指示値を記録するレ
ジスタである。アナログスイッチ33は、ロボットlO
が各動作位置に移動するごとにロボット制御装置15で
発生する選択信号により増幅器32の出力を選択する。
FIG. 3 shows a Z-axis control section 20 that controls the servo motor 7 that drives the cylinder 11 to expand and contract, in the robot control device 15;
An additional circuit section 3o according to the present invention is shown. Z-axis control section 20
Among them, 21 is a position detector that generates a signal corresponding to the Z-axis position of the barrel 11 in conjunction with the servo motor 7; for example, a comparator that compares the indicated value of the rotary encoder 8 with each Y-axis coordinate data An; 22 is a D/A converter, and 23 is a tri-eight. Of the additional circuit section 30, 31 is a comparator that compares the output signal of the light receiving position detector 5 with the cello level;
32 is an amplifier, 33 is an analog switch, 34 is a zero detection circuit that detects the zero output of the amplifier 32, and 35 is a register that records the indicated value of the position detector 8 at the time when the zero output occurs. The analog switch 33 is the robot lO
The output of the amplifier 32 is selected by a selection signal generated by the robot control device 15 each time the robot moves to each operating position.

また、この選択信号はゼロ検出回路34にも供給され、
この人力ごとにゼロ検出動作を行う。
This selection signal is also supplied to the zero detection circuit 34,
A zero detection operation is performed for each manual effort.

動作は次の通りである。The operation is as follows.

測定に先立って、ロポーyト10の動作位置を規定する
X軸及びY軸の座標データ並びに光学系2〜5を測定対
象物7の表面より手前であってその動作可能範囲に位置
伺けするY軸の座標データを例えばCADシステムより
数値データとしてロボット制御装置15へ入力する。測
定に際しては、先ず座標データXi、Ylによりロボッ
ト10はX及びY軸位置を規定され、また座標データZ
lが比較器21へ与えられることによりZ軸方向の位置
を規定さ、ル。
Prior to measurement, the X-axis and Y-axis coordinate data that define the operating position of the robot 10 and the optical systems 2 to 5 are located in front of the surface of the object to be measured 7 and within their movable range. Y-axis coordinate data is input to the robot control device 15 as numerical data from, for example, a CAD system. During measurement, the robot 10 first defines the X and Y axis positions using the coordinate data Xi and Yl, and also the coordinate data Z
By supplying l to the comparator 21, the position in the Z-axis direction is defined.

したかって光学系2〜5は測定点aに位置決めされる。Therefore, the optical systems 2 to 5 are positioned at the measurement point a.

続いて前記の選択信号が供給されると、アナログスイッ
チ33が切換わる。この状態でグ光位置検出器5へは測
定点aの真下の測定対象物lから反射スポットが受光軸
4に対してずれて入射しており、比較器31は対応する
極性及び及び振幅の誤差信号を発生している。したがっ
てサーボモータ7は光学系2〜5を距離Zl’だけ下降
させる。
Subsequently, when the selection signal is supplied, the analog switch 33 is switched. In this state, a reflected spot from the measuring object l directly below the measuring point a is incident on the optical position detector 5 with a deviation from the light receiving axis 4, and the comparator 31 detects the corresponding polarity and amplitude error. Generating a signal. Therefore, the servo motor 7 lowers the optical systems 2 to 5 by a distance Zl'.

そしてゼロ検出回路34はロボット10のこの測距動作
終了を意味する増幅器32のゼロ出力を検出してその時
点の受光位置検出器8の指示値Zl+ZI′をレジスタ
35に記録させる。ただし、測定点aの座標値が図示の
場合と異り測定対象物lの内側に設定されている場合、
サーボモータ7は比較器31の逆極性の誤差信号に応答
して光学系2〜5を上yさせ、指示値はZl−Zl’と
なる。
Then, the zero detection circuit 34 detects the zero output of the amplifier 32, which indicates the end of this distance measuring operation of the robot 10, and causes the register 35 to record the indicated value Zl+ZI' of the light receiving position detector 8 at that time. However, if the coordinate values of measurement point a are set inside the measurement object l, unlike the case shown in the figure,
The servo motor 7 moves the optical systems 2 to 5 upward in response to the error signal of the opposite polarity from the comparator 31, and the indicated value becomes Zl-Zl'.

次に測定点すの座標データX2 、 Y2 、22に対
応するロボット動作が行われ1次の選択信号により伺加
回路30は同様にY軸の測距動作を行ない、レジスタ3
5に測定点すの指示値Z2+22′が記録される。以下
ロボット10が測定点c、d・・・・・・と移動するご
とに、Z軸の指示値Z3+23 ′、 Z4+ 24 
’・・・・・・が得られる。さらにロポント10は測定
対象物lのこのような横方向の走査を縦方向に繰り返す
ことにより、その都度のY軸及びY軸の座標値と併せて
測定対象物lの全表面の三次元形状の測定データXl、
 Yl、Zl+Zl′; X2.Y2.Z2+Z2’ 
; ・−・−=−;Xn、 Yn、 Zn+Zn′が得
られる。
Next, the robot motion corresponding to the coordinate data X2, Y2, 22 of the measurement point S is performed, and in response to the primary selection signal, the scanning circuit 30 similarly performs a distance measuring operation on the Y axis, and the register 3
5, the indicated value Z2+22' of the measurement point is recorded. Thereafter, each time the robot 10 moves to measurement points c, d, etc., the Z-axis indicated values Z3+23', Z4+24
'... is obtained. Furthermore, by repeating such horizontal scanning of the object to be measured in the vertical direction, the Ropont 10 calculates the three-dimensional shape of the entire surface of the object to be measured, along with the Y-axis and Y-axis coordinate values each time. Measurement data Xl,
Yl, Zl+Zl'; X2. Y2. Z2+Z2'
; ・-・-=-; Xn, Yn, Zn+Zn' are obtained.

尚、前述の実施例においては、Z軸方向のロボット測距
動作を胴11の伸縮のみで行わせたが、伸縮しない回転
・旋回式のロポントを用いても同様に面走査しつつ、そ
の直交方向に測距を行うことは可能である。また測距方
向は垂直方向に限らず、例えば水平方向にすることもで
きる。第3図において、比較器31は受光位置検出器5
の出力信号の電圧増幅器と置換することも考えられる。
In the above-mentioned embodiment, the robot distance measurement operation in the Z-axis direction was performed only by the expansion and contraction of the trunk 11, but a rotary/swiveling robot that does not extend or contract may also be used to scan the surface in the same way and perform the orthogonal distance measurement operation. It is possible to perform ranging in the direction. Furthermore, the direction of distance measurement is not limited to the vertical direction, but can also be, for example, the horizontal direction. In FIG. 3, the comparator 31 is connected to the light receiving position detector 5.
It is also possible to replace the output signal with a voltage amplifier.

以北、本発明により三角測量法の原理を利用した光学系
をロポ7)先端4こ取付け、ロポ、ントに面走査をさせ
つつ直交軸方向の測距を行うことにより、非接触の三次
元形状の測定が可能となる。また、光学系のスポット像
を受光する検出器が、受光軸と一致するとゼロに信号を
出力し、ずれに対応した位置信号を出力するために簡単
、かつ高精度にサーボ制御による測定が可能となる。
Since then, according to the present invention, an optical system using the principle of triangulation method has been installed at the tip of the robot (7), and the distance measurement in the orthogonal axis direction is performed while scanning the surface of the robot. It becomes possible to measure the shape. In addition, the detector that receives the spot image of the optical system outputs a zero signal when it matches the light receiving axis, and outputs a position signal corresponding to the deviation, making it possible to easily and accurately measure using servo control. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による三角測量法を利用した測距方法の
説明図、第2図は本発明を実施する装置の概略構成図、
第3図はその主要部のブロック回路図並びに第4図はそ
の動作説明図である。 ■・・・測定対象物、2・・・光源、5・・・受光位置
検出器 代理人 福 留 正 治 第1 同 第2図 第4図
FIG. 1 is an explanatory diagram of a distance measuring method using triangulation according to the present invention, and FIG. 2 is a schematic configuration diagram of an apparatus implementing the present invention.
FIG. 3 is a block circuit diagram of the main part thereof, and FIG. 4 is an explanatory diagram of its operation. ■...Object to be measured, 2...Light source, 5...Representative of light receiving position detector Masaharu Fukudome 1 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】 測定対象物へ光ビームを照射する光源とその反射光ヒー
ムのスポット像が受光軸に一致するとゼロ信号をそして
ずれると対応したレベル及び極性の位置信号を出力する
受光位置検出器とを備えた光学系をロボットの先端に取
付け、 前記ロボットを前記受光位置検出器の出力信号がゼロに
なるようにサーボ制御によりX、Y及びZ軸の3軸のう
ち1つの軸上を移動し得条ようにし、 測定に際して前記ロボットを、残りの2軸により規定さ
れる平面を走査する座標データ並びにこの各座標データ
位置で前記受光位置検出器が動作し得る範囲の前記1つ
の軸の座標データを動作位置データとして作動させ、 前記ロボットが前記平面走査のために各動作位置へ移動
するごとに、前記受光位置検出器を作動させて、前記ロ
ボットを前記1つの軸上で移動させることにより、前記
ゼロ信号が発生した時点の前記1つの軸の座標値を検出
し、 しかして、各動作位置の前記残りの2つの軸の座標デー
タ並びに前記1つの軸の検出した座標値を測定データと
することを特徴とする三次元形状の自動測定方法。
[Claims] Light receiving position detection that outputs a zero signal when a spot image of a light source that irradiates a light beam onto an object to be measured and its reflected beam beam coincides with the light receiving axis, and outputs a position signal with a corresponding level and polarity when the spot image deviates from the light receiving axis. An optical system equipped with a detector is attached to the tip of the robot, and the robot is moved on one of the three axes of X, Y, and Z axes by servo control so that the output signal of the light receiving position detector becomes zero. coordinate data for scanning a plane defined by the remaining two axes, and the coordinate data of the one axis in which the light receiving position detector can operate at each coordinate data position. actuating the coordinate data as operation position data, and each time the robot moves to each operation position for the plane scanning, actuating the light receiving position detector to move the robot on the one axis; The coordinate value of the one axis at the time when the zero signal is generated is detected, and the coordinate data of the remaining two axes at each operating position and the detected coordinate value of the one axis are converted into measurement data. An automatic measuring method for three-dimensional shapes, characterized by:
JP5528284A 1984-03-24 1984-03-24 Automatic measurement of three-dimensional shape Pending JPS60200109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5528284A JPS60200109A (en) 1984-03-24 1984-03-24 Automatic measurement of three-dimensional shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5528284A JPS60200109A (en) 1984-03-24 1984-03-24 Automatic measurement of three-dimensional shape

Publications (1)

Publication Number Publication Date
JPS60200109A true JPS60200109A (en) 1985-10-09

Family

ID=12994230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5528284A Pending JPS60200109A (en) 1984-03-24 1984-03-24 Automatic measurement of three-dimensional shape

Country Status (1)

Country Link
JP (1) JPS60200109A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280148A (en) * 1975-12-26 1977-07-05 Mitsubishi Motors Corp Contactless measuring method and apparatus for same
JPS5847209A (en) * 1981-09-15 1983-03-18 Anritsu Corp Device for measuring surface configuration

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280148A (en) * 1975-12-26 1977-07-05 Mitsubishi Motors Corp Contactless measuring method and apparatus for same
JPS5847209A (en) * 1981-09-15 1983-03-18 Anritsu Corp Device for measuring surface configuration

Similar Documents

Publication Publication Date Title
USRE33774E (en) Coordinate measuring and testing machine
US5341183A (en) Method for controlling projection of optical layup template
US4660970A (en) Method and apparatus for the contact-less measuring of objects
JP4015161B2 (en) Industrial robot controller
JP2510216B2 (en) Method for calibrating sensors in industrial robots
US20200055191A1 (en) Robot system with supplementary metrology position coordinates determination system
JP3678915B2 (en) Non-contact 3D measuring device
US5506641A (en) Apparatus for controlling projection of optical layup template
JP3754402B2 (en) Industrial robot control method and control apparatus
US4970401A (en) Non-contact triangulation probe system
US4730927A (en) Method and apparatus for measuring positions on the surface of a flat object
JPH0360956A (en) Non-contact profile control device
CN103885295A (en) Exposure apparatus and focusing and leveling method thereof
KR950014515B1 (en) Device for controlling non-contact digitizing
JPH04176543A (en) Control unit for digitizing
JP2594578B2 (en) Non-contact profile control device
JPH0123041B2 (en)
JPS60200109A (en) Automatic measurement of three-dimensional shape
JP3093192B2 (en) Work processing apparatus and computer-readable recording medium
JP2708195B2 (en) Teaching method and apparatus for three-dimensional laser beam machine
JP2001133244A (en) Method and apparatus for measurement of shape
JPH02311705A (en) Scanning type three-dimensional profile measuring apparatus
JPH0216965B2 (en)
JPH035846Y2 (en)
SU1739195A1 (en) Method of control over rectilinearity and device to implement it