JPH02311705A - Scanning type three-dimensional profile measuring apparatus - Google Patents

Scanning type three-dimensional profile measuring apparatus

Info

Publication number
JPH02311705A
JPH02311705A JP13501489A JP13501489A JPH02311705A JP H02311705 A JPH02311705 A JP H02311705A JP 13501489 A JP13501489 A JP 13501489A JP 13501489 A JP13501489 A JP 13501489A JP H02311705 A JPH02311705 A JP H02311705A
Authority
JP
Japan
Prior art keywords
sensor
measured
distance
dimensional
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13501489A
Other languages
Japanese (ja)
Inventor
Masatoshi Oto
大戸 正俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOUGAKUSHIYA ENG KK
OKADA KK
Original Assignee
KOUGAKUSHIYA ENG KK
OKADA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOUGAKUSHIYA ENG KK, OKADA KK filed Critical KOUGAKUSHIYA ENG KK
Priority to JP13501489A priority Critical patent/JPH02311705A/en
Publication of JPH02311705A publication Critical patent/JPH02311705A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure three-dimensional values at a high speed during continuous scanning by latching the data at a moment when a non-contact type sensor which is made to scan continuously passes a measuring point, and adding the distance measured with the sensor to the Z coordinate. CONSTITUTION:A material to be measured 7 comprising an elastic body, a soft body and the like having a three-dimensional profile is mounted on a table 8 in an X-Y plane. A three- axis driving mechanism 1 is provided on the table 8. A non-contact length measuring sensor 3 is attached to the mechanism 1 so that the sensor 3 can be freely moved in three-dimensional direction. Then, a point which is separated from the tip of the sensor 3 by a specified distance Z0 is used as an original point. The sensor 3 is moved up and down in the direction Z in conformity with the change in surface shape of the material to be measured 7 within a specified range + or -DELTAz. That is the Z coordinate of the material to be measured 7 is obtained by adding the output of the sensor 3 in response to the up-and-down movement to the Z position of the mechanism 1. When the position of the sensor 3 which is made to scan with the mechanism 1 within the X-Y plane agrees with a specified measuring point, the three-dimensional coordinates representing the X-Y-Z position of the sensor 3 and the distance measured with the sensor 3 are latched. At this time, the mechanism 1 is not required to stop. The material to be measured having the complicated three-dimensional profile can be measured highly accurately in a short time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はxy平平向内テーブル上に載置された被測定
物の2方向の値を測定するセンサをxy平面内で走査し
ながら、所定ピッチの格子点毎に被測定物のX Sys
 Zの3次元座漂を得る走査式3次元形状71111定
装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a sensor that measures values in two directions of a workpiece placed on an xy plane table. X Sys of the object to be measured for each grid point of the pitch
This invention relates to a scanning type three-dimensional shape 71111 determination device for obtaining Z three-dimensional drift.

〔従来の技術〕[Conventional technology]

このような3次元形状測定装置の従来例としては、接触
式タッチセンサと3軸移動機構とを組合せた装置がある
。この装置では、タッチセンサをxy平面内で走査しな
がら、タッチセンサの位置が所定ピッチの格子点からな
る計測点に一致すると、いったんxy力方向の移動を停
止する。そして、タッチセンサを2方向に降下させ、セ
ンサ先端が被測定物に接触する時の3軸移動機構の各軸
の位置を読み取り、1計測点のX5YsZの3次元座標
を求める。従って、この従来例は1計測点毎にセンサの
xy力方向の移動の停止、2方向への降下を繰り返さな
ければならず、連続的に測定が行えず、時間がかかる欠
点がある。特に、被測定物が意匠デザイン等の3次元自
由曲面のような複雑な形状を有する場合には、計測点の
数が膨大な数になるために、測定に多大の時間を要する
ことになる。
A conventional example of such a three-dimensional shape measuring device is a device that combines a contact type touch sensor and a three-axis movement mechanism. In this device, while scanning the touch sensor within the xy plane, once the position of the touch sensor coincides with a measurement point consisting of grid points at a predetermined pitch, movement in the xy force direction is temporarily stopped. Then, the touch sensor is lowered in two directions, and the position of each axis of the three-axis moving mechanism when the tip of the sensor contacts the object to be measured is read to determine the three-dimensional coordinates of X5YsZ of one measurement point. Therefore, in this conventional example, it is necessary to repeatedly stop the movement of the sensor in the x and y force directions and lower the sensor in two directions for each measurement point, which has the disadvantage that continuous measurement cannot be performed and it takes time. Particularly, when the object to be measured has a complex shape such as a three-dimensional free-form surface such as an architectural design, the number of measurement points becomes enormous, and therefore a large amount of time is required for measurement.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この発明は上述した事情に対処すべくなされたもので、
その目的はxy平面内の各計測点毎にセンサのxy定走
査停止することなく連続的に走査しながら、各計測点毎
のx、y、z値を高速に求めることができる走査式3次
元形状測定装置を提供することである。
This invention was made to deal with the above-mentioned circumstances,
Its purpose is to use a three-dimensional scanning method that can rapidly determine the x, y, and z values for each measurement point while continuously scanning each measurement point in the xy plane without stopping. An object of the present invention is to provide a shape measuring device.

〔課題を解決するための手段〕[Means to solve the problem]

この発明による走査式3次元形状測定装置は彼allJ
定物までの2方向の距離をflllJる非接触式のセン
サと、センサをxyT’面内で連続的に走査するととも
に、上記距離が一定になるようにセンサを2方向に移動
する3軸移動機構と、3軸移動機構により走査されるセ
ンサのxy平面内の位置が所定の計71P1点に一致し
た時にセンサのx、y、z位置を示す3次元座標とセン
サにより測られた距離とを取り込むラッチ回路とを具備
する。
The scanning three-dimensional shape measuring device according to this invention is
A non-contact sensor that measures the distance to a fixed object in two directions, and a three-axis movement that continuously scans the sensor in the xyT' plane and moves the sensor in two directions so that the distance is constant. The three-dimensional coordinates indicating the x, y, z position of the sensor and the distance measured by the sensor when the position of the sensor in the xy plane scanned by the mechanism and the 3-axis movement mechanism coincides with a predetermined total of 71P1 points. and a latch circuit for capturing the data.

〔作用〕[Effect]

この発明によれば、非接触式のセンサを用い、連続的に
走査されているセンサが計測点を通過する瞬間にデータ
をラッチし、3軸移動機構の2座標にセンサにより測ら
れた距離を加算することにより被測定物のz (Jを求
めるので、各計測点毎にセンサのxy定走査停止するこ
となく各計測点毎のx、y、z値を高速に求めることが
できる。
According to this invention, a non-contact type sensor is used, data is latched at the moment the continuously scanned sensor passes a measurement point, and the distance measured by the sensor is displayed on two coordinates of the three-axis movement mechanism. Since z (J) of the object to be measured is determined by addition, the x, y, and z values for each measurement point can be determined at high speed without stopping the constant x and y scanning of the sensor for each measurement point.

〔実施例〕〔Example〕

以下図面を参照してこの発明による走査式3次元形状測
定装置の一実施例を説明する。
An embodiment of the scanning three-dimensional shape measuring device according to the present invention will be described below with reference to the drawings.

第1図は実施例の全体構成を示す概略図である。FIG. 1 is a schematic diagram showing the overall configuration of the embodiment.

3次元形状を有する被Jlll定物7が載置されるxy
平面内のテーブル8上に設けられた3軸移動機構1に非
接触測長センサ3が取り付けられる。これにより測長セ
ンサ3はx、ySzの3方向に移動自在とされている。
xy on which the object 7 having a three-dimensional shape is placed
A non-contact length measurement sensor 3 is attached to a three-axis moving mechanism 1 provided on a table 8 in a plane. As a result, the length measurement sensor 3 is movable in three directions: x and ySz.

ここで、3軸移動機構1の最大移動量はX方向には40
00■、y方向には2000IIIi112方向には1
500IllI11であり、移動単位はO,01mm5
最大移動速度は188 mad/秒である。
Here, the maximum movement amount of the 3-axis movement mechanism 1 is 40 in the X direction.
00■, 2000IIIi in the y direction, 1 in the 112 direction
500IllI11, and the movement unit is 0.01mm5
The maximum travel speed is 188 mad/sec.

非接触n1長センサ3は、第2図に示すように、その先
端から一定距1dizo隔たった点を原点とし、その前
後の所定範囲(±Δ2)内において被測定物7の表面の
変位をレーザ光等により非接触で測定し、測定結果を電
気信号として出力するものである。このようにセンサ3
の測定範囲は有限であるので、後述するように被測定物
7の表面形状の変化に追従して3軸移動機構1は測長セ
ンサ3を2方向に上下動する。これにより、被測定物7
の表面は常に測長センサ3のn1定範囲内に位置し、被
測定物の2座標は3軸移動機構1の2位置にセンサ3の
出力を加算することにより求められる。
As shown in FIG. 2, the non-contact n1 length sensor 3 uses a point 1 dizo apart from its tip as its origin, and measures the displacement of the surface of the object to be measured 7 within a predetermined range (±Δ2) before and after the origin. It measures non-contact using light, etc., and outputs the measurement results as an electrical signal. In this way sensor 3
Since the measurement range of is limited, the three-axis moving mechanism 1 moves the length measurement sensor 3 up and down in two directions in accordance with changes in the surface shape of the object to be measured 7, as will be described later. As a result, the object to be measured 7
The surface of is always located within the n1 constant range of the length measurement sensor 3, and the two coordinates of the object to be measured are determined by adding the output of the sensor 3 to the two positions of the three-axis moving mechanism 1.

センサ3の出力はディテクタ・アンプ4を介してインタ
ーフェース5に入力される。インターフェース5は3軸
移動機構1の位置決め制御装置2にも接続されるととも
に、データ処理装置6にも接続される。インターフェー
ス5と位置決め制御装置2、ディテクタ・アンプ4、デ
ータ処理装置6との接続はケーブルを介して行なわれる
。位置決め制御装置2は3軸移動機構1のx、y、zの
各方向への動きを制御するものであり、非接触測長セン
サ3をxy平面内で走査しながら、非接触6pl長セン
サ3の出力が常に0になるようにセンサ3を被測定物7
の表面形状に沿って2方向に上下移動させる。
The output of the sensor 3 is input to an interface 5 via a detector amplifier 4. The interface 5 is connected to the positioning control device 2 of the three-axis moving mechanism 1 as well as to the data processing device 6. The interface 5 is connected to the positioning control device 2, detector amplifier 4, and data processing device 6 via cables. The positioning control device 2 controls the movement of the 3-axis movement mechanism 1 in each of the x, y, and z directions, and scans the non-contact length measurement sensor 3 in the xy plane. Connect the sensor 3 to the object to be measured 7 so that the output is always 0.
It is moved up and down in two directions along the surface shape.

非接触測長センサ3としては種々のものが考えられるが
、その−例を第3図に示す。円筒状のハウジング36外
のヘリウム・ネオン(He−Ne)ガスレーザ30から
のレーザ光が光軸42上に設けられた微小ミラー47で
反射され、ハウジング36の先端の凸レンズ41を介し
て被測定物7に照射される。凸レンズ41の焦点距離f
lが第2図の一定距離20である。ミラー47の位置は
ここに限定されずに、凸レンズ41と被測定物7との間
、あるいは遮光板44と凸レンズ41との間でもよく、
要は光軸42に沿って被測定物7にレーザ光を照射でき
ればよい。
Various types of non-contact length measurement sensor 3 can be considered, examples of which are shown in FIG. Laser light from a helium-neon (He-Ne) gas laser 30 outside the cylindrical housing 36 is reflected by a micromirror 47 provided on the optical axis 42, and is directed to the object to be measured via the convex lens 41 at the tip of the housing 36. 7 is irradiated. Focal length f of convex lens 41
l is the constant distance 20 in FIG. The position of the mirror 47 is not limited to this, and may be between the convex lens 41 and the object to be measured 7 or between the light shielding plate 44 and the convex lens 41.
In short, it is sufficient if the object to be measured 7 can be irradiated with laser light along the optical axis 42.

被測定物7から反射された光は凸レンズ41、遮光板4
4のスリット46a、46b、46c。
The light reflected from the object to be measured 7 passes through the convex lens 41 and the light shielding plate 4.
4 slits 46a, 46b, 46c.

円筒レンズ51a、51b、51cを介してCCDライ
ンセンサ50a、50b、50cに入射される。第3図
では、図示の簡略化のために、スリット46a1円筒レ
ンズ51a、CCDラインセンサ50aのみを示すが、
第4図に第3図のA−A’線から見た断面図、第5図に
第3図のB−B’線から見た断面図を示す。このように
、円盤状の遮光板44には半径方向と直交する方向の3
つのスリット46a、46b、46cが等間隔(120
°間隔)で設けられる。遮光板44の後ろには、3つの
円筒レンズ51a、51b。
The light enters CCD line sensors 50a, 50b, and 50c via cylindrical lenses 51a, 51b, and 51c. In FIG. 3, only the slit 46a, the cylindrical lens 51a, and the CCD line sensor 50a are shown for the sake of simplicity.
FIG. 4 shows a sectional view taken along the line AA' in FIG. 3, and FIG. 5 shows a sectional view taken along the line BB' in FIG. 3. In this way, the disk-shaped light shielding plate 44 has three directions perpendicular to the radial direction.
The slits 46a, 46b, 46c are arranged at equal intervals (120
(° interval). Behind the light shielding plate 44 are three cylindrical lenses 51a and 51b.

51cがその母線がスリット46a、46b。The generatrix of 51c is the slits 46a and 46b.

46cの向きと一致するように設けられている。46c.

円筒レンズ51 a、  5 l b、  51 cは
遮光板44に平行な仮想平面45に設けられ、仮想平面
45と凸レンズ41の間隔はflであり、仮想平面45
とハウジング36の後端との間隔はI2  (円筒レン
ズ51a、51b、51cの焦点距1ift)である。
The cylindrical lenses 51 a, 5 l b, and 51 c are provided on a virtual plane 45 parallel to the light shielding plate 44, and the distance between the virtual plane 45 and the convex lens 41 is fl, and the virtual plane 45
The distance between the rear end of the housing 36 and the rear end of the housing 36 is I2 (the focal length of the cylindrical lenses 51a, 51b, and 51c is 1ift).

ハウジング36の後端には半径方向を向いている3つの
CCDラインセンサ50a、50b。
At the rear end of the housing 36 are three CCD line sensors 50a, 50b facing in the radial direction.

50cが設けられる。ラインセンサ50a。50c is provided. Line sensor 50a.

50b、50cの出力はデータ処理装置6に供給され、
被測定物7の変位Δzlが求められる。
The outputs of 50b and 50c are supplied to the data processing device 6,
The displacement Δzl of the object to be measured 7 is determined.

第6図にスリット46a1円筒レンズ51a5ラインセ
ンサ50aの関係を示す。ラインセンサ50aは円筒レ
ンズ51aの母線52aに直交する鉛直面60a内に設
けられる。スリット46a1円筒レンズ51aの母線5
2aは鉛直面60 a I:直交する水平面62b内に
設けられる。水平面62bと光軸42との間隔をaとす
る。ラインセンサ50aの中心は水平11j62b内に
ある。図示してはいないが、ラインセンサ50b、50
cも同様に設けられる。
FIG. 6 shows the relationship among the slit 46a, cylindrical lens 51a, and line sensor 50a. The line sensor 50a is provided in a vertical plane 60a perpendicular to the generatrix 52a of the cylindrical lens 51a. Slit 46a1 Generating line 5 of cylindrical lens 51a
2a is provided in a vertical plane 60a I: a horizontal plane 62b orthogonal to each other. Let the distance between the horizontal plane 62b and the optical axis 42 be a. The center of the line sensor 50a is within the horizontal 11j62b. Although not shown, line sensors 50b, 50
c is similarly provided.

次に、測長センサ3の測距原理を説明する。先ず、円筒
レンズ51aの前面にはスリット46aが設けられてい
るので、第7図に示すように、円筒レンズ51aへ入射
する光線は平行光線であると見なせる。このため、第7
図から次の関係が得られる。
Next, the distance measurement principle of the length measurement sensor 3 will be explained. First, since the slit 46a is provided on the front surface of the cylindrical lens 51a, the light rays incident on the cylindrical lens 51a can be considered to be parallel rays, as shown in FIG. For this reason, the seventh
The following relationship can be obtained from the figure.

x−I2  ・tanθ        −(1)また
、第8図から次の関係が得られる。
x-I2 ・tan θ −(1) Also, the following relationship can be obtained from FIG.

tanθ−y/(fl+z2) =(y−a)/fl   ・・・(2)凸レンズ41a
の作用により次の関係が得られる。
tanθ-y/(fl+z2) = (y-a)/fl...(2) Convex lens 41a
The following relationship is obtained by the action of .

fl”−Δzl  −z2        − (3)
(1)弐〜(3)式から次の関係が得られる。
fl”−Δzl −z2 − (3)
The following relationships can be obtained from equations (1)2 to (3).

X−a−I2・Δz1 / f I2− (4)(4)
式は被測定物の変位Δzlはラインセンサ50a上のビ
ームスポットの入射位置Xから求めることができること
を示す。入射位置Xはラインセンサ50aの出力がピー
クとなる素子のアドレスから求めることができる。ライ
ンセンサ50aとして7μm X 2059素子のもの
を使い、a−20+n+n、  f 1 =70mm、
  f 2−150 +u+とじた場合、分解能11.
4μmで±11.7a++a (Δzl)の範囲で変位
を1測定できる。
X-a-I2・Δz1/f I2- (4) (4)
The formula shows that the displacement Δzl of the object to be measured can be determined from the incident position X of the beam spot on the line sensor 50a. The incident position X can be determined from the address of the element where the output of the line sensor 50a peaks. A line sensor 50a with 7 μm x 2059 elements is used, a-20+n+n, f 1 =70 mm,
When f 2-150 +u+ is closed, the resolution is 11.
One displacement can be measured in the range of ±11.7a++a (Δzl) at 4μm.

このようにこのセンサ3によれば、入射光の位置のみに
より変位を求めることができるので、入射光の強さ、ま
たは光量の変化に測定値が依存することはなく、被測定
物の表面の反射率、粗さ、曲率、傾きによる影響や、外
部からの妨害信号に影響されない再現性のあるapl定
結果が得られる。
In this way, according to this sensor 3, the displacement can be determined only from the position of the incident light, so the measured value does not depend on the intensity of the incident light or changes in the amount of light, and it is possible to determine the displacement of the surface of the object to be measured. Reproducible APL determination results can be obtained that are not affected by reflectance, roughness, curvature, inclination, or external interference signals.

そして、非接触/1111定であるので接触iPI定で
は支障のある中I1性体、軟体、または高温容器中の物
体等の変位測定にも用いることができる。また、レンズ
系の光軸上に平行光線を出射し、反射光を光軸付近で拾
うため、4Pj定の死角が生じない。さらに、ラインセ
ンサによる反射光の入射位置の検出は光の強度分布がレ
ンズの光軸に対して軸対称であることを前提にしてtマ
ないので、被測定物の表面が光軸に対して垂直でなく、
その結果、光の強度分布が光軸に対して非対称であって
も、測定結果が影響されることがない。
Since it is a non-contact/1111 constant, it can also be used to measure the displacement of intermediate I1 bodies, soft bodies, objects in high-temperature containers, etc., which are difficult to measure with contact iPI constants. Further, since parallel light rays are emitted on the optical axis of the lens system and reflected light is picked up near the optical axis, no blind spot of 4Pj is generated. Furthermore, since the detection of the incident position of the reflected light by the line sensor is based on the premise that the intensity distribution of the light is axially symmetrical with respect to the optical axis of the lens, it is difficult to detect the incident position of the reflected light. not vertical,
As a result, even if the light intensity distribution is asymmetric with respect to the optical axis, the measurement results are not affected.

第9図は実施例の回路図である。3軸移動機構1をそれ
ぞれX%Y%Z方向に移動するX軸、y軸、Z軸のサー
ボモータ223,213,203の回転、すなわち3軸
移動機構1のX%!/%Zの現在値がフィードバックセ
ンサ224.214.204により検出される。フィー
ドバックセンサ224.214,204の出力f xi
 、  f yl 。
FIG. 9 is a circuit diagram of the embodiment. The rotation of the X-axis, y-axis, and Z-axis servo motors 223, 213, and 203 that move the 3-axis moving mechanism 1 in the Z direction by X% Y%, that is, the rotation of the 3-axis moving mechanism 1 by X%! The current value of /%Z is detected by feedback sensor 224.214.204. Output f xi of feedback sensor 224, 214, 204
, f yl.

fzlがパルス分岐回路504,503.502に供給
される。パルス分岐回路504,503゜502からの
第1の出力f x2 、  f y2 、  f z2
がフィードバックパルスとして加算器225゜215.
205の一方の入力端子に供給され、第2の出力f x
3 、  f y3 、  f z3が現在位置カウン
タ505,506,507に供給される。
fzl is supplied to pulse branch circuits 504, 503, and 502. First outputs f x2 , f y2 , f z2 from the pulse branch circuits 504, 503° 502
is sent to the adder 225°215. as a feedback pulse.
205 and the second output f x
3, fy3, and fz3 are supplied to current position counters 505, 506, and 507.

一方、データ処理装置6からの信号が演算制御回路23
1、パルス分配回路230を介して位置指令パルスf 
xo 、  f yo 、  f zoとして加算器2
25.215,205の他方入力端子に供給され、位置
指令パルスf xo 、  f yo 、  f zo
からフィードバックパルスf x2 、  f y2 
、  f z2が減算される。なお、位置指令パルスf
zoからはさらにディテクタ・アンプ4の出力から変位
/周波数変換回路501により得られたパルス信号【Δ
2が加算器206により減算される。加算器225.2
15.205の出力が位置制御回路221.211.2
01と速度制御回路222゜212.202をそれぞれ
直列に介してサーボモータ223,213.203に供
給される。
On the other hand, the signal from the data processing device 6 is transmitted to the arithmetic control circuit 23.
1. Position command pulse f via pulse distribution circuit 230
Adder 2 as xo, fyo, fzo
25. The position command pulses f xo , f yo , f zo are supplied to the other input terminal of 215 and 205.
Feedback pulses f x2 , f y2 from
, f z2 are subtracted. Note that the position command pulse f
From zo, a pulse signal [Δ
2 is subtracted by adder 206. Adder 225.2
The output of 15.205 is the position control circuit 221.211.2
01 and speed control circuits 222, 212, and 202 in series, respectively, to the servo motors 223, 213, and 203.

一方、現在位置カウンタ505,506゜507の出力
f x3 、  f y3 、  f z3がラッチカ
ウンタ513,514.515に供給され、ディテクタ
・アンプ4の出力Δzlがラッチカウンタ516に供給
される。データ処理装置6に接続されるパラレル入出力
回路520から出力される次の計測点の座標データx、
1.yiが計測点カウンタ508..509に供給され
る。現在位置カウンタ505の出力と計all1点カウ
ンタ508の出力とが比較器510で比較され、現在位
置カウンタ506の出力と計測点カウンタ509の出力
とが比較器511で比較される。比較器510゜511
は2人力が一致した時に“H”レベルの一致信号を出力
する。比較器510,511の出力がアンドゲート51
2を介してラッチカウンタ513.514,515,5
16、パラレル入出力回路520にラッチ指令信号とし
て供給される。
On the other hand, the outputs f x3 , f y3 , f z3 of the current position counters 505, 506° 507 are supplied to the latch counters 513, 514, and 515, and the output Δzl of the detector amplifier 4 is supplied to the latch counter 516. Coordinate data x of the next measurement point output from the parallel input/output circuit 520 connected to the data processing device 6,
1. yi is the measurement point counter 508. .. 509. A comparator 510 compares the output of the current position counter 505 and the output of the all one point counter 508, and a comparator 511 compares the output of the current position counter 506 and the output of the measurement point counter 509. Comparator 510°511
outputs an “H” level coincidence signal when the two forces match. The outputs of the comparators 510 and 511 are connected to the AND gate 51
Latch counter 513, 514, 515, 5 through 2
16, is supplied to the parallel input/output circuit 520 as a latch command signal.

すなわち、ラッチ指令信号は測長センサ3のxy平面内
の位置が所定の計測点と一致する毎に発生される。ラッ
チカウンタ513,514,515゜516の出力X+
Y+  z+  Δ2がパラレル入出力回路520に供
給される。
That is, the latch command signal is generated every time the position of the length measurement sensor 3 in the xy plane coincides with a predetermined measurement point. Output X+ of latch counters 513, 514, 515゜516
Y+z+Δ2 is supplied to parallel input/output circuit 520.

第9図の回路の動作を説明する。先ず、データ処理装置
6は所定ピッチの格子点からなる計測点のxy座標を決
める。各計測点のxy座標に基づいて、パラレル入出力
回路520は次の計測点のxy座標xi、yiを計測点
カウンタ508゜509に出力する。また、演算制御装
置231は計測点のピッチ、計測範囲等から3軸移動機
構1をxy定走査せるための位置指令パルスfxo。
The operation of the circuit shown in FIG. 9 will be explained. First, the data processing device 6 determines the xy coordinates of measurement points consisting of grid points at a predetermined pitch. Based on the xy coordinates of each measurement point, the parallel input/output circuit 520 outputs the xy coordinates xi, yi of the next measurement point to the measurement point counters 508 and 509. Further, the arithmetic and control unit 231 generates a position command pulse fxo for causing the three-axis moving mechanism 1 to perform constant x-y scanning based on the pitch of measurement points, measurement range, etc.

fyoを求め、パルス分配回路230を介して出力する
fyo is determined and output via the pulse distribution circuit 230.

一方、演算制御装置231は3軸移動機構1の2方向の
位置が20となるような位置指令パルスfzoを求め、
パルス分配回路230を介して出力する。ディテクタ・
アンプ4の出力電圧信号Δzlが変位/周波数変換回路
501により電圧に応じた周波数のパルスfΔ2とされ
、位置指令パルスfzoに加えられている。変位/周波
数変換回路501は±ε0以下の電圧には応答しないが
、それ以上の電圧には応答し、電圧に比例した周波数の
パルスを発生させる。このため、サーボそ一夕203は
センサ3の先端から被測定物7までの距離が常に一定距
離20±ε0以内に収まり、センサ3の出力が常に0に
なるように制御される。
On the other hand, the arithmetic and control unit 231 obtains a position command pulse fzo that will cause the position of the three-axis moving mechanism 1 in two directions to be 20,
It is output via the pulse distribution circuit 230. Detector
The output voltage signal Δzl of the amplifier 4 is converted into a pulse fΔ2 with a frequency corresponding to the voltage by a displacement/frequency conversion circuit 501, and is added to the position command pulse fzo. The displacement/frequency conversion circuit 501 does not respond to voltages below ±ε0, but responds to voltages higher than that and generates pulses with a frequency proportional to the voltage. Therefore, the servo controller 203 is controlled so that the distance from the tip of the sensor 3 to the object 7 to be measured is always within a certain distance of 20±ε0, and the output of the sensor 3 is always zero.

これにより、3軸移動機構1は被測定物7の表面形状に
沿って自動的に上下し、被測定物7の表面が常に測長セ
ンサ3の測距範囲(±Δ2)内に位置することになる。
As a result, the 3-axis moving mechanism 1 automatically moves up and down along the surface shape of the object to be measured 7, and the surface of the object to be measured 7 is always located within the distance measurement range (±Δ2) of the length measurement sensor 3. become.

xy定走査間にフィードバックセンサ224゜214で
得られた3軸移動機構1のxy座標の現在値f x3 
、  f y3が次の計測点のxy座標xi。
Current value f x3 of the xy coordinates of the 3-axis moving mechanism 1 obtained by the feedback sensor 224° 214 during xy constant scanning
, f y3 is the xy coordinate xi of the next measurement point.

Yiに一致すると、3軸移動機構1の現在位置と測長セ
ンサ3の出力がラッチされる。この時、3軸移動機構1
の移動は停止する必要はない。この後、パラレル入出力
回路520は計7#1点の座標を更新し、ラッチデータ
を読み込む。被測定物7の2値は3軸移動機構1の2値
に測長センサ3の出力Δz1を加算して求められる。以
上の動作を繰り返すことにより全計測点の3次元座標を
得ることができる。
If they match Yi, the current position of the three-axis moving mechanism 1 and the output of the length measurement sensor 3 are latched. At this time, the 3-axis moving mechanism 1
movement need not be stopped. After this, the parallel input/output circuit 520 updates the coordinates of a total of 7 #1 points and reads the latch data. The binary value of the object to be measured 7 is obtained by adding the output Δz1 of the length measurement sensor 3 to the binary value of the three-axis moving mechanism 1. By repeating the above operations, three-dimensional coordinates of all measurement points can be obtained.

この実施例によれば、複雑な3次元形状を有し膨大な数
の計1(111点が必要な被測定物においても、短時間
で高精度な3次元形状測定ができる。
According to this embodiment, the three-dimensional shape can be measured in a short time and with high accuracy even for an object to be measured that has a complicated three-dimensional shape and requires a huge number of points (111 points in total).

f30mm/秒の速度で1軸走査しなから5 tnmピ
ッチで測定した場合、精度±0.05mmが得られた。
When measuring at a pitch of 5 tnm while performing uniaxial scanning at a speed of f30 mm/sec, an accuracy of ±0.05 mm was obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明によれば、°被測定物まで
の2方向の距離を1lllJる非接触式のセンサと、セ
ンサをxy平面内で2次元的に走査するとともに、上記
距離が一定になるようにセンサを2方向に移動する3軸
移動機構と、3軸移動機構により走査されるセンサのx
y平置市内位置が所定の計測点に一致した時にセンサの
x、ySz位置を示す3次元座標とセンサにより測られ
た距離とを取り込むラッチ回路とを具備することにより
、各計測点毎にセンサのxy走査を停止することなく連
続的に走査しながら、各計測点毎のx、y、z値を高速
に求める走査式3次元形状測定装置が提供される。
As explained above, according to the present invention, there is a non-contact sensor that measures the distance to the object to be measured in two directions by 1lllJ, and the sensor scans two-dimensionally within the xy plane, and the distance is kept constant. A 3-axis movement mechanism that moves the sensor in two directions so that x of the sensor is scanned by the 3-axis movement mechanism.
By providing a latch circuit that captures the three-dimensional coordinates indicating the x, ySz position of the sensor and the distance measured by the sensor when the y horizontal city position coincides with a predetermined measurement point, A scanning three-dimensional shape measuring device is provided that rapidly obtains x, y, and z values for each measurement point while continuously scanning xy scans of a sensor without stopping.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による走査式3次元形状測定装置の一
実施例の概略図、第2図は測長センサの測定範囲を示す
図、第3図〜第6図は測長センサの一例を示す図、第7
図、第8図はDJ長センサの測定原理を説明する図、第
9図は実施例の回路図である。 1・・3軸移動機構、2・・・位置決め制御装置、3・
・・非接触1jllJ長センサ、4・・・ディテクタ・
アンプ、5・・・インターフェース、6・・・データ処
理装置、7・・・被A−j定物。 出願人代理人 弁理士 鈴江武彦 第1図 第4図    第5図
Fig. 1 is a schematic diagram of an embodiment of the scanning three-dimensional shape measuring device according to the present invention, Fig. 2 is a diagram showing the measurement range of the length measurement sensor, and Figs. 3 to 6 show an example of the length measurement sensor. Figure shown, 7th
FIG. 8 is a diagram explaining the measurement principle of the DJ length sensor, and FIG. 9 is a circuit diagram of an embodiment. 1... 3-axis movement mechanism, 2... positioning control device, 3...
・・Non-contact 1jlllJ length sensor, 4...detector・
Amplifier, 5... Interface, 6... Data processing device, 7... Subject A-j constant. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 被測定物までのz方向の距離を測る非接触式のセンサと
、前記センサをxy平面内で連続的に走査するとともに
前記距離が一定になるように前記センサをz方向に移動
する3軸移動機構と、前記3軸移動機構により走査され
ているセンサのxy平面内の位置が所定の計測点に一致
した時に前記センサのx、y、z位置を示す3次元座標
と前記センサにより測られた距離とを取り込む手段とを
具備する走査式3次元形状測定装置。
A non-contact sensor that measures the distance in the z direction to the object to be measured, and a 3-axis movement that continuously scans the sensor in the xy plane and moves the sensor in the z direction so that the distance is constant. mechanism, and three-dimensional coordinates indicating the x, y, z position of the sensor when the position in the xy plane of the sensor being scanned by the 3-axis movement mechanism matches a predetermined measurement point, and the position measured by the sensor. A scanning three-dimensional shape measuring device comprising a distance and a means for taking in the distance.
JP13501489A 1989-05-29 1989-05-29 Scanning type three-dimensional profile measuring apparatus Pending JPH02311705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13501489A JPH02311705A (en) 1989-05-29 1989-05-29 Scanning type three-dimensional profile measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13501489A JPH02311705A (en) 1989-05-29 1989-05-29 Scanning type three-dimensional profile measuring apparatus

Publications (1)

Publication Number Publication Date
JPH02311705A true JPH02311705A (en) 1990-12-27

Family

ID=15141915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13501489A Pending JPH02311705A (en) 1989-05-29 1989-05-29 Scanning type three-dimensional profile measuring apparatus

Country Status (1)

Country Link
JP (1) JPH02311705A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03190887A (en) * 1989-11-20 1991-08-20 General Electric Co <Ge> Polar nonprotic catalyst for producing fluorosilicon fluid
US5798925A (en) * 1995-05-16 1998-08-25 L-S Electro-Galvanizing Company Method and apparatus for monitoring a moving strip
KR100429766B1 (en) * 2001-05-25 2004-05-03 주식회사 포디컬쳐 Photoball scanning apparatus and method for scanning

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205203A (en) * 1984-03-29 1985-10-16 Mitsubishi Electric Corp Non-contact type three-dimensional coordinates measuring system
JPS6423041A (en) * 1987-07-20 1989-01-25 Sanyo Electric Co Heating/cooling heat storage air conditioning system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205203A (en) * 1984-03-29 1985-10-16 Mitsubishi Electric Corp Non-contact type three-dimensional coordinates measuring system
JPS6423041A (en) * 1987-07-20 1989-01-25 Sanyo Electric Co Heating/cooling heat storage air conditioning system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03190887A (en) * 1989-11-20 1991-08-20 General Electric Co <Ge> Polar nonprotic catalyst for producing fluorosilicon fluid
US5798925A (en) * 1995-05-16 1998-08-25 L-S Electro-Galvanizing Company Method and apparatus for monitoring a moving strip
KR100429766B1 (en) * 2001-05-25 2004-05-03 주식회사 포디컬쳐 Photoball scanning apparatus and method for scanning

Similar Documents

Publication Publication Date Title
Feng et al. Analysis of digitizing errors of a laser scanning system
US3986774A (en) Gauging surfaces by remotely tracking multiple images
US4502785A (en) Surface profiling technique
US3909131A (en) Surface gauging by remote image tracking
JPH0360956A (en) Non-contact profile control device
US10852122B2 (en) Method and arrangement for capturing an object using a movable sensor
Livingstone et al. Development of a large field of view 3-d vision system
Charrett et al. Workpiece positioning sensor (wPOS): A three-degree-of-freedom relative end-effector positioning sensor for robotic manufacturing
JPH02311705A (en) Scanning type three-dimensional profile measuring apparatus
JPH0123041B2 (en)
WO2018155563A1 (en) Scanning probe microscope
JPH07253304A (en) Multi-axial positioning unit and length measuring method therefor
KR100240259B1 (en) Apparatus for measuring three dimension using spherical lens and laser scanner
JPS6355642B2 (en)
JPH0758167B2 (en) Laser pin outer diameter measurement method
CN212379431U (en) Measuring device based on atomic force microscope
JPS59154308A (en) Automatic measuring method of object shape
JPH0444201B2 (en)
RU2144U1 (en) DEVICE FOR MEASURING THE SURFACE PROFILE OF THE OBJECT
Du et al. High-Definition Metrology
JPS6365308A (en) Automatic measuring instrument for three-dimensional free curved surface
JPH09325007A (en) Three-dimensional position and posture measuring apparatus
JPS61191908A (en) Measurement of shape
Wang et al. Experimental research on laser tracking system with galvanometer scanner for measuring spatial coordinates of moving target
JPH02205453A (en) Control method for noncontact profiling