JPS60198738A - Crystal growth method of semiconductor - Google Patents

Crystal growth method of semiconductor

Info

Publication number
JPS60198738A
JPS60198738A JP59054173A JP5417384A JPS60198738A JP S60198738 A JPS60198738 A JP S60198738A JP 59054173 A JP59054173 A JP 59054173A JP 5417384 A JP5417384 A JP 5417384A JP S60198738 A JPS60198738 A JP S60198738A
Authority
JP
Japan
Prior art keywords
grown
crystal growth
substrate
group
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59054173A
Other languages
Japanese (ja)
Other versions
JPH065789B2 (en
Inventor
Atsushi Kamata
鎌田 敦之
Masaru Kawachi
河内 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5417384A priority Critical patent/JPH065789B2/en
Publication of JPS60198738A publication Critical patent/JPS60198738A/en
Publication of JPH065789B2 publication Critical patent/JPH065789B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02557Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To bury a S hole, and to prevent the diffusion of P by adding a group VIIelement when zinc sulfide selenide is grown on a GaP substrate. CONSTITUTION:Raw-material gas introducing ports 1, 2 are formed to the upper sections of a reaction pipe 6, and an organic metallic raw material is fed from the introducing port 1 and a hydride raw material from the introducing port 2. Gases introduced into the pipe 6 reach on a substrate 3 positioned on a susceptor 4 heated, and a crystal is grown. The grown crystal has conductivity sufficient for a change into an element without post-treatment, and light emission on the long-wave length side also reduces. A Zn hole and a group VII element form a composite acceptor at the nearest position, and the intensity of blue light emission is increased.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体結晶成長方法に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a method for growing semiconductor crystals.

〔技術的背景とその問題点〕[Technical background and problems]

硫化亜鉛およびセレン化亜鉛、さらには両者の混晶であ
るセレン化硫化亜鉛は広い禁止帯幅(2,6ev以上)
を有する為、発光素子材料メして注目を集めている。特
に、浅いドナー準位と価電子帯あるいは複合アクセプタ
ー(亜鉛空孔とドナーの複合アクセプタ)準位間の発光
遷移は青色領域に相当する為、青色発光素子への適用が
盛んに研究されている。
Zinc sulfide, zinc selenide, and zinc selenide sulfide, which is a mixed crystal of both, have a wide forbidden band (2.6 ev or more).
Because of this, it is attracting attention as a material for light emitting devices. In particular, since the emission transition between the shallow donor level and the valence band or composite acceptor (composite acceptor of zinc vacancy and donor) level corresponds to the blue region, its application to blue light-emitting devices is being actively researched. .

セレン化硫化亜鉛は、通常のCVD及びLPB等の結晶
成長では亜鉛あるいは硫黄、セレンの空孔が非常にでき
易い。その為、なんらかの後処理をしない限りは適尚な
ドナー不純物を添加しても紫外光励起等による青色発光
は観測されるものの、電気伝導性は得られなかった。
In zinc sulfide selenide, vacancies of zinc, sulfur, or selenium are easily formed during crystal growth using normal CVD, LPB, or the like. Therefore, unless some kind of post-treatment is performed, even if an appropriate donor impurity is added, blue light emission due to ultraviolet light excitation or the like is observed, but electrical conductivity cannot be obtained.

ところが、近年非熱平衝下での低温結晶成長法であるM
OCVD法(有機金属化合物を用いた気相成長法)の発
展に伴い、空孔の発生をがなり抑制することがでへるよ
うになってきた。その結果、At、Ga等の■族不純、
物を添加することにより青色発光を示し、なおかつ電気
伝導性の見られる結晶が成長可゛能となってきた。その
上に、量産性に優れた大型基板材料であるGaPおよび
GaA’sを結晶成長基板として使用できることもわか
った。
However, in recent years, M
With the development of the OCVD method (vapor phase growth method using organometallic compounds), it has become possible to suppress the generation of vacancies to a greater extent. As a result, group III impurities such as At and Ga,
By adding substances, it has become possible to grow crystals that emit blue light and are electrically conductive. Furthermore, it was also found that GaP and GaA's, which are large substrate materials with excellent mass productivity, can be used as crystal growth substrates.

しかし、GaPまたはGaAsを基板として用いた場合
、ある程度伝導性のある結晶を成長させるこトハ可能で
あるが、発光素子として利用できるまでの伝導性は得ら
れていないのが現状で・ある。しかも、発光スペクトル
を観察すると、青色発光領域の他に長波長側にもかなり
強い発光の見られることが判明した。
However, when GaP or GaAs is used as a substrate, it is possible to grow crystals with some degree of conductivity, but at present the conductivity is not high enough to be used as a light emitting device. Furthermore, when observing the emission spectrum, it was found that in addition to the blue emission region, fairly strong emission was also observed on the long wavelength side.

この原因について調べてみたところ、基板であるGaP
またはGaAsのPまたはAsが成長結晶中にかなり拡
散してきていることがわかった。PおよびAsはII−
VI族化合物半導体中では深いアクセプター準位を形成
する為、この準位の存在が伝導性を妨げ、さらに長波長
側発光の原因となっているものと考えられる。
When we investigated the cause of this, we found that the substrate, GaP
It was also found that P or As of GaAs has been considerably diffused into the grown crystal. P and As are II-
Since a deep acceptor level is formed in a group VI compound semiconductor, the presence of this level is thought to impede conductivity and cause light emission at longer wavelengths.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、 GaPまたはGaAs単結晶基板上
にセレン化硫化亜鉛結晶を成長させる際にPまたはAs
の拡散を抑制する結晶成長方法を提供することにある。
The purpose of the present invention is to provide a method for growing zinc selenide sulfide crystals on a GaP or GaAs single crystal substrate.
An object of the present invention is to provide a crystal growth method that suppresses the diffusion of.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、セレン化硫化亜鉛のMOCVDiによ
る結晶成長において、ドナー不純物として■族元素を添
加するところにある。
The gist of the present invention is to add a group (I) element as a donor impurity during crystal growth of zinc sulfide selenide by MOCVDi.

前述したように、基板から拡散してくるPまたはAsが
成長結晶の電気電導性を妨け、長波長側の発光の原因と
考えられる。MOCvb法では、 ZnおおよびS空孔
の発生をかなり抑制できることはわかってきている。し
かし完全に抑えきれているわけではないので、発生した
S空孔を通してPまたはAsが拡散している。そこで本
発明者らがPまたはAsの拡散を防ぐ手段について鋭意
検討を重ねた結果、他の成長方法に比べて抑制されつつ
も発生してしまうS空孔が■族元素を添加することによ
り埋められて、その結果P、Asの拡散が抑制され成長
後の結晶の伝導性が飛躍的に増大することが判明した。
As mentioned above, P or As diffused from the substrate interferes with the electrical conductivity of the grown crystal, which is thought to be the cause of light emission on the long wavelength side. It has been found that the MOCvb method can considerably suppress the generation of Zn and S vacancies. However, since it is not completely suppressed, P or As diffuses through the generated S vacancies. Therefore, the inventors of the present invention conducted extensive studies on means to prevent the diffusion of P or As, and found that the S vacancies, which are generated even though they are suppressed compared to other growth methods, can be filled by adding group Ⅰ elements. It was found that as a result, the diffusion of P and As was suppressed and the conductivity of the grown crystal increased dramatically.

さらに長波長側の発光も抑制されることが明らかになっ
た。
Furthermore, it was revealed that light emission at longer wavelengths was also suppressed.

本発明′は、このような点に着目し、■−v族化金物半
導体基板であるGaPまたはGaAs単結晶基板上に°
■族元素を添加したセレン化硫化亜鉛をMOCVD法に
より成長させるようにしたものである。
The present invention' focuses on these points, and the present invention is based on the following:
Zinc sulfide selenide added with group (2) elements is grown by MOCVD.

〔発明の効果〕 ・ 本発明によれば、GaPまたはGaAs基板上にMOC
VD法によりセレン化硫化亜鉛を成長させる際に、従来
の結晶成長法に比べて抑制されつつも発生してしまうZ
nおよびS空孔の内S空孔を■族元素を添加することで
埋めることができる為基板からのPまたはAsの拡散を
格段に防止できる。またその結果添加した塩素が、ドナ
ー不純物として有効に働く為成長させた結晶は、後の処
理を行なうことなく素子化するに十分な伝導性を有し長
波長側の発光も非常に減少する。さらに結晶中に存在す
るZn空孔と■族元素が最近接位置で有効に複合アクセ
プターを形成するようになり青色発光強度が飛開的に増
゛大する等の効果を奏する。
[Effects of the Invention] - According to the present invention, MOC is formed on a GaP or GaAs substrate.
When growing zinc selenide sulfide using the VD method, Z occurs although it is suppressed compared to conventional crystal growth methods.
Since the S vacancies among the n and S vacancies can be filled by adding the group II element, diffusion of P or As from the substrate can be significantly prevented. Furthermore, since the added chlorine effectively acts as a donor impurity, the grown crystal has sufficient conductivity to be made into a device without any subsequent treatment, and emission at long wavelengths is greatly reduced. Furthermore, the Zn vacancies and the group (2) elements present in the crystal effectively form a composite acceptor at the closest position, resulting in effects such as a dramatic increase in the blue light emission intensity.

〔発明の実施例〕[Embodiments of the invention]

第゛1図は本発明の一実施例に係る結晶成長装置の断面
模式図である。反応管(6)上部に原料ガス導入口(1
,2)を設け、1からは有機金属原料、2からは水素化
物原料を供給できるようになっている。反応管内に導入
されたガスは、加熱されたサセプター(4)上に置かれ
た基板(8)上に到達し結晶成長する。
FIG. 1 is a schematic cross-sectional view of a crystal growth apparatus according to an embodiment of the present invention. There is a raw material gas inlet (1) at the top of the reaction tube (6).
, 2) are provided, so that organometallic raw materials can be supplied from 1 and hydride raw materials can be supplied from 2. The gas introduced into the reaction tube reaches the substrate (8) placed on the heated susceptor (4) and grows crystals.

このような装置を用いて燐化ガリウム基板上にアルミニ
ウムを添加した硫化亜鉛(ZnS:At)と塩素を添加
した硫化亜鉛(ZnS:C2)を成長させた。
Using such an apparatus, zinc sulfide added with aluminum (ZnS:At) and zinc sulfide added with chlorine (ZnS:C2) were grown on a gallium phosphide substrate.

原料ガスにはジメチル亜鉛(DMZ )と硫化水素(H
tS)である。ドーパントにはトリエチルアルミニウム
(TEAt)、塩化水素(HO2)を用いた。
The raw material gas contains dimethyl zinc (DMZ) and hydrogen sulfide (H
tS). Triethyl aluminum (TEAt) and hydrogen chloride (HO2) were used as dopants.

成長させたZn S : At(a)とZn 8 : 
cz(b) K Oイテ313 nm光励起によるミネ
ッセンスを測定したところ、第2図に示したような差が
見られた。短波長側の発光ピークのンフトは、発光中心
が(Vzn−At)から(V zn −CL )に変化
したことに対応する。
Grown ZnS: At(a) and Zn8:
cz(b) KOite 313 nm When the luminescence was measured by light excitation, a difference as shown in FIG. 2 was observed. The shift in the emission peak on the short wavelength side corresponds to a change in the emission center from (Vzn-At) to (Vzn-CL).

注目すべきことは長波長側の短波長側に対する発光強度
がALtClに変えたことにより非常に小さくなってい
る。このこと−は燐の拡散状況を分析した結果(第3図
)と非常に良い一致を見せており、Ct に変えたこと
で燐の拡散はほとんど見られなくなった。尚第3図にお
いて、31はGaP基板の部分、32はZn5M*部分
、Sは表面である。また、素子化に際し、#も重要な点
である電気抵抗率もAtをC6に変えたことにより1桁
以上の低下が見られた。
What should be noted is that the emission intensity on the long wavelength side versus the short wavelength side has become extremely small due to the change to ALtCl. This is in very good agreement with the results of analyzing the phosphorus diffusion situation (Figure 3), and by changing to Ct, phosphorus diffusion was almost no longer observed. In FIG. 3, 31 is a portion of the GaP substrate, 32 is a Zn5M* portion, and S is the surface. In addition, electrical resistivity, which is an important point in device fabrication, was also reduced by more than one digit by replacing At with C6.

さらに、ハロゲン輸送法により作製したZn5HCt 
と比較した(表1)ところでも結晶成長直後の処理をt
lどこさない結晶については、MOCVD法により成長
させた”ln8:CLが格段にすぐれている0 表1 以上のことから、MOCVD法により塩素を添加したセ
レン化硫化亜鉛結晶は成長させたままの状態で非常に低
抵抗かつ発光特性にすぐれたものであることがわかる。
Furthermore, Zn5HCt produced by the halogen transport method
(Table 1), the treatment immediately after crystal growth was
Regarding the crystals that do not contain l, the crystals grown by the MOCVD method are significantly superior to those of the zinc selenide sulfide crystals grown by the MOCVD method. It can be seen that it has extremely low resistance and excellent light emitting characteristics.

本発明は上記実施例に限定されるものでなく、Zn5x
S1−XにおいてXの範囲をOから1まで任意変化させ
ることができ、その際に基板との格子整合をとることで
さらに結晶性の向上が見られる。
The present invention is not limited to the above embodiments, but Zn5x
In S1-X, the range of X can be arbitrarily changed from 0 to 1, and at this time, the crystallinity can be further improved by achieving lattice matching with the substrate.

また、原料ガスについてもSe原料としてHzse、さ
らに、Zn原料にはDEZ、ドーパントとしてもHO2
のかわりにCt、ガスを使用することもできる。また塩
素のかわねに臭素またはヨウ素も添加することができる
。その他、本表明の要旨を逸脱しない範囲で、種々変形
して実施することができる。
In addition, regarding the raw material gases, Hzse is used as a Se raw material, DEZ is used as a Zn raw material, and HO2 is used as a dopant.
Instead of Ct, gas can also be used. Bromine or iodine can also be added to the chlorine mixture. In addition, various modifications can be made without departing from the gist of this statement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に用いるMOCVD装置の一
例を示す図、第2図はA4添加とCt添加による発光ス
ペクトルを示す図、第3図はZnS:AtとZnS:C
4中でのPの拡散の違を□示す図である。 1、 有機金属ガス原料供給口 λ 水素化物原料供給口 3、 基板゛ 4、 サセプター 5、 加熱ヒーター 68 石英製反応管 7、排気口 代理人 弁理士 則 近 希 佑 (ほか1名) 第 2 図 第 3 図
Fig. 1 is a diagram showing an example of MOCVD equipment used in one embodiment of the present invention, Fig. 2 is a diagram showing emission spectra by A4 doping and Ct doping, and Fig. 3 is a diagram showing an example of MOCVD equipment used in an embodiment of the present invention.
4 is a diagram showing the difference in the diffusion of P in 4. 1. Organometallic gas raw material supply port λ Hydride raw material supply port 3, Substrate 4, Susceptor 5, Heater 68, Quartz reaction tube 7, Exhaust port Agent: Patent attorney Nozomi Chika (and 1 other person) Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)有機金属化合物を用いた気相成長法によりセレン
化硫化亜鉛(ZnSxSe1−z 10≦X≦1)結晶
を成長させる方法において、n型伝導性を与えるドナー
不純物として■族元素を添加することを特徴とする半導
体結晶成長方法。
(1) In a method of growing zinc sulfide selenide (ZnSxSe1-z 10≦X≦1) crystals by a vapor phase growth method using an organometallic compound, group Ⅰ elements are added as donor impurities that provide n-type conductivity. A semiconductor crystal growth method characterized by:
(2)■族元素として塩素、臭素およびヨウ素を添加す
ることを特徴とする特許請求の範囲第1項記載の半導体
結晶成長方法。
(2) The semiconductor crystal growth method according to claim 1, characterized in that chlorine, bromine, and iodine are added as group (■) elements.
(3)結晶成長基板として燐化ガリウム(GaP)J)
るいは砒化ガリウム(GaA s )を用いることを特
徴とする特許請求の範囲第1項記載の半導体結晶成長方
法。
(3) Gallium phosphide (GaP) as a crystal growth substrate
2. The semiconductor crystal growth method according to claim 1, wherein gallium arsenide (GaAs) is used.
JP5417384A 1984-03-23 1984-03-23 Semiconductor crystal growth method Expired - Lifetime JPH065789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5417384A JPH065789B2 (en) 1984-03-23 1984-03-23 Semiconductor crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5417384A JPH065789B2 (en) 1984-03-23 1984-03-23 Semiconductor crystal growth method

Publications (2)

Publication Number Publication Date
JPS60198738A true JPS60198738A (en) 1985-10-08
JPH065789B2 JPH065789B2 (en) 1994-01-19

Family

ID=12963145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5417384A Expired - Lifetime JPH065789B2 (en) 1984-03-23 1984-03-23 Semiconductor crystal growth method

Country Status (1)

Country Link
JP (1) JPH065789B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164228A (en) * 1985-01-16 1986-07-24 Seiko Epson Corp Manufacture of ii-vi group compound semiconductor thin film
US4868615A (en) * 1986-09-26 1989-09-19 Kabushiki Kaisha Toshiba Semiconductor light emitting device using group I and group VII dopants

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164228A (en) * 1985-01-16 1986-07-24 Seiko Epson Corp Manufacture of ii-vi group compound semiconductor thin film
JPH0682618B2 (en) * 1985-01-16 1994-10-19 セイコーエプソン株式会社 <II>-<VI> Group compound semiconductor thin film manufacturing method
US4868615A (en) * 1986-09-26 1989-09-19 Kabushiki Kaisha Toshiba Semiconductor light emitting device using group I and group VII dopants

Also Published As

Publication number Publication date
JPH065789B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
US6110757A (en) Method of forming epitaxial wafer for light-emitting device including an active layer having a two-phase structure
US4868615A (en) Semiconductor light emitting device using group I and group VII dopants
Münch et al. Silicon carbide light-emitting diodes with epitaxial junctions
JPS6057214B2 (en) Method of manufacturing electroluminescent materials
JP2773597B2 (en) Semiconductor light emitting device and method of manufacturing the same
Beneking et al. MO-CVD growth of GaP and GaAlP
JPH02257678A (en) Manufacture of gallium nitride compound semiconductor light-emitting device
JPH0940490A (en) Production of gallium nitride crystal
JPH0936429A (en) Fabrication of iii-v compound semiconductor
JPS60198738A (en) Crystal growth method of semiconductor
US4983249A (en) Method for producing semiconductive single crystal
JPH09107124A (en) Method for manufacturing iii-v compound semiconductor
JPS5846686A (en) Blue light emitting diode
JPH0463040B2 (en)
JPS63143810A (en) Vapor growth of compound semiconductor
JP3316406B2 (en) Method for manufacturing indium gallium nitride semiconductor
JPH08264467A (en) Method of forming nitrogen-doped gap epitaxial layer
US3746943A (en) Semiconductor electronic device
JP3633015B2 (en) III-V Group Compound Mixed Crystal Growth Method
US6113691A (en) Ultra-low pressure metal-organic vapor phase epitaxy (MOVPE) method of producing II-IV semiconductor compounds and II-VI semiconductor compounds thus produced
JPH0695580B2 (en) Manufacturing method of semiconductor light emitting device
JPS63160344A (en) Manufacture of znsxse1-x(0&lt;=x&lt;=1) crystal
JPH0728053B2 (en) Light emitting diode
JPS60204698A (en) Method of growth of semiconductor crystal
JPS6324683A (en) Manufacture of light-emitting element