JPS63160344A - Manufacture of znsxse1-x(0<=x<=1) crystal - Google Patents

Manufacture of znsxse1-x(0<=x<=1) crystal

Info

Publication number
JPS63160344A
JPS63160344A JP61306522A JP30652286A JPS63160344A JP S63160344 A JPS63160344 A JP S63160344A JP 61306522 A JP61306522 A JP 61306522A JP 30652286 A JP30652286 A JP 30652286A JP S63160344 A JPS63160344 A JP S63160344A
Authority
JP
Japan
Prior art keywords
impurity
crystal
group
zns
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61306522A
Other languages
Japanese (ja)
Other versions
JPH07118455B2 (en
Inventor
Keijiro Hirahara
平原 奎治郎
Masasue Okajima
岡島 正季
Atsushi Kamata
鎌田 敦之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30652286A priority Critical patent/JPH07118455B2/en
Publication of JPS63160344A publication Critical patent/JPS63160344A/en
Publication of JPH07118455B2 publication Critical patent/JPH07118455B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To form a ZnSxSe1-x crystal whose electrical resistance is low and which emits blue light at room temperature by a method wherein, during a process to add an impurity for obtaining electric conductivity to the ZnSxSe1-x crystal, another impurity of the same group as the impurity to be added simultaneously is added. CONSTITUTION:When a first impurity for obtaining electric conductivity, e.g. nitrogen, phosphorus or the like, is added to ZnSe, ZnS and their mixed crystal, a second impurity, e.g. As, Se or the like, which belongs to the same group as the first impurity and which can relieve the inconsistency of an atomic radius with a substituted atom produced by the addition of the first impurity, is added at the same time. When ZnSe is grown, e.g., on a GaAs substrate, the crystal growth is executed by an MOCVD method by using dimethylzinc (DMZn) and dimethylselenium (DMSe) as raw materials. The growth is executed under the conditions that the ratio of the mol supply volume of the group II raw material (DMZn) to that of the group VI raw material (DMSe) is 2 (DMZn/DMSe=2) and that the temperature and the pressure are 500 deg.C and 1 atm., respectively. The growth speed is to be about 500 Angstrom /min. P of the group V is used as an acceptor impurity and is introduced by phosphine (PH3) gas. As which is to be doped simultaneously is introduced by arsine (AsH3) gas.

Description

【発明の詳細な説明】 【発明の目的〕 (産業上の利用分野) 本発明は、青色発光素子に適用可能なII−Vl族P型
半導体結晶の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing a II-Vl group P-type semiconductor crystal applicable to blue light emitting devices.

(従来の技術) ■−v族化合物半導体を用いた赤色から緑色までの発光
素子は量産化の時代に入り、表示素子として広く実用さ
れている。この様な状況下で、可視域で欠けている唯一
の発光色である青色発光素子に対する期待が一層高まっ
ている、にも拘らず。
(Prior Art) Red to green light emitting devices using group V compound semiconductors have entered the era of mass production and are now widely used as display devices. Under these circumstances, expectations are increasing for blue light-emitting devices, which are the only luminescent color lacking in the visible range.

これまでの■−V族化合物半導体発光素子と比肩し得る
青色発光素子の製造技術は未だ確立されていない。
A manufacturing technology for a blue light-emitting device comparable to the conventional (1)-V group compound semiconductor light-emitting device has not yet been established.

青色発光素子を得るための第1の条件は、用いる半導体
の禁制帯幅ll:gが2 、6eVを越えることである
。この条件を満たす半導体結晶としては、n−■族化合
物半導体であるZnS(Eg=3.5el/) 、Zn
Se(Eg = 2.6eV)或いはこれらの混晶があ
る。これらは直接遷移型であるため高い発光効率が期待
され。
The first condition for obtaining a blue light emitting device is that the forbidden band width ll:g of the semiconductor used exceeds 2.6 eV. Semiconductor crystals that meet this condition include ZnS (Eg=3.5el/), which is an n-■ group compound semiconductor, and Zn
Se (Eg = 2.6eV) or a mixed crystal thereof. Since these are direct transition type, high luminous efficiency is expected.

各所で精力的な研究が進められている。Vigorous research is underway in various places.

青色発光素子(特にLED、 LD)を実現する為には
In order to realize blue light emitting devices (especially LEDs and LDs).

室温で低抵抗で青色発光強度の強い事が必須である。し
かし、Zn5xSa1−1(0≦X≦1)は、自己補償
効果が強く電気伝導型や制御する事が非常に難しい、そ
のためPN接合を形成する事はもちろん、適当な後処理
を施す事なく低抵抗率の結晶を得る事すらなかなか菫し
い。近年、非熱平衡下での結晶成長方法と言われる有機
金属気相成長法(MOCVD法)や分子線エピタキシャ
ル法(MBE法)の発達に伴い、自己補償効果の抑制へ
の期待がかけられでいる。実際MBE、 MOCVDの
開方法により、適当な不′純物を添加する事により後処
理なして低抵抗の半導体結晶が得られるようになってき
た。
It is essential to have low resistance and strong blue emission intensity at room temperature. However, Zn5xSa1-1 (0≦X≦1) has a strong self-compensation effect, is electrically conductive, and is very difficult to control. Even obtaining resistivity crystals is quite difficult. In recent years, with the development of metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE), which are said to be methods for growing crystals under non-thermal equilibrium, there are expectations for suppressing the self-compensation effect. . In fact, it has become possible to obtain low-resistance semiconductor crystals without post-processing by adding appropriate impurities using the opening methods of MBE and MOCVD.

ところが、低抵抗化した半導体結晶(ZnSxSai−
1+結晶)は、青色発光素子に必須の室温における帯間
遷移による発光(〜470■)は見られるものの、それ
にも増して深い準位の関与したスペクトル幅の広い発光
が優勢に現われる。さらに、この深い準位の関与した発
光は不純物添加量の増加と共に強度が増大する。深い準
位の関与した緑〜赤色域の発光が強くなるどう発光色と
して青色とは見えず、濃度の増大と共に白色からオレン
ジ色の発光として視認されるようになる。また、濃度が
低い場合には抵抗率が増大し、青色発光強度も弱く実用
に適さない。
However, semiconductor crystals with lower resistance (ZnSxSai-
1+ crystal), although light emission (~470 cm) due to interband transition at room temperature, which is essential for a blue light-emitting element, can be seen, light emission with a wide spectrum width involving deep levels appears predominant. Furthermore, the intensity of light emission involving this deep level increases as the amount of impurity added increases. As the light emission in the green to red region involving deep levels becomes stronger, the light emission color no longer appears as blue, but as the concentration increases, it becomes visible as white to orange light emission. Moreover, when the concentration is low, the resistivity increases and the blue emission intensity is also weak, making it unsuitable for practical use.

以上の様にMBEおよびMOCVDにより低抵抗の結晶
を成長させる事はできるが、不純物添加に伴う深い準位
の発光が見られ青色発光が阻害されて(発明が解決しよ
うとする問題点) 本発明は、青色発光素子の実現に不可欠な、電気的に低
抵抗でかつ室温青色発光を示す。Zn5xSa、−8結
晶を形成する技術を提供し、高効率の青色したDの製造
方法を提供することを目的とする。
As described above, it is possible to grow a low-resistance crystal by MBE and MOCVD, but due to the addition of impurities, deep level light emission is observed and blue light emission is inhibited (problem to be solved by the present invention). exhibits low electrical resistance and room-temperature blue light emission, which is essential for realizing a blue light-emitting device. The purpose of the present invention is to provide a technology for forming Zn5xSa, -8 crystals and to provide a highly efficient method for producing blue-colored D.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) ZnSxSax−x結晶中に、電気伝導を得るための不
純物を添加する工程において、同時に添加した不純物と
同族の他の不純物を添加することにより、電気的に低抵
抗でかつ室温青色発光を示すZn5xSx−X結晶を形
成する。
(Means for solving the problem) In the process of adding impurities to obtain electrical conduction in the ZnSxSax-x crystal, by adding other impurities of the same group as the impurities added at the same time, electrically low A Zn5xSx-X crystal that is resistive and emits blue light at room temperature is formed.

(作 用) ZnSxSei−2結晶中に、■族(Alll、Ga、
Inなど)及び■族(CI2.Br、Iなど)のドナー
不純物をドープした時に長波長領域に現われる主要な発
光は、自己付活型発光(SA発光)として知られている
(Function) In the ZnSxSei-2 crystal, group II (All, Ga,
The main light emission that appears in the long wavelength region when doped with donor impurities of group II (In, etc.) and (CI2, Br, I, etc.) is known as self-activated light emission (SA light emission).

この発光は、添加した不純物の形成するドナーレベルと
、ドナー不純物とZnの空孔子が複合して形成するアク
セプタレベルとの間のドナー・アクセプタ対発光である
ことが判っている。
It is known that this light emission is a donor-acceptor pair light emission between a donor level formed by the added impurity and an acceptor level formed by a combination of the donor impurity and Zn vacancies.

従って、この長波長領域の発光を抑制するためには、Z
n空孔子の発生を抑えることが重要となる。
Therefore, in order to suppress light emission in this long wavelength region, Z
It is important to suppress the generation of n-vacancies.

また、1族(Li、 Naなど)及び■族(N、P、A
Sなど)をドープした時に同様な現象が見られ、この場
合には、Se空孔子の発生を抑えることが重要となる。
In addition, Group 1 (Li, Na, etc.) and Group II (N, P, A, etc.)
A similar phenomenon is observed when doping with S, etc.), and in this case, it is important to suppress the generation of Se vacancies.

これらの空孔子発生の一因として、添加した不純物原子
の半径と置換された原子半径が異なる為に格子歪示生じ
、この格子歪を緩和する為に近接の原子が空孔となるこ
とが考えられる。
One of the reasons for the generation of these vacancies is that lattice distortion occurs due to the difference in the radius of the added impurity atom and the radius of the substituted atom, and in order to alleviate this lattice distortion, neighboring atoms become vacancies. It will be done.

本発明では、添加した不純物により生じる格子歪を補償
する様な原子半径を有した不純物を同時に添加すること
により、空孔子の発生を抑生じ、長波長領域の発光を抑
制することができる。
In the present invention, by simultaneously adding an impurity having an atomic radius that compensates for the lattice distortion caused by the added impurity, it is possible to suppress the generation of vacancies and suppress light emission in the long wavelength region.

添加する不純物種および量は、表1に示す様な四面体配
位共有結合半径の値による、添加不純物と置換される原
子との不整の程度が目安となる。
The type and amount of the impurity to be added is determined based on the degree of misalignment between the added impurity and the substituted atom based on the value of the tetrahedral coordination covalent bond radius as shown in Table 1.

(実施例) GaAs基板上に成長させたZn5eを例に説明する。(Example) This will be explained using Zn5e grown on a GaAs substrate as an example.

結晶成長は、ジメチル亜鉛(DMZn)およびジメチル
セレン(DMSe)を原料に用いたMOCVD法により
行なった。成長条件は、■族原料のモル供給量(DMZ
n )と、■族原料のモル供給量(DMSe)の比を(
DMZn) / (DMZn) −2とし、500℃、
1気圧の条件下で行う。成長速度は、約500人/wi
nであった。
Crystal growth was performed by MOCVD using dimethylzinc (DMZn) and dimethylselenium (DMSe) as raw materials. The growth conditions are the molar supply amount (DMZ
n) and the molar supply amount (DMSe) of group II raw material (DMSe).
DMZn) / (DMZn) -2, 500℃,
It is carried out under the condition of 1 atm. The growth rate is approximately 500 people/wi
It was n.

アクセプタ不純物には、■族のPを用い、フォスフイン
(PH3)ガスにより導入した。同時にドープした八3
は、アルシン(AsH,)ガスにより導入した。
As the acceptor impurity, P of group Ⅰ was used and introduced using phosphine (PH3) gas. 83 doped at the same time
was introduced by arsine (AsH,) gas.

第2図は、Asをドープしないで、Pのみをドープした
場合の325nmのHe−Cdレーザ光励起の室温ルミ
ネッセンススペクトルの例を示す、Pのドープ量は、(
PHa ) / (DMSe) = 2 X 10−”
である、Pのみのドープでは、47Onm付近の青色発
光強度と比べ、610nm付近の赤色発光強度の方が強
く、青色発光素子には全く適さない。
FIG. 2 shows an example of the room temperature luminescence spectrum of 325 nm He-Cd laser light excitation when doping only P without doping As. The amount of P doped is (
PHa ) / (DMSe) = 2 x 10-”
In the case of P-only doping, the red emission intensity near 610 nm is stronger than the blue emission intensity near 47 Onm, and is not suitable for a blue light emitting device at all.

以下余白 表1 Z’nSe中のドーパントと原子不整 (Zn、Ss、Sの共有結合半径は、1.31人、1.
14人、1.04人)これに対して、第1図は、本発明
の一実施例のフォトルミネッセンススペクトルである。
Table 1: Dopants in Z'nSe and atomic asymmetry (covalent bond radii of Zn, Ss, and S are 1.31 and 1.
(14 people, 1.04 people) On the other hand, FIG. 1 shows the photoluminescence spectrum of one embodiment of the present invention.

上記と同一条件下で、Pに加えて、Asを(As)1.
 ) / (DMZn)= l X 10−3添加して
いる。Pと同時にAaをドープした場合には610nm
付近の赤色発光強度は抑制され、470nm付近の青色
発光が強く現われた。
Under the same conditions as above, in addition to P, As (As)1.
) / (DMZn) = l x 10-3 is added. 610 nm when Aa is doped at the same time as P
The red light emission intensity in the vicinity was suppressed, and the blue light emission near 470 nm appeared strongly.

この様に、置換原子より小さい原子であるPを添加する
際に同時に大きい原子であるAaを添加したことによる
効果は明らかであり、これによって青色発光素子に適し
た結晶が得られた。
In this way, the effect of adding Aa, which is a larger atom, at the same time as P, which is an atom smaller than the substituent atoms, is added, and a crystal suitable for a blue light-emitting element was thereby obtained.

尚、本発明は、上記実施例に限るものではない。Note that the present invention is not limited to the above embodiments.

Zn5xSe、−xとする事により基板と格子整合をと
る事ができるので、さらに良質の結晶が得られる。
By using Zn5xSe, -x, lattice matching with the substrate can be achieved, resulting in a crystal of even better quality.

P型ドーパントもPに限ることなく、V族のN。The P-type dopant is not limited to P, but can also be N of the V group.

Aa、 Sbなどにも用いることができる。また、n型
ドーパントである■族のAQ、 Ga、 In、 T(
1,■族のCl3. Br、 Iなとも用いることがで
きる。
It can also be used for Aa, Sb, etc. In addition, AQ, Ga, In, T (
1, ■ Group Cl3. Br and I can also be used.

また、原料もZn、S、およびSs、そして■族原料の
いずれに関しても種々の組合わせで成長させる事が可能
である。成長条件も温度、圧カ、供給量等1種々変化さ
せることができる。
In addition, it is possible to grow the raw materials in various combinations of Zn, S, Ss, and any of the Group Ⅰ raw materials. The growth conditions can also be changed in various ways, such as temperature, pressure, supply amount, etc.

成長方法に関しても、MOCVD法に限らず、MBE法
The growth method is not limited to the MOCVD method, but also the MBE method.

LPE法等広く応用できる。It can be widely applied to LPE method etc.

その他、本発明の骨子を逸脱しない範囲で種々変形して
用いることが出来る。
In addition, various modifications can be made without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明により、青色発光材料であるZn5xSeエーウ
(0≦X≦1)の室温で青色に発光する結晶を得ること
ができるようになった。さらに、上記結晶を用いたMI
S型又はPN接合型発光素子は青色の発光を示すように
なった。
According to the present invention, it has become possible to obtain a crystal of Zn5xSe (0≦X≦1), which is a blue light-emitting material, that emits blue light at room temperature. Furthermore, MI using the above crystal
S-type or PN junction type light emitting devices now emit blue light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である。P型ドーパントとし
てPを用い、同時に同族のAsを添加したZn5aの室
温フォトルミネッセンススペクトルを示す特性図、第2
図はP型ドーパントとしてPのみを添加したZn5eの
結晶の室温スペクトルを示す特性図である。 代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男
FIG. 1 shows an embodiment of the present invention. Characteristic diagram showing the room temperature photoluminescence spectrum of Zn5a using P as a P-type dopant and simultaneously adding As of the same group, 2nd
The figure is a characteristic diagram showing a room temperature spectrum of a Zn5e crystal to which only P is added as a P-type dopant. Agent Patent Attorney Nori Chika Yudo Kikuo Takehana

Claims (5)

【特許請求の範囲】[Claims] (1)ZnSe,Zns及びその混晶結晶中に電気伝導
を得る為の1つもしくは2つ以上の第1の不純物を添加
する際に、これと同時に第1の不純物添加により生じた
置換原子との原子半径の不整を緩和する様な第1の不純
物と同族であるもしくは2つ以上の第2の不純物を添加
することを特徴とするZnS_xSe_1_−_x(0
≦x≦1)結晶の製造方法。
(1) When adding one or more first impurities to obtain electrical conduction into ZnSe, Zns, and their mixed crystals, at the same time, the substitution atoms generated by the addition of the first impurities ZnS_xSe_1_-_x(0
≦x≦1) Method for producing crystal.
(2)ZnSe,ZnS及びその混晶結晶中で電気伝導
を得る為の不純物との置換サイトがIV族であることを特
徴とする特許請求の範囲第1項記載のZnS_xSe_
1_−_x(0≦x≦1)結晶の製造方法。
(2) ZnS_xSe_ according to claim 1, characterized in that the substitution site with an impurity for obtaining electrical conduction in ZnSe, ZnS and its mixed crystal is a group IV group.
1_−_x (0≦x≦1) crystal manufacturing method.
(3)第1の不純物がチッソ(N)または、リン(P)
、第2の不純物がヒ素(As)ないしは、アンチモン(
Sb)であることを特徴とする特許請求の範囲第2項記
載のZnS_xSe_1_−_x(0≦x≦1)結晶の
製造方法。
(3) The first impurity is nitrogen (N) or phosphorus (P)
, the second impurity is arsenic (As) or antimony (
A method for producing a ZnS_xSe_1_-_x (0≦x≦1) crystal according to claim 2, characterized in that the ZnS_xSe_1_-_x (0≦x≦1) crystal is Sb).
(4)ZnSe,ZnS及びその混晶結晶中で電気伝導
を得る為の不純物との置換サイトがII族であることを特
徴とする特許請求の範囲第1項記載のZnS_xSe_
1_−_x(0≦x≦1)結晶の製造方法。
(4) ZnS_xSe_ according to claim 1, characterized in that the substitution site with an impurity for obtaining electric conduction in ZnSe, ZnS and its mixed crystal is a group II group.
1_−_x (0≦x≦1) crystal manufacturing method.
(5)第1の不純物がアルミニウム(Al)またはガリ
ウム(Ga)第2の不純物がインチラム(In)ないし
、タリウム(Tl)であることを特徴とする特許請求の
範囲第4項記載のZnS_xSe_1_−_x(0≦x
≦1)結晶の製造方法。
(5) ZnS_xSe_1_- according to claim 4, wherein the first impurity is aluminum (Al) or gallium (Ga) and the second impurity is indium (In) or thallium (Tl). _x(0≦x
≦1) Method for producing crystals.
JP30652286A 1986-12-24 1986-12-24 Method for producing ZnSxSe (1) -x (0≤x≤1) crystal Expired - Lifetime JPH07118455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30652286A JPH07118455B2 (en) 1986-12-24 1986-12-24 Method for producing ZnSxSe (1) -x (0≤x≤1) crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30652286A JPH07118455B2 (en) 1986-12-24 1986-12-24 Method for producing ZnSxSe (1) -x (0≤x≤1) crystal

Publications (2)

Publication Number Publication Date
JPS63160344A true JPS63160344A (en) 1988-07-04
JPH07118455B2 JPH07118455B2 (en) 1995-12-18

Family

ID=17958037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30652286A Expired - Lifetime JPH07118455B2 (en) 1986-12-24 1986-12-24 Method for producing ZnSxSe (1) -x (0≤x≤1) crystal

Country Status (1)

Country Link
JP (1) JPH07118455B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0356059A2 (en) * 1988-08-15 1990-02-28 Gertrude F. Neumark Process for doping crystals of wide band gap semiconductors
RU2664912C1 (en) * 2017-11-16 2018-08-23 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Method of producing filters for ir range

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0356059A2 (en) * 1988-08-15 1990-02-28 Gertrude F. Neumark Process for doping crystals of wide band gap semiconductors
RU2664912C1 (en) * 2017-11-16 2018-08-23 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Method of producing filters for ir range

Also Published As

Publication number Publication date
JPH07118455B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
US6110757A (en) Method of forming epitaxial wafer for light-emitting device including an active layer having a two-phase structure
US5068204A (en) Method of manufacturing a light emitting element
JP2723227B2 (en) Method for manufacturing semiconductor light emitting device
JPS6057214B2 (en) Method of manufacturing electroluminescent materials
US5140385A (en) Light emitting element and method of manufacture
JPH05243614A (en) Method of growing compound semiconductor, its light-emitting device, and the manufacture
US5442201A (en) Semiconductor light emitting device with nitrogen doping
JPS581539B2 (en) epitaxial wafer
JP3458007B2 (en) Semiconductor light emitting device
JPH0936429A (en) Fabrication of iii-v compound semiconductor
JPS5846686A (en) Blue light emitting diode
JPS63160344A (en) Manufacture of znsxse1-x(0&lt;=x&lt;=1) crystal
JPS60111482A (en) Method of producing light emitting diode
JP3146874B2 (en) Light emitting diode
JP3916361B2 (en) Low resistance p-type single crystal ZnS thin film and method for producing the same
JP3436379B2 (en) Gallium arsenide arsenide epitaxial wafer
JP3432444B2 (en) Semiconductor light emitting device
JPH0220077A (en) Manufacture of green-light emitting diode
JPS63143810A (en) Vapor growth of compound semiconductor
US5382813A (en) Light emission diode comprising a pn junction of p-type and n-type A1-containing ZnS compound semiconductor layers
JPS63213378A (en) Manufacture of semiconductor light emitting element
JP2004200723A (en) Method for improving crystallinity of iii-v group compound semiconductor
JPS60204698A (en) Method of growth of semiconductor crystal
JP2545212B2 (en) Blue light emitting element
JPS63213376A (en) Manufacture of n-type semiconductor crystal