JP3633015B2 - III-V Group Compound Mixed Crystal Growth Method - Google Patents

III-V Group Compound Mixed Crystal Growth Method Download PDF

Info

Publication number
JP3633015B2
JP3633015B2 JP1517495A JP1517495A JP3633015B2 JP 3633015 B2 JP3633015 B2 JP 3633015B2 JP 1517495 A JP1517495 A JP 1517495A JP 1517495 A JP1517495 A JP 1517495A JP 3633015 B2 JP3633015 B2 JP 3633015B2
Authority
JP
Japan
Prior art keywords
group
iii
mixed crystal
growth method
compound mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1517495A
Other languages
Japanese (ja)
Other versions
JPH08208395A (en
Inventor
謙司 下山
秀樹 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP1517495A priority Critical patent/JP3633015B2/en
Publication of JPH08208395A publication Critical patent/JPH08208395A/en
Application granted granted Critical
Publication of JP3633015B2 publication Critical patent/JP3633015B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、青色〜緑色発光ダイオード(LED)またはレーザーダイオード(LD)の製造に用いられるV族元素として窒素III−V 族化合物混晶の成長方法に関し、特に、低い成長温度で分子線エピタキシー法、有機金属気相成長法(以下、「MOCVD法」という。)等のようにIII 族元素源として有機金属を用いる気相成長法により優れた結晶性を有する当該混晶を得る方法に関する。
【0002】
【従来の技術】
最近の青色〜緑色のLED、LD等の発光素子の高輝度化の進展には、目ざましいものがあり、すでに輝度の点では、実用の域に達している。
これらの発光素子の材料としては、ZnSSe等のII−VI族系、AlGaInN等のIII−V 族化合物系が用いられている。特に最近サファイア、SiC等の基板上に高キャリア濃度のp型窒化ガリウム(GaN)系化合物を高品質で成長可能となったことから、図2に示すような高輝度青色LEDが実現されている。
さらに、発光層のインジウム組成を増加させたInGaN系混晶材料は、緑色、赤色等の可視領域の発光素子用材料として期待されている。
この場合、窒素原子源として、従来は通常アンモニアが用いられていた。
【0003】
【発明が解決しようとする課題】
しかしながら、窒素原子源としてアンモニアを用いる従来法では、成長装置に供給するガス中のV/III 比(モル比)が1000〜10000と非常に高くなり、成長装置、除外装置等の設備に対する負担を小さくするには、成長速度を低く(1μm/h以下)抑える必要があった。
さらにIn含有量が多い例えばInGa1−x N混晶からなる発光層を作製しようとした場合、以下に述べるような大きな問題点を有している。
【0004】
In含有量の多い場合、例えばx≧0.3を有するIn x Ga 1-x 膜、AlGaInN膜等を成長させようとした場合、高品質結晶を得るために高温成長を行うとInの脱離により成長速度が大きく低下してしまい、逆にInの脱離を抑制するために低温成長を行うと、アンモニアの分解が十分に進まず、その結果窒素(N)原子の空孔が形成されやすくなり、キャリア濃度の制御を困難にしたり、結晶品質の劣化させてしまうという問題を生じている。
【0005】
【課題を解決するための手段】
そこで本発明者らは、上記の課題を解決することを目的として鋭意検討の結果、N原子をアンモニアの従来使用されてきたV族だけを含む原料ガスとして供給するのではなく、III 族原子とN原子を共に含む有機金属を原料とすることにより上述の問題を生じないことを見いだし本発明に到達した。
すなわち、本発明の目的は、III 族元素源として有機金属を用いる気相成長法によりV族元素として窒素を含有するIII−V 族化合物混晶を成長させる方法において、下記一般式で表されるIII 族元素アミド化合物を用いるIII−V 族化合物混晶の成長方法により達せられる。
【0006】
【化2】
M(NR
【0007】
(式中、Mは、III 族元素を表し、Rは、炭素数1〜10個のアルキル基、アリール基及
アラルキル基並びにトリメチルシリル基及びトリエチルシリル基からなる群から選ばれる少なくとも1種の官能基を表す。)
【0008】
V族元素として窒素を含有するIII−V 族化合物混晶としては、InGa1−x N,AlGaInN等が挙げられる。
一般式(I)で表わされるIII 族元素化合物としては、MがAl,Ga,Inであり、成長させるIII−V族混晶に応じて選択されるアミド基、−NRとしては、置換基、Rが炭素数が1〜10の範囲のアルキル基、アリール基、アラルキル基、トリメチルシリル基、トリエチルシリル基が挙げられる。炭素数が10を超えると蒸気圧が低くなりMOCVD装置に供給するのが困難になる。
好ましい置換基Rとしては、CH−,C−,C−,C−,C−,CH−,−Si(CH,−Si(C等が挙げられる。
【0009】
また、窒素源としては、他にアンモニア、アゾ化エチル、ジメチルヒトラジン等従来用いられていた化合物を併用してもよい。窒素以外のV族元素例えばAs,P等を含む場合はそれぞれ、AsH,PH等を同時に供給することができる。
III−V 族化合物混晶の成長方法及び装置としては、特に制限されないが、通常の分子線エピタキシー法、MOCVD法等及び装置を用いることができる。
以下本発明を実施例を用いて説明するが、本発明はその要旨を超えない限り、実施例に限定されるものではない。
【0010】
【実施例】
本発明の成長に使用した装置の構成は図3に示すように中央に基板搬送室を設け、左右に減圧MOCVD装置を設置してある。成長室1は通常のMOCVD装置であり、AlGaInN系化合物半導体の成長に用いる。成長室2は、原料をマイクロ波励起によりラジカル分解することができ、基板表面の窒化及び薄膜のAlGaInN系化合物の成長に用いる。図1に示すような構造のエピタキシャルウエハを成長手順を示す。
【0011】
まずサファイア基板を成長室2に導入し、加熱昇温する。500℃において、成長前に窒素ガス(N2)を原料として、マイクロ波励起によりラジカル窒素を基板表面に供給し、表面の酸素(O)原子をN原子と置換させる工程、すなわち窒化を行う。この表面上に、In0.4 Ga0.6 Nバッファ層20nmを成長させる。この後、基板を冷却し、搬送室を経て成長室1へ基板を移動させる。基板を700℃に加熱し、前記エピタキシャル膜成長基板上に、n型In0.4 Ga0.6Nバッファ層4μm、n型In 0.4 (Al 0.2 Ga 0.8 0.6 クラッド層1μm、ZnドープIn0.4 Ga0.6 N活性層0.1μm、p型In 0.4 (Al 0.2 Ga 0.8 0.6 クラッド層1μm、p型In0.4 Ga0.6 Nコンタクト層1μmを順次成長させる。このとき、キャリアガスに水素を用いて、III 族原料ガスに、トリストリメチルシリルアミドインジウム(In(TMSA)3 )、トリストリメチルシリルアミドガリウム(Ga(TMSA) 3 )、トリストリメチルシリルアミドアルミニウム(Al(TMSA)3 )を用いた。V族原料ガスには、アンモニア(NH3 )を用いたがNH3 /有機金属比は、10〜100程度と従来の約1/10〜1/100に低減できた。n型ドーバントには、SiまたはGeを、p型ドーバントには、MgまたはZnを用いた。必要に応じて、成長後に引き続いて成長室内で熱処理を行い、キャリアを活性化させる。III 族の有機金属は、上記有機金属に限られてはおらず、III 族原子の結合の相手にN原子が存在する有機金属であれば同様な効果が得られることは言うまでもない。NH3 の供給量により、ストイキオメトリーの制御が容易に行えるために、導電型の制御も非常に容易になる。
【0012】
このようにして成長したエピタキシャルウエハを基板表面側に電極を形成し、チップに加工した。このチップを発光ダイオードとして組み立てて発光させたところ、順方向電流20mAにおいて、発光波長530nm、発光出力700μWと非常に良好な値が得られた。
上記実施例は、発光ダイオードについてであったが、半導体レーザにも同様な効果があることは言うまでもない。
【0013】
【発明の効果】
本発明方法により、V/III 比を小さくすることができた。
また、III 族(In、Al、Ga等)原子の結合の相手にN原子が少なくとも1つ存在する有機金属を原料とすることにより、AlGaInN系材料を用いて、紫外から赤色領域までカバーできる発光素子を容易に作製できるようになった。特に、従来困難とされてきたIn組成を増加させたInGa1−x N混晶からなる緑色〜赤色にあたる可視領域でのAlGaInN系LEDを作製する上で本発明は非常に有効である。
【図面の簡単な説明】
【図1】図1は本発明を適用しうる半導体装置の一例を示す説明図である。
【図2】図2は本発明を適用しうる半導体装置の一例を示す説明図である。
【図3】図3は実施例で用いた製造装置の説明図である。
[0001]
[Industrial application fields]
The present invention relates to a method for growing a nitrogen III-V compound mixed crystal as a group V element used for manufacturing a blue to green light emitting diode (LED) or a laser diode (LD), and in particular, a molecular beam epitaxy method at a low growth temperature. The present invention relates to a method for obtaining the mixed crystal having excellent crystallinity by a vapor phase growth method using an organic metal as a group III element source such as a metal organic vapor phase growth method (hereinafter referred to as “MOCVD method”).
[0002]
[Prior art]
Recent progress in increasing the brightness of light emitting elements such as blue to green LEDs and LDs is remarkable, and the brightness has already reached the practical level.
As materials of these light emitting elements, II-VI group systems such as ZnSSe and III-V group compound systems such as AlGaInN are used. In particular, since it has become possible to grow a p-type gallium nitride (GaN) compound having a high carrier concentration on a substrate such as sapphire or SiC with high quality, a high brightness blue LED as shown in FIG. 2 has been realized. .
Furthermore, an InGaN mixed crystal material in which the indium composition of the light emitting layer is increased is expected as a material for light emitting elements in the visible region such as green and red.
In this case, ammonia has conventionally been used as a nitrogen atom source.
[0003]
[Problems to be solved by the invention]
However, in the conventional method using ammonia as the nitrogen atom source, the V / III ratio (molar ratio) in the gas supplied to the growth apparatus becomes as high as 1000 to 10000, which imposes a burden on the equipment such as the growth apparatus and the exclusion apparatus. In order to make it small, it was necessary to keep the growth rate low (1 μm / h or less).
Furthermore, when trying to produce a light emitting layer made of, for example, an In x Ga 1-x N mixed crystal with a large In content, there is a big problem as described below.
[0004]
If the In content is high, for example, if an In x Ga 1-x N film or AlGaInN film having x ≧ 0.3 is to be grown, high temperature growth is performed to obtain a high quality crystal. The growth rate is greatly reduced by the separation, and conversely, when low temperature growth is performed to suppress the desorption of In, ammonia does not decompose sufficiently, resulting in the formation of nitrogen (N) atom vacancies. As a result, there is a problem that it becomes difficult to control the carrier concentration and the crystal quality is deteriorated.
[0005]
[Means for Solving the Problems]
Therefore, as a result of intensive studies aimed at solving the above problems, the present inventors have not supplied N atoms as a source gas containing only the group V of ammonia that has been conventionally used, but group III atoms and The inventors have found that the above-mentioned problems are not caused by using an organic metal containing both N atoms as a raw material, and have reached the present invention.
That is, an object of the present invention is represented by the following general formula in a method of growing a III-V group compound mixed crystal containing nitrogen as a group V element by a vapor phase growth method using an organic metal as a group III element source. This can be achieved by a method for growing a group III-V compound mixed crystal using a group III element amide compound.
[0006]
[Chemical formula 2]
M (NR 2 ) 3
[0007]
(In the formula, M represents a group III element , and R represents at least one functional group selected from the group consisting of an alkyl group having 1 to 10 carbon atoms, an aryl group, an aralkyl group, a trimethylsilyl group, and a triethylsilyl group. Represents.)
[0008]
Examples of the III-V group compound mixed crystal containing nitrogen as a group V element include In x Ga 1-x N and AlGaInN.
As the group III element compound represented by the general formula (I), M is Al, Ga, In, an amide group selected according to the group III-V mixed crystal to be grown, and —NR 2 includes a substituent. , R is an alkyl group having 1 to 10 carbon atoms, an aryl group, an aralkyl group, a trimethylsilyl group, and a triethylsilyl group. When the number of carbons exceeds 10, the vapor pressure becomes low and it becomes difficult to supply to the MOCVD apparatus.
Preferable substituents R include CH 3 —, C 2 H 5 —, C 3 H 7 —, C 4 H 9 —, C 6 H 5 —, CH 3 C 6 H 4 —, —Si (CH 3 ) 3. , —Si (C 2 H 5 ) 3 and the like.
[0009]
In addition, as the nitrogen source, other conventionally used compounds such as ammonia, ethyl azotide, and dimethylhumanrazine may be used in combination. When V group elements other than nitrogen, such as As and P, are included, AsH 3 and PH 3 can be supplied simultaneously.
A method and apparatus for growing a III-V group compound mixed crystal is not particularly limited, and a normal molecular beam epitaxy method, MOCVD method, and the like can be used.
EXAMPLES Hereinafter, although this invention is demonstrated using an Example, this invention is not limited to an Example, unless the summary is exceeded.
[0010]
【Example】
As shown in FIG. 3, the apparatus used for the growth of the present invention is provided with a substrate transfer chamber at the center and a reduced pressure MOCVD apparatus on the left and right. The growth chamber 1 is an ordinary MOCVD apparatus and is used for growing an AlGaInN-based compound semiconductor. The growth chamber 2 can radically decompose the raw material by microwave excitation, and is used for nitriding the substrate surface and growing a thin film AlGaInN-based compound. A procedure for growing an epitaxial wafer having a structure as shown in FIG. 1 will be described.
[0011]
First, a sapphire substrate is introduced into the growth chamber 2 and heated and heated. At 500 ° C., before the growth, nitrogen gas (N 2 ) is used as a raw material, radical nitrogen is supplied to the substrate surface by microwave excitation, and oxygen (O) atoms on the surface are replaced with N atoms, that is, nitriding is performed. An In 0.4 Ga 0.6 N buffer layer of 20 nm is grown on this surface. Thereafter, the substrate is cooled, and the substrate is moved to the growth chamber 1 through the transfer chamber. The substrate is heated to 700 ° C., and an n-type In 0.4 Ga 0.6 N buffer layer 4 μm, n-type In 0.4 (Al 0.2) is formed on the epitaxial film growth substrate. Ga 0.8 ) 0.6 N cladding layer 1 μm, Zn-doped In 0.4 Ga 0.6 N active layer 0.1 μm, p-type In 0.4 (Al 0.2 A Ga 0.8 ) 0.6 N cladding layer of 1 μm and a p-type In 0.4 Ga 0.6 N contact layer of 1 μm are sequentially grown. At this time, hydrogen is used as the carrier gas, and tristrimethylsilylamidoindium (In (TMSA) 3 ), tristrimethylsilylamidogallium ( Ga (TMSA) 3 ), tristrimethylsilylamidoaluminum (Al (TMSA)) is used as the group III source gas. 3 ) was used. Ammonia (NH 3 ) was used as the group V source gas, but the NH 3 / organometallic ratio was about 10 to 100, which was about 1/10 to 1/100 that of the prior art. Si or Ge was used for the n-type dopant, and Mg or Zn was used for the p-type dopant. If necessary, heat treatment is subsequently performed in the growth chamber after the growth to activate the carriers. The group III organic metal is not limited to the above organic metal, and it goes without saying that the same effect can be obtained as long as an organic metal in which an N atom is present at the group III bond. Since the stoichiometry can be easily controlled by the supply amount of NH 3 , the conductivity type can be controlled very easily.
[0012]
An electrode was formed on the substrate surface side of the epitaxial wafer grown in this manner and processed into a chip. When this chip was assembled as a light emitting diode to emit light, a very good value was obtained with a light emission wavelength of 530 nm and a light emission output of 700 μW at a forward current of 20 mA.
Although the above embodiment has been described for the light emitting diode, it is needless to say that the semiconductor laser has the same effect.
[0013]
【The invention's effect】
By the method of the present invention, the V / III ratio could be reduced.
Furthermore, by using an organic metal having at least one N atom as a raw material for a group III (In, Al, Ga, etc.) atom bond, light emission that can cover from the ultraviolet to the red region using an AlGaInN-based material The device can be easily manufactured. In particular, the present invention is very effective in producing an AlGaInN-based LED in the visible region corresponding to green to red, which is made of an In x Ga 1-x N mixed crystal with an increased In composition, which has been considered difficult in the past.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example of a semiconductor device to which the present invention can be applied.
FIG. 2 is an explanatory diagram showing an example of a semiconductor device to which the present invention can be applied.
FIG. 3 is an explanatory diagram of a manufacturing apparatus used in the examples.

Claims (2)

III 族元素源として有機金属を用いる気相成長法によりV族元素として窒素を含有するIII-V 族化合物混晶を成長させる方法において、下記一般式 I で表されるIII 族元素アミド化合物を用いることを特徴とするIII-V 族化合物混晶の成長方法。
Figure 0003633015
(式中、Mは III 族元素を表し、Rは、炭素数1〜10個のアルキル基、アリール基及
アラルキル基並びにトリメチルシリル基及びトリエチルシリル基からなる群から選ばれる少なくとも1種の官能基を表す。)
In a method of growing a III-V group compound mixed crystal containing nitrogen as a group V element by a vapor phase growth method using an organic metal as a group III element source, a group III element amide compound represented by the following general formula I is used. A method for growing a III-V compound mixed crystal.
Figure 0003633015
(Wherein, M represents a Group III element, R represents at least one functional group selected from the group consisting of C 1 -C 10 alkyl group, aryl group and aralkyl group and trimethylsilyl group and triethylsilyl group carbon Represents.)
MがIn、Al及びGaからなる群から選ばれる少なくとも1種のM is at least one selected from the group consisting of In, Al and Ga. III III 族元素であることを特徴とする請求項1に記載の成長方法。The growth method according to claim 1, wherein the growth method is a group element.
JP1517495A 1995-02-01 1995-02-01 III-V Group Compound Mixed Crystal Growth Method Expired - Fee Related JP3633015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1517495A JP3633015B2 (en) 1995-02-01 1995-02-01 III-V Group Compound Mixed Crystal Growth Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1517495A JP3633015B2 (en) 1995-02-01 1995-02-01 III-V Group Compound Mixed Crystal Growth Method

Publications (2)

Publication Number Publication Date
JPH08208395A JPH08208395A (en) 1996-08-13
JP3633015B2 true JP3633015B2 (en) 2005-03-30

Family

ID=11881455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1517495A Expired - Fee Related JP3633015B2 (en) 1995-02-01 1995-02-01 III-V Group Compound Mixed Crystal Growth Method

Country Status (1)

Country Link
JP (1) JP3633015B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8236103B2 (en) 2002-02-15 2012-08-07 Showa Denko K.K. Group III nitride semiconductor crystal, production method thereof and group III nitride semiconductor epitaxial wafer
JP2017050439A (en) * 2015-09-03 2017-03-09 豊田合成株式会社 Uv light-emitting device and method for manufacturing the same

Also Published As

Publication number Publication date
JPH08208395A (en) 1996-08-13

Similar Documents

Publication Publication Date Title
Keller et al. Metalorganic chemical vapor deposition of group III nitrides—a discussion of critical issues
JPH09283857A (en) Semiconductor manufacturing method and semiconductor element
US6346720B1 (en) Layered group III-V compound semiconductor, method of manufacturing the same, and light emitting element
JP3509260B2 (en) Group 3-5 compound semiconductor and light emitting device
JP3598591B2 (en) Method for manufacturing group 3-5 compound semiconductor
JPH06283760A (en) Semiconductor light emittering device and its manufacture
JP2004356522A (en) Group 3-5 compound semiconductor, its manufacturing method, and its use
JPH09251957A (en) Manufacturing method for 3-5 group compound semiconductor
JP4284944B2 (en) Method for manufacturing gallium nitride based semiconductor laser device
JP3633015B2 (en) III-V Group Compound Mixed Crystal Growth Method
JPH0936429A (en) Fabrication of iii-v compound semiconductor
JP2006100518A (en) Method for treating surface of substrate and method for manufacturing group iii nitride compound semiconductor light-emitting element
JPH09295890A (en) Apparatus for producing semiconductor and production of semiconductor
JP3605906B2 (en) Semiconductor device having contact resistance reduction layer
JP3174257B2 (en) Method for producing nitride-based compound semiconductor
JP4609917B2 (en) Method for producing aluminum gallium nitride layer, method for producing group III nitride semiconductor light emitting device, and group III nitride semiconductor light emitting device
JPH0997921A (en) Manufacture of iii-v compd. semiconductor
JPH09148626A (en) Manufacture of iii-v group compound semiconductor
JP4545074B2 (en) Semiconductor manufacturing method
JPH07283436A (en) Iii-v compound semiconductor and light-emitting element
JP2006310886A (en) Group iii-v compound semiconductor light-emitting element
JPH09260290A (en) Iii group nitride semiconductor and manufacture of p-n junction diode
JPH088460A (en) Method of manufacturing p-type algan semiconductor
JP3859990B2 (en) Method for producing compound semiconductor
JP4829273B2 (en) Group III nitride semiconductor light emitting device manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees