JPS60198081A - Far infrared heater - Google Patents

Far infrared heater

Info

Publication number
JPS60198081A
JPS60198081A JP5263784A JP5263784A JPS60198081A JP S60198081 A JPS60198081 A JP S60198081A JP 5263784 A JP5263784 A JP 5263784A JP 5263784 A JP5263784 A JP 5263784A JP S60198081 A JPS60198081 A JP S60198081A
Authority
JP
Japan
Prior art keywords
far
infrared heater
heat
infrared
powder material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5263784A
Other languages
Japanese (ja)
Other versions
JPS6311756B2 (en
Inventor
服部 栄一
進一 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HATSUTORI HIITEINGU KOGYO KK
HATTORI HEATING KOGYO
Original Assignee
HATSUTORI HIITEINGU KOGYO KK
HATTORI HEATING KOGYO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HATSUTORI HIITEINGU KOGYO KK, HATTORI HEATING KOGYO filed Critical HATSUTORI HIITEINGU KOGYO KK
Priority to JP5263784A priority Critical patent/JPS60198081A/en
Publication of JPS60198081A publication Critical patent/JPS60198081A/en
Publication of JPS6311756B2 publication Critical patent/JPS6311756B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、物体への熱エネルギー伝達形式のうち、熱源
から“出る電磁液を何らの媒体なしで被加熱対象物に直
接吸収させて物体内での分子振動による熱作用をもって
効率良く短時間に加熱が行なえる熱輻射で、多くの物質
が吸収しゃすい3P〜20Pの波長域の赤外線を放射す
る遠赤外線ヒーターに関するものであり、詳しくは、ヒ
ーターエレメントを耐熱性及び電気絶縁性に勝れた゛無
機質平板間に挾んで圧着一体化した発熱体の表面側に遠
赤外線放射板を、か□つ前記発熱体の裏面側に反射板を
積層してこれらを一体化してなる遠赤外線ヒーターに関
する。
Detailed Description of the Invention The present invention is a method of transferring thermal energy to an object by directly absorbing electromagnetic liquid emitted from a heat source into an object to be heated without any medium, thereby transmitting heat due to molecular vibration within the object. This relates to far-infrared heaters that emit infrared rays in the wavelength range of 3P to 20P, which are easily absorbed by many substances and are heat radiation that can heat efficiently and quickly in a short period of time. □ A far-infrared radiation plate is laminated on the front side of the heating element which is sandwiched between inorganic flat plates and integrated by pressure, and a reflecting plate is laminated on the back side of the heating element and these are integrated with excellent electrical insulation properties. Regarding a far infrared heater.

この種の遠赤外線ヒーターは、前述した通り輻射性が強
く、中間の空気r@ヲ加熱することなく、被加熱対象物
を直接的に効率良く加熱するとをができる、色相による
加熱特性の格差が殆んどなく広範な物質の加熱に利用で
きる、熱伝達速度が大で物質内部まで十分に熱を伝える
ことができる、人体に対する温度効果がソフトである、
無公害性である、設備の小型化を図り易い、温度制御が
容易である、等々の多くの利点を有し、各種産粱分野の
加熱、乾燥に有効に活用されている。
As mentioned above, this type of far-infrared heater has strong radiation properties, and can directly and efficiently heat the object to be heated without heating the air in between. It can be used to heat a wide range of substances, has a high heat transfer rate and can sufficiently transmit heat to the inside of the substance, and has a soft temperature effect on the human body.
It has many advantages such as being non-polluting, easy to downsize equipment, and easy to control temperature, and is effectively used for heating and drying in various fields of grain production.

而して上記の如き構成の遠赤外線ヒーターにおいて重要
々条件として先ず第1K挙げられることは、前記放射板
の輻射率が高くて低い表面温度で十分に大きな輻射量が
得られることである。
The first important condition for a far-infrared heater configured as described above is that the emissivity of the radiation plate is high and that a sufficiently large amount of radiation can be obtained at a low surface temperature.

この要求に応えるものとして、本出顯人らは、成る種の
セラミック、例えばアルミナ磁器、グラファイト、シリ
カ、ジルコニアなどは赤熱すると遠赤外線を放射するこ
と、殊に純度の高いアルミナ磁器は効率の良い遠赤外線
を長波長に亘って放射する特性を有することに江目し、
これを利用して放射板輻射率の増進を図ったものを開発
した。
In order to meet this demand, our authors have discovered that certain types of ceramics, such as alumina porcelain, graphite, silica, and zirconia, emit far-infrared rays when heated to red, and that highly pure alumina porcelain is particularly efficient. We realized that it has the property of emitting far-infrared rays over long wavelengths,
Taking advantage of this, we have developed a radiation plate that aims to increase the emissivity.

それは、5.0006C〜7.000°C範囲の非常に
高湿の非酸化熱源?使ってアルミナ磁器粉末材料金溶融
し、この溶融粉末を溶射ガンを介しプラズマジェットに
より加速して、マイカなど耐熱絶縁性板の表面に溶射し
アルミナ磁器皮膜を形成させたものであるが、この場合
tユ板表面に溶射下地としてのアルミ蒸着ヲ要するばか
りでなく非常に高い熊エネルギー及び運動エネルギーを
要して加工コストが著しく高騰し、しかもプラズマ溶射
皮膜は割れ易く、−次元の面状ヒーターにしか適用実施
できないといった具すに、実用面で未だ多くの難点があ
る。
Is it a very humid non-oxidizing heat source ranging from 5.0006C to 7.000C? In this case, the molten powder is accelerated by a plasma jet through a thermal spray gun and sprayed onto the surface of a heat-resistant insulating plate such as mica to form an alumina porcelain film. Not only does it require aluminum evaporation as a base for thermal spraying on the surface of the plate, but it also requires very high energy and kinetic energy, resulting in a significant increase in processing costs.Moreover, the plasma sprayed coating is easily broken, making it difficult to use for -dimensional sheet heaters. However, there are still many difficulties in practical terms.

本発明はかかる実情に鑑み、フ゛ルミナ磁器等の赤外線
放射性セラミック材料を利用するもので、加工面での大
幅コストダクンが図れると同時に形態面で用途拡大が図
れる遠赤外線ヒーターを提供する点に目的を有する。
In view of the above circumstances, an object of the present invention is to provide a far-infrared heater that utilizes an infrared emitting ceramic material such as Filmina porcelain, and which can significantly reduce processing costs and expand the range of uses in terms of form. .

上記の目的を達成するために開発された本発明に係る遠
赤外線ヒーターは、冒記構成のものにおいて、前記遠赤
外線放射板を構成するに、耐熱絶縁性の無機質粉末材料
と遠赤外線放射性粉末材料とを混合し高温高圧下で板状
に成形して構成しであるという構成に特徴を有し、これ
によって次のような格別な作用効果が期待できるに至っ
たのである。
In the far-infrared heater according to the present invention developed to achieve the above object, the far-infrared radiation plate is composed of a heat-resistant insulating inorganic powder material and a far-infrared radiation emitting powder material. It is characterized by its composition in which it is formed by mixing it with the following and forming it into a plate shape under high temperature and pressure, and as a result, the following special effects can be expected.

つまり、赤熱によって遠赤外線を放射するセラミック材
料を放射板からの輻射率増進のために利用するにあたり
、そのセラミック粉末材料を非常に高い溶射可能温度に
まで加熱溶融する、のではなく、マイカ粉末など元来が
粉末材料をプレスして板状に成形される所の耐熱絶縁性
無機質粉末材料のプレス成形時にその材料に適量のバイ
ンダーとともに前記セラミック粉末材料を混合してホッ
トプレスにより高温高圧下で板状に成形するものである
から、溶射といった別工程が不要であることと、セラミ
ック粉末材料を溶融するだけの高い熱エネルギー及びプ
ラズマジェットにより加速する大きい運動エネルギーが
不要であること並びに、アルミ蒸着等のカテライザーが
不要であることの相乗によって加工コスト、ひいては製
品コストの著しい低減化が図り得る。しかも、表面溶射
皮膜と違ってセラミック粉末材料が反射板肉厚内に分散
しているため、曲げ等の機械的応力に対して強くて可撓
性に勝れ、割れなどを招かないで曲面加工し易く、従っ
て、平面ヒーターに限らず、種々用途に対応して二次元
、三次元の曲面ヒーターを作製し易く、この種ヒーター
の用途範囲を更に一段と拡大できるに至ったのである。
In other words, when using a ceramic material that emits far infrared rays by red heat to increase the emissivity from a radiation plate, instead of heating and melting the ceramic powder material to a very high temperature that allows spraying, mica powder etc. Originally, when a heat-resistant insulating inorganic powder material is press-molded into a plate shape by pressing a powder material, the ceramic powder material is mixed with an appropriate amount of binder and the material is hot-pressed into a plate under high temperature and high pressure. Since it is molded into a shape, there is no need for separate processes such as thermal spraying, high thermal energy to melt the ceramic powder material and high kinetic energy accelerated by plasma jet, and aluminum vapor deposition etc. Due to the synergistic effect of eliminating the need for a catarizer, processing costs and, ultimately, product costs can be significantly reduced. Moreover, unlike surface spray coatings, the ceramic powder material is dispersed within the thickness of the reflector, making it strong and flexible against mechanical stress such as bending, and curved surfaces can be processed without causing cracks. Therefore, it is easy to manufacture not only flat heaters but also two-dimensional and three-dimensional curved heaters corresponding to various uses, and the range of uses of this type of heater can be further expanded.

以下本発明の一実施例を図面に基づいて詳述する。An embodiment of the present invention will be described below in detail with reference to the drawings.

第1図及び$2図において、(1)は発熱体であり、数
百−厚さのステンレス、ニラクル、ニクロムなどを電気
容量に対応して例えば第3図で示すようなパターンなど
任意の形状にエツチング又はプレス型にて打抜き成形し
たヒーターエレメント (IA)ヲ、アスベストやマイ
カなど耐熱性及び電気絶縁性に勝れた二枚の無機質薄平
板(113) 、 (IB)間にサンドインチ状に挾ん
で高温高圧下で圧着一体化したものである。(2)は前
記発熱体+11の表面側に重ねだ遠赤外線放射板であっ
て、こ7′1.け耐熱絶縁性の無機質粉末材料の代表例
であるマイカ粉末材料(2A)に、遠赤外線放射性セラ
ミック材料の代表例であるアルミナ磁器く、これらの組
合せでも良い)を適当な接着剤とともに混合しホットプ
レスにより高温高圧下で0・3問〜数調の厚さの板状に
成形して4s4図で示すような断frp Qi造にj#
ト5.シたものである。
In Figures 1 and 2, (1) is a heating element, made of stainless steel, Niracle, Nichrome, etc. several hundred thick, and shaped into any shape, such as the pattern shown in Figure 3, depending on the electrical capacity. The heating element (IA) is etched or stamped using a press die, and is sandwiched between two inorganic thin flat plates (113) and (IB) made of asbestos, mica, etc., which have excellent heat resistance and electrical insulation properties. They are sandwiched and crimped together under high temperature and pressure. (2) is a far-infrared radiation plate stacked on the surface side of the heating element +11, and 7'1. Mica powder material (2A), which is a typical example of a heat-resistant insulating inorganic powder material, and alumina porcelain, which is a typical example of a far-infrared emitting ceramic material, or a combination of these materials may be used) are mixed with a suitable adhesive and hot bonded. It is formed into a plate shape with a thickness of 0.3 to several scales using a press under high temperature and high pressure to form a cross-section frp Qi structure as shown in Figure 4s4.
G5. It's something new.

(3)は前記発熱体+11の裏面側に重ねた反射板であ
って、こI″Lは第5図で明示のように耐熱絶縁板の代
表例であるマイカ板(3A)の裏面にアルミニウム箔(
3B)k高温下でも剥離しないようにラミネートしたも
のである。
(3) is a reflective plate superimposed on the back side of the heating element +11, and as shown in Fig. 5, I″L is an aluminum Foil (
3B)k It is laminated to prevent peeling even under high temperatures.

上記の発熱体(1)とその表裏に重合位値させられた放
射板(2)及び反射板+31 t−1断面がコの字形の
アルミニウム製又は鉄製のケース枠(6)に@″11め
込んで一体化したものである。
The above heating element (1), the radiating plate (2) and the reflecting plate +31 with superimposed positions on the front and back sides of the heating element (1) are attached to an aluminum or iron case frame (6) with a U-shaped t-1 cross section. It is integrated and integrated.

このような遠赤外線ヒーターは一次元の面状ヒーターと
して使用できるのはもとよ・す、例えば第6図(イ)や
(ロ)で示すようにその放射板(2)表面が凹曲又は凸
曲するように曲面加工して局所集熱や拡散放射を行なう
二次元、三次元の面ヒーターとしても使用できるもので
ある。
Although such a far-infrared heater can be used as a one-dimensional planar heater, for example, as shown in Figure 6 (a) and (b), the surface of the radiation plate (2) is concave or curved. It can also be used as a two-dimensional or three-dimensional surface heater by processing the surface into a convex shape to perform local heat collection and diffuse radiation.

以下側の実施例について説明する。The following embodiments will be described.

IJ)第7図に示すものは、ケース枠(5)として反射
板(3)の裏面側に空気層(6)全形成する歯体のケー
ス枠を用いて構成、しだもので、この場合は、裏面側へ
の熱伝導による熱の逸散を抑制し、前方への輻射効率を
一層高めることができる利点がある。
IJ) The case shown in Fig. 7 is constructed using a toothed case frame that completely forms an air layer (6) on the back side of the reflector (3) as the case frame (5). This has the advantage of suppressing heat dissipation due to heat conduction to the back side and further increasing forward radiation efficiency.

(II) 第8図に示すものは、反射板(3)の裏面と
状ケース枠(5)の底面との間に、裏面側への熱損失を
抑える断熱材(7)を挟圧させたもので、ff17図の
ものよりはやや低いが輻射効率の増進に効果がある。
(II) The one shown in Figure 8 has a heat insulating material (7) sandwiched between the back of the reflector (3) and the bottom of the case frame (5) to suppress heat loss to the back side. This is slightly lower than the one shown in Figure ff17, but it is effective in increasing radiation efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実臘例を示す概略斜視図、第2図は
一部切欠き縦断面図、第3図は発熱体の拡大斜視図、第
4図は放射板の拡大縦断面図、vJb図は反射板の拡大
斜視図、第6図0)、(ロ)は使用例の概略図、第7図
及び第8図は夫々別の実施例を示す拡大縦断面図である
。 +11・・・・・・発熱体、(IA)・・・・・・ヒー
ターエレメント、(1均・・・・・・無機質平板、(2
)・・・・・・放射板、C2θ・・・・・・無機質粉末
材1・、(2B)・・・・・・セラミック粉末材料、(
3)・・・・・・反射板、(3A)・・・・・・駒熱絶
縁板、(3υ・・・・・・アルミニウム箔。 第1図
Fig. 1 is a schematic perspective view showing an example of the present invention, Fig. 2 is a partially cutaway longitudinal sectional view, Fig. 3 is an enlarged perspective view of a heating element, and Fig. 4 is an enlarged longitudinal sectional view of a radiation plate. FIGS. 6A and 6B are enlarged perspective views of the reflector, FIGS. 6A and 6B are schematic views of usage examples, and FIGS. 7 and 8 are enlarged longitudinal sectional views showing different embodiments, respectively. +11... Heating element, (IA)... Heater element, (1 average... Inorganic flat plate, (2
)... Radiation plate, C2θ... Inorganic powder material 1., (2B)... Ceramic powder material, (
3)...Reflector plate, (3A)...Body heat insulating plate, (3υ...Aluminum foil. Figure 1)

Claims (1)

【特許請求の範囲】 ■ ヒーターエレメントαA)t−耐熱性及び電気絶縁
性に勝れた無機質平板(1卸、0B)間に挟んで圧着一
体化した発熱体+11の表面側に、遠赤外線放射板(2
)を、かつ前記発熱体+11の裏面側に反射板(3)全
積層してこれらを一体化してに′る遠赤外線ヒーターで
あって、前記遠赤外線放射板(2)を構成するに、耐熱
絶縁性の無機質粉末材料G2A)と遠赤外線放射性セラ
ミック粉、末材料(2B)と全混合し高湿高圧下で板状
に成形して構成しであることt−特徴とする遠赤外線ヒ
ーター。 ■ 前記放射板(211に構成するセラミック粉末材料
(2B)が、アルミナ磁器粉末である特許請求の範囲第
0項に記載の遠赤外線ヒーター。 ■ 前記ヒーターエレメントα〜カ1、エツチング又は
プレス型にて成、形されたものである特許請求の範囲第
0項に記載の遠赤外線ヒータO ■ 前記反射Fi(a)が、耐熱絶縁板(3A)の裏面
にアルミニ1ム箔(3玲をラミネートしたものである特
許請求の範囲第0項に記載の遠赤外線ヒーター。。 ■ 前記耐熱絶縁性の粉末材料(2A)及び耐熱絶縁板
(3A)が、マイカである特許請求の範囲第0項又は第
0項に記載の遠赤外線ヒーター。
[Claims] ■ Heater element αA) t- Far infrared rays are emitted on the surface side of the heating element +11, which is sandwiched between inorganic flat plates (1 wholesale, 0B) with excellent heat resistance and electrical insulation properties and integrated by pressure. Board (2
), and a reflector plate (3) is fully laminated on the back side of the heating element +11 and these are integrated, the far-infrared heater comprising a heat-resistant A far-infrared heater characterized in that the insulating inorganic powder material (G2A) is completely mixed with the far-infrared emitting ceramic powder and the powder material (2B) and formed into a plate shape under high humidity and high pressure. (2) The far-infrared heater according to claim 0, wherein the ceramic powder material (2B) constituting the radiation plate (211) is an alumina porcelain powder. (2) The heater elements α to (1) are formed into an etched or pressed mold. The far infrared heater O according to claim 0, which is made of The far-infrared heater according to claim 0. ■ Claim 0, wherein the heat-resistant insulating powder material (2A) and the heat-resistant insulating plate (3A) are mica, or The far-infrared heater according to item 0.
JP5263784A 1984-03-19 1984-03-19 Far infrared heater Granted JPS60198081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5263784A JPS60198081A (en) 1984-03-19 1984-03-19 Far infrared heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5263784A JPS60198081A (en) 1984-03-19 1984-03-19 Far infrared heater

Publications (2)

Publication Number Publication Date
JPS60198081A true JPS60198081A (en) 1985-10-07
JPS6311756B2 JPS6311756B2 (en) 1988-03-15

Family

ID=12920336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5263784A Granted JPS60198081A (en) 1984-03-19 1984-03-19 Far infrared heater

Country Status (1)

Country Link
JP (1) JPS60198081A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166495U (en) * 1985-04-02 1986-10-15
JPS63493U (en) * 1986-06-18 1988-01-05
JP2009009835A (en) * 2007-06-28 2009-01-15 Japan Pionics Co Ltd Planar heating element
JP5830468B2 (en) * 2010-10-29 2015-12-09 スタンレー電気株式会社 Power generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166495U (en) * 1985-04-02 1986-10-15
JPS63493U (en) * 1986-06-18 1988-01-05
JP2009009835A (en) * 2007-06-28 2009-01-15 Japan Pionics Co Ltd Planar heating element
JP5830468B2 (en) * 2010-10-29 2015-12-09 スタンレー電気株式会社 Power generator

Also Published As

Publication number Publication date
JPS6311756B2 (en) 1988-03-15

Similar Documents

Publication Publication Date Title
US8233784B2 (en) Radiant heater
JPS6354314B2 (en)
JPS60198081A (en) Far infrared heater
JPH0521840Y2 (en)
CN103619149A (en) Thermal radiation heat dissipation film with electromagnetic shielding function and manufacturing method thereof
JPS6242458Y2 (en)
CN208079425U (en) A kind of decorative panel with Heated by Far-Infrared Radiation function
JPH0561754B2 (en)
JPH0321501B2 (en)
JP2009123785A5 (en)
JPH0410376A (en) Far infrared radiation heater
JPS6222369B2 (en)
KR20050116513A (en) Heater for radiating infrared ray with high sensitivity to heat
JPH11121147A (en) Far infrared radiation ceramic heater
JPS6325466B2 (en)
JP3095831U (en) Far infrared heating element unit
JPS5814482A (en) Heater
JPH0625913Y2 (en) Heat ray radiator
JP2005048999A (en) Far and near infrared immediate warmth heater
KR20220145042A (en) Apparatus for directional heat transfer
JPS5814481A (en) Heater
JPS6129180Y2 (en)
JPH0518872Y2 (en)
CN116839085A (en) Far infrared radiation heating device
JPS6134879A (en) Radiation heater

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees