JPS6354314B2 - - Google Patents

Info

Publication number
JPS6354314B2
JPS6354314B2 JP59237086A JP23708684A JPS6354314B2 JP S6354314 B2 JPS6354314 B2 JP S6354314B2 JP 59237086 A JP59237086 A JP 59237086A JP 23708684 A JP23708684 A JP 23708684A JP S6354314 B2 JPS6354314 B2 JP S6354314B2
Authority
JP
Japan
Prior art keywords
alumina
far
oxide powder
infrared
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59237086A
Other languages
Japanese (ja)
Other versions
JPS61115968A (en
Inventor
Hiroshi Mimino
Eiichi Hatsutori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okitsumo Inc
Original Assignee
Okitsumo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okitsumo Inc filed Critical Okitsumo Inc
Priority to JP23708684A priority Critical patent/JPS61115968A/en
Publication of JPS61115968A publication Critical patent/JPS61115968A/en
Publication of JPS6354314B2 publication Critical patent/JPS6354314B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Paints Or Removers (AREA)
  • Control Of Resistance Heating (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業上の利用分野〉 本発明は、物体への熱エネルギー伝達形式のう
ち、熱源から放射される電磁波を何らの媒体なし
で被加熱物体に直接吸収させて物体内の分子振動
に伴なう熱作用をもつて効率良い加熱が行なえる
熱輻射で、多くの物質が吸収し易い3μ―20μ波長
域の赤外線を放射する遠赤外線ヒーターにおける
遠赤外線放射体(面)を構成させるに用いる塗料
の組成物並びに、該塗料組成物を使用して構成さ
れる遠赤外線放射ヒーターに関する。 〈従来の技術〉 遠赤外線放射ヒーターにおいて最も重要にして
強く要望されることは、放射体(面)の放射率が
高く、かつ100℃以上の比較的低い表面温度にお
いて可視領域の放射が少なく遠赤外線領域の放射
が多いことである。これに応えるものとして、ア
ルミナ、グラフアイト、ジルコニアなど各種のセ
ラミツクを用いて放射体(面)を構成したものが
従来から実用化されている。特に、遠赤外線放射
特性の面で他のセラミツクよりも優れた純度の高
いアルミナが多く使用されている。 然ら乍ら、従来では遠赤外線放射体(面)を構
成するための専用の塗料は未開発であつて、専ら
アルミナのプラズマ溶射手段が採用されていたの
である。 〈発明が解決しようとする問題点〉 上述のプラズマ溶射手段は、アルミナ粉末を
5000〜7000℃位の極高温非酸化熱源を使つて溶融
し、これを溶射ガンを介しプラズマジエツトによ
り加速して金属板又は、マイカ、アスベスト等の
耐熱性絶縁板表面に溶射してアルミナ皮膜を形成
させるものであり、板表面にアルミナ蒸着など溶
射下地(カテライザー)を形成する必要があるば
かりでなく、非常に高い熱エネルギー及び運動エ
ネルギーを要して製造コストが膨大なものにな
り、その上、プラズマ溶射によるアルミナ皮膜は
割裂し易いため、放射面としても一次元の平面ヒ
ーターに制約され、用途性が低いといつた種々の
難点があつた。 〈問題点を解決するための手段〉 本第1発明は、プラズマ溶射により形成したも
のと何ら遜色のない放射特性をもつ遠赤外線放射
体を非常に容易かつ安価に形成することができる
塗料の組成物を提供する点に目的を有し、本第2
発明は、上記組成物の活用により低コストで、し
かも形態面での用途性が高い遠赤外線放射ヒータ
ーを提供する点に目的を有するものである。 而して上記の第1の目的を達成すべく開発され
た本第1発明に係る遠赤外線放射用塗料の組成物
は、アルミナ単独、又はアルミナに無機質酸化物
粉末を重量で50部以下の割合で混合したものをバ
インダーに分散させてなる点に特徴を有し、また
上記の第2の目的を達成すべく案出された本第2
発明に係る遠赤外線放射ヒーターは、 アルミナ単独、又はアルミナに無機質酸化物粉
末を重量で50部以下の割合で混合したものをバイ
ンダーに分散させてなる塗料組成物を、金属板、
又は、マイカ、アスベスト、ガラス等の耐熱性絶
縁板の表面に、厚さ数μ以上、好ましくは20μ以
上の膜状に塗布しかつ熱処理して波長5μm以上を
多く放射する遠赤外線放射体を構成し、この放射
体の背部に面状ヒーターエレメントを重合させて
あるという構成に特徴を有するものである。 〈作用及び発明の効果〉 上述のような特徴を有する本第1発明に係る遠
赤外線放射用塗料の組成物は、遠赤外線放射特性
に優れた純度の高いアルミナを主成分とし、これ
を耐熱性が大きく、撥水性に富み、更に電気絶縁
性、耐薬品性、耐老化性及び不揮発性に優れた例
えば、メチルフエニルシリコーン樹脂などのバイ
ンダーに分散させ、これをシンナーなどの揮発性
芳香族系溶剤を介してサスベンジヨンにして刷毛
塗りやスプレーといつた極く簡単な手段をもつて
厚さ20μ以上に塗布し、乾燥硬化させることによ
つて、耐熱性、電気絶縁性、耐薬品性、耐老化性
など遠赤外線放射体としての耐久面での要求度の
高い種々の特性を十分に満足するとともに、放射
特性の面でも100℃以上の温度においての放射が
波長5〜25μmで50%以上で、かつ波長5μm以下
で30%以下といつたように、プラズマ溶射により
形成したものとほぼ同等の放射体を形成すること
ができるのである。 因みに、第6図は、アルミナのプラズマ溶射に
より形成した放射体と本発明組成物を塗布して形
成した放射体との放射特性を比較して表わしたグ
ラフであつて、概ね波長5μm以上を選択的に多く
放射することにおいて、実線で示す本発明の放射
率とほ点線で示すプラズマ溶射の場合の放射率と
は何等差異がないことが明らかである。 従つて、従来のプラズマ溶射に比して、熱エネ
ルギーや運動エネルギーの浪費がなく所期の放射
体を非常に容易かつ安価に形成することができる
効果がある。 また、本第2発明に係る遠赤外線放射ヒーター
は、上述の塗料組成物を金属板又は耐熱性絶縁板
の表面に厚さ数μ以上、好ましくは20μ以上の膜
状に塗布することにより、該組成物のもつ既述の
如き特性を有効活用して、耐久性並びに放射特性
に優れたヒーターを製造容易にして低コストに得
ることができる。 しかも、溶射皮膜と異なり、アルミナが膜厚内
に均一に分散していて機械的応力の耐性にも優
れ、割裂などを招かない状態のもとで曲面塗布し
易く、従つて、平面ヒーターに制約されることな
く、使用目的に応じて分散型、集中型といつた二
次元、三次元の曲面ヒーターにも適用実施でき、
形態面での用途性を十分に高くとることができる
に至つたのである。 〈実施例〉 以下本発明の実施例を図面に基づいて詳述す
る。 第1図は遠赤外線放射ヒーターの断面構造を第
2図は外観を示し、2は遠赤外線放射体を構成す
る所の金属板又は、マイカ、アスベスト、ガラス
等の耐熱性絶縁板であつて、その表面全域に後述
する組成物1を厚さ数μ以上、好ましくは20μ以
上の膜状に均一に刷毛塗り又はスプレー手段にて
塗布しかつ溶剤が揮発するように熱処理すること
より遠赤外線放射体3を構成する。4は前記遠赤
外線放射体3の背面側に、マイカやアスベストな
ど耐熱性及び電気絶縁性に優れた無機質絶縁板5
を介して重合させた面状ヒーターエレメントであ
つて、これは薄板状のニクロム板、ステンレス銅
板などをエツチング又はプレス型抜きにより任意
の形状としたもの、または発熱体金属粉ペースト
を任意の形状に印刷したもの、或いはマイカ等の
電気絶縁板にニクロム線を巻付けたものなどの何
れであつても良い。6は前記ヒーターエレメント
4の背面側に重合させた遠赤外線反射板であつ
て、マイカなどの耐熱性電気絶縁板6Aの裏面に
アルミニウム箔6Bをラミネートしたものであ
る。 上記の各構成要素を断面がコの字形のアルミニ
ウム製又は鉄製のケース7に嵌着させて一体化す
ることにより、第2図で示すような一次元の面状
遠赤外線放射ヒーターを構成するのである。 そして、前述の放射体3を構成するための塗料
組成物1としては、次のようなものが考えられ
る。
<Industrial Application Field> The present invention is a method of transferring thermal energy to an object, in which electromagnetic waves emitted from a heat source are directly absorbed into the object to be heated without any medium, thereby causing molecular vibrations within the object. The paint used to form the far-infrared emitter (surface) in a far-infrared heater emits infrared rays in the 3μ to 20μ wavelength range, which is easily absorbed by many substances and is thermal radiation that can perform efficient heating with a thermal effect. The present invention relates to a composition and a far-infrared radiant heater constructed using the coating composition. <Prior art> The most important and strongly desired requirements for far-infrared radiant heaters are high emissivity of the radiator (surface) and low radiation in the visible range at relatively low surface temperatures of 100°C or higher. There is a lot of radiation in the infrared region. In response to this, radiators (surfaces) made of various ceramics such as alumina, graphite, and zirconia have been put into practical use. In particular, high-purity alumina, which is superior to other ceramics in terms of far-infrared radiation characteristics, is often used. However, in the past, a special paint for forming the far-infrared radiator (surface) had not been developed, and plasma spraying of alumina was exclusively used. <Problems to be solved by the invention> The plasma spraying means described above uses alumina powder.
It is melted using an extremely high temperature non-oxidizing heat source of about 5000 to 7000℃, and then accelerated by a plasma jet through a thermal spray gun and sprayed onto the surface of a metal plate or a heat-resistant insulating plate such as mica or asbestos to form an alumina film. Not only is it necessary to form a thermal spray base (cathelyzer) such as alumina vapor deposition on the plate surface, but it also requires extremely high thermal energy and kinetic energy, resulting in enormous manufacturing costs. Moreover, since the alumina film formed by plasma spraying is easily split, the radiation surface is also limited to a one-dimensional flat heater, which has various drawbacks such as low applicability. <Means for Solving the Problems> The first invention provides a coating composition that allows the formation of far-infrared radiators with radiation characteristics comparable to those formed by plasma spraying very easily and at low cost. The purpose is to provide something, and this second
An object of the invention is to provide a far-infrared radiant heater that is low in cost and has high versatility in terms of form by utilizing the above-mentioned composition. Therefore, the composition of the far-infrared radiation coating material according to the first invention, which was developed to achieve the above-mentioned first object, contains alumina alone or alumina and an inorganic oxide powder in a proportion of 50 parts or less by weight. This second book is characterized in that it is made by dispersing a mixture of
The far-infrared radiant heater according to the invention uses a coating composition in which alumina alone or a mixture of alumina and an inorganic oxide powder in a proportion of 50 parts or less by weight is dispersed in a binder.
Alternatively, it is applied to the surface of a heat-resistant insulating plate made of mica, asbestos, glass, etc. in a film with a thickness of several microns or more, preferably 20 microns or more, and is heat treated to form a far-infrared radiator that emits a large amount of wavelengths of 5 μm or more. However, this radiator is characterized by a configuration in which a planar heater element is superimposed on the back of the radiator. <Actions and Effects of the Invention> The far-infrared radiation coating composition according to the first invention, which has the above-mentioned characteristics, has high-purity alumina with excellent far-infrared radiation characteristics as a main component, and has heat-resistant alumina. It is dispersed in a binder such as methylphenyl silicone resin, which has large water repellency, excellent electrical insulation, chemical resistance, aging resistance, and non-volatility. Heat resistance, electrical insulation, chemical resistance and It fully satisfies the various properties that are highly required in terms of durability as a far-infrared radiator, such as aging resistance, and in terms of radiation properties, the radiation at a temperature of 100℃ or higher is 50% or more at a wavelength of 5 to 25 μm. , and less than 30% at a wavelength of 5 μm or less, making it possible to form a radiator almost equivalent to that formed by plasma spraying. Incidentally, FIG. 6 is a graph comparing the radiation characteristics of a radiator formed by plasma spraying of alumina and a radiator formed by applying the composition of the present invention, and a wavelength of approximately 5 μm or more is selected. It is clear that there is no difference at all between the emissivity of the present invention shown by the solid line and the emissivity of plasma spraying shown by the dotted line in emitting a large amount of radiation. Therefore, compared to conventional plasma spraying, there is no wastage of thermal energy or kinetic energy, and the desired radiator can be formed very easily and at low cost. Further, the far-infrared radiant heater according to the second invention can be applied by applying the above-mentioned coating composition to the surface of a metal plate or a heat-resistant insulating plate in the form of a film with a thickness of several microns or more, preferably 20 microns or more. By effectively utilizing the above-mentioned properties of the composition, a heater with excellent durability and radiation characteristics can be manufactured easily and at low cost. Moreover, unlike thermal spray coatings, alumina is uniformly dispersed within the coating thickness, which has excellent resistance to mechanical stress, making it easy to apply to curved surfaces without causing splitting, and therefore limiting the use of flat heaters. It can be applied to two-dimensional and three-dimensional curved heaters, such as distributed and centralized types, depending on the purpose of use.
This made it possible to achieve a sufficiently high degree of versatility in terms of form. <Example> Hereinafter, an example of the present invention will be described in detail based on the drawings. FIG. 1 shows the cross-sectional structure of the far-infrared radiant heater, and FIG. 2 shows the external appearance. 2 is a metal plate or a heat-resistant insulating plate made of mica, asbestos, glass, etc., which constitutes the far-infrared radiator; A far-infrared radiator is formed by uniformly applying Composition 1, which will be described later, over the entire surface of the material in the form of a film with a thickness of several microns or more, preferably 20 microns or more, by brushing or spraying, and then heat-treating it so that the solvent evaporates. 3. 4 is an inorganic insulating plate 5 made of mica, asbestos, etc., which has excellent heat resistance and electrical insulation properties, on the back side of the far-infrared radiator 3.
This is a planar heating element made by polymerizing a thin nichrome plate, stainless copper plate, etc. into any shape by etching or press die cutting, or heating element metal powder paste into any shape. It may be a printed version or a nichrome wire wrapped around an electrically insulating plate made of mica or the like. Reference numeral 6 denotes a far-infrared reflecting plate superimposed on the back side of the heater element 4, which is made by laminating an aluminum foil 6B on the back side of a heat-resistant electric insulating board 6A made of mica or the like. By fitting and integrating each of the above-mentioned components into an aluminum or iron case 7 with a U-shaped cross section, a one-dimensional planar far-infrared radiation heater as shown in Fig. 2 is constructed. be. The following may be considered as the coating composition 1 for constructing the above-mentioned radiator 3.

【表】 尚、上記各組成物における放射特性について
は、が最も多く波長5μm以上を放射し、,
になるにつれ波長5μm以下の放射が増えてくる。 前述した遠赤外線放射ヒーターにおける反射板
6としては、第3図で示すようにアルミニウム板
又はステンレス板を使用しても良く、この反射板
6の突出周辺部分6aを遠赤外線放射体3側に傾
斜姿勢に折返すことにより放射性を一層良好なも
のにできる。 また、放射体3の形態は平板状のものに限ら
ず、第4図や第5図で示すような凹曲板状や凸曲
板上で遠赤外線を局所集中放射するものや拡散蜂
射するものであつても良く、そのほか使用目的に
応じて円筒状、半円筒状など任意の形態に構成す
ることが可能である。
[Table] Regarding the radiation characteristics of each of the above compositions,
As the temperature increases, radiation with a wavelength of 5 μm or less increases. As the reflector 6 in the far-infrared radiation heater described above, an aluminum plate or a stainless steel plate may be used as shown in FIG. By folding it back in its position, radiation can be made even better. In addition, the form of the radiator 3 is not limited to a flat plate, but may be a concave curved plate or a convex curved plate as shown in Figures 4 and 5, which locally radiates far infrared rays in a concentrated manner, or diffused radiation. In addition, it can be configured in any shape such as a cylindrical shape or a semi-cylindrical shape depending on the purpose of use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の一実施例を示し、
第1図はヒーターの断面構造図、第2図は全体の
概略斜視図、第3図は別の実施例を示す断面構造
図、第4図及び第5図も夫々別の実施例を示す概
略断面図、第6図は特性比較グラフである。 1は塗料の組成物、2は金属板又は耐熱性絶縁
板、3は遠赤外線放射体、4はヒーターエレメン
トである。
1 and 2 show an embodiment of the present invention,
Fig. 1 is a cross-sectional structural diagram of the heater, Fig. 2 is a schematic perspective view of the entire heater, Fig. 3 is a cross-sectional structural diagram showing another embodiment, and Figs. 4 and 5 are also schematic diagrams showing different embodiments. The cross-sectional view and FIG. 6 are characteristic comparison graphs. 1 is a paint composition, 2 is a metal plate or a heat-resistant insulating plate, 3 is a far-infrared radiator, and 4 is a heater element.

Claims (1)

【特許請求の範囲】 1 アルミナ単独、又はアルミナに無機質酸化物
粉末を重量で50部以下の割合で混合したものをバ
インダーに分散させてなる遠赤外線放射用塗料の
組成物。 2 前記アルミナとして粒径120μ以下、純度85
%以上のものを使用する特許請求の範囲第1項に
記載の組成物。 3 前記バインダーとしてシリコーン樹脂、リン
酸塩、又はケイ酸塩の何れかを使用する特許請求
の範囲第1項に記載の組成物。 4 前記無機質酸化物粉末が、チタン、ケイ素、
ジルコニア、鉄、銅、コバルト、ニツケル、マン
ガン、クロムの酸化物粉末の単独或いは二以上の
混合物である特許請求の範囲第1項に記載の組成
物。 5 アルミナ単独、又はアルミナに無機質酸化物
粉末を重量で50部以下の割合で混合したものをバ
インダーに分散させてなる塗料組成物1を、金属
板、又は、マイカ、アスベスト、ガラス等の耐熱
性絶縁板2の表面に、厚さ数μ以上、好ましくは
20μ以上の膜状に塗布しかつ熱処理して波長5μm
以上を多く放射する遠赤外線放射体3を構成し、
この放射体3の背部に面状ヒーターエレメント4
を重合させてある遠赤外線放射ヒーター。 6 前記アルミナとして粒径120μ以下、純度85
%以上のものを使用する特許請求の範囲第5項に
記載のヒーター。 7 前記バインダーとして、シリコーン樹脂、リ
ン酸塩、又はケイ酸塩の何れかを使用する特許請
求の範囲第5項に記載のヒーター。 8 前記無機質酸化物粉末がチタン、ケイ素、ジ
ルコニア、鉄、銅、コバルト、ニツケル、マンガ
ン、クロムの酸化物粉末の単独、或いは二以上の
混合物である特許請求の範囲第5項に記載のヒー
ター。
[Claims] 1. A far-infrared radiation coating composition comprising alumina alone or alumina mixed with inorganic oxide powder in a proportion of 50 parts or less by weight, dispersed in a binder. 2 The above alumina has a particle size of 120μ or less and a purity of 85
% or more of the composition according to claim 1. 3. The composition according to claim 1, wherein the binder is a silicone resin, a phosphate, or a silicate. 4 The inorganic oxide powder contains titanium, silicon,
The composition according to claim 1, which is one or a mixture of oxide powders of zirconia, iron, copper, cobalt, nickel, manganese, and chromium. 5 Coating composition 1, which is made by dispersing alumina alone or alumina mixed with inorganic oxide powder at a ratio of 50 parts by weight or less, in a binder, is applied to metal plates or heat-resistant materials such as mica, asbestos, glass, etc. The surface of the insulating plate 2 is coated with a thickness of several microns or more, preferably
Coated into a film of 20μ or more and heat treated to achieve a wavelength of 5μm.
constitutes a far infrared radiator 3 that emits a large amount of the above,
A planar heater element 4 is attached to the back of this radiator 3.
A far-infrared radiant heater made by polymerizing. 6 The above alumina has a particle size of 120μ or less and a purity of 85
% or more of the heater according to claim 5. 7. The heater according to claim 5, wherein any one of a silicone resin, a phosphate, or a silicate is used as the binder. 8. The heater according to claim 5, wherein the inorganic oxide powder is one or a mixture of two or more of titanium, silicon, zirconia, iron, copper, cobalt, nickel, manganese, and chromium oxide powder.
JP23708684A 1984-11-09 1984-11-09 Paint composition for radiation of far-infrared ray and far infrared radiation heater Granted JPS61115968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23708684A JPS61115968A (en) 1984-11-09 1984-11-09 Paint composition for radiation of far-infrared ray and far infrared radiation heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23708684A JPS61115968A (en) 1984-11-09 1984-11-09 Paint composition for radiation of far-infrared ray and far infrared radiation heater

Publications (2)

Publication Number Publication Date
JPS61115968A JPS61115968A (en) 1986-06-03
JPS6354314B2 true JPS6354314B2 (en) 1988-10-27

Family

ID=17010201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23708684A Granted JPS61115968A (en) 1984-11-09 1984-11-09 Paint composition for radiation of far-infrared ray and far infrared radiation heater

Country Status (1)

Country Link
JP (1) JPS61115968A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274810U (en) * 1988-11-24 1990-06-07

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2529831B2 (en) * 1986-09-04 1996-09-04 株式会社 ウロコ製作所 Special fiberboard
JPS6411168A (en) * 1987-07-03 1989-01-13 Chukoh Chem Ind Production of coating compound
JP2709391B2 (en) * 1988-03-02 1998-02-04 日本製箔株式会社 Compositions and paints with excellent far-infrared radiation properties
JP2862250B2 (en) * 1988-10-04 1999-03-03 三東商事株式会社 Far-infrared radiation abrasion-resistant coating, far-infrared radiation abrasion-resistant composition, and method of forming far-infrared radiation abrasion-resistant coating
CN1042738C (en) * 1992-03-14 1999-03-31 南京航空航天学院 High-emissivity ceramic paint
JPH06341514A (en) * 1993-06-01 1994-12-13 Maki Shinko:Kk Reduction gear
FR2796756B1 (en) * 1999-07-21 2001-09-28 Aerospatiale Matra Missiles INFRARED BAND III RADIATION EMITTER AND COMPOSITE MATERIAL ALLOWING THE EMISSION OF SUCH RADIATION
GB2453343A (en) * 2007-10-04 2009-04-08 3M Innovative Properties Co Thermal infrared reflective paint composition
JP5461244B2 (en) * 2010-03-08 2014-04-02 日本パイオニクス株式会社 Piping heating equipment
CN104449087A (en) * 2014-12-23 2015-03-25 常熟市微尘电器有限公司 Chemical heating pipe
CN105934003A (en) * 2016-06-21 2016-09-07 深圳市昌龙盛机电技术有限公司 Wearable silica gel infrared heating piece

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49114128A (en) * 1973-03-07 1974-10-31
JPS49114131A (en) * 1973-03-07 1974-10-31
JPS5410438A (en) * 1977-06-24 1979-01-26 Hitachi Heating Appliance Co Ltd Remote infrared ray emissive material
JPS5428030A (en) * 1977-08-03 1979-03-02 Hitachi Heating Appliance Co Ltd Method for manufacturing far infrared rays radiating element
JPS5513758A (en) * 1978-07-17 1980-01-30 Sharp Corp Heat-resistant coating for self-cleaning and the method of finish coating
JPS5678471A (en) * 1979-11-26 1981-06-27 Kazumi Yamamoto Manufacture of good far infrared radiation property alumina ceramics
JPS5768172A (en) * 1980-10-16 1982-04-26 Matsushita Electric Ind Co Ltd Formation of selectively absorptive paint film for solar heat
JPS5827671A (en) * 1981-08-11 1983-02-18 Toshiba Corp Surface treatment
JPS58151380A (en) * 1982-03-05 1983-09-08 旭硝子株式会社 Far infrared ray radiator and manufacture
JPS58152572A (en) * 1982-03-05 1983-09-10 大成電機工業株式会社 Infrared heater
JPS59189576A (en) * 1983-04-09 1984-10-27 服部ヒ−テイング工業株式会社 Far infrared ray heater
JPS60127688A (en) * 1983-12-14 1985-07-08 山甚理研株式会社 Method of producing far infrared ray radiating panel heater

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49114128A (en) * 1973-03-07 1974-10-31
JPS49114131A (en) * 1973-03-07 1974-10-31
JPS5410438A (en) * 1977-06-24 1979-01-26 Hitachi Heating Appliance Co Ltd Remote infrared ray emissive material
JPS5428030A (en) * 1977-08-03 1979-03-02 Hitachi Heating Appliance Co Ltd Method for manufacturing far infrared rays radiating element
JPS5513758A (en) * 1978-07-17 1980-01-30 Sharp Corp Heat-resistant coating for self-cleaning and the method of finish coating
JPS5678471A (en) * 1979-11-26 1981-06-27 Kazumi Yamamoto Manufacture of good far infrared radiation property alumina ceramics
JPS5768172A (en) * 1980-10-16 1982-04-26 Matsushita Electric Ind Co Ltd Formation of selectively absorptive paint film for solar heat
JPS5827671A (en) * 1981-08-11 1983-02-18 Toshiba Corp Surface treatment
JPS58151380A (en) * 1982-03-05 1983-09-08 旭硝子株式会社 Far infrared ray radiator and manufacture
JPS58152572A (en) * 1982-03-05 1983-09-10 大成電機工業株式会社 Infrared heater
JPS59189576A (en) * 1983-04-09 1984-10-27 服部ヒ−テイング工業株式会社 Far infrared ray heater
JPS60127688A (en) * 1983-12-14 1985-07-08 山甚理研株式会社 Method of producing far infrared ray radiating panel heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274810U (en) * 1988-11-24 1990-06-07

Also Published As

Publication number Publication date
JPS61115968A (en) 1986-06-03

Similar Documents

Publication Publication Date Title
JPS6354314B2 (en)
US7459104B2 (en) Low temperature fired, lead-free thick film heating element
JPS6311756B2 (en)
JPH0521840Y2 (en)
JPS6138339A (en) Imfrared panel heater
CN103945575A (en) Unidirectional infrared radiation plate
JPH0561754B2 (en)
JP2952264B2 (en) Far-infrared radiation sphere
JP3095831U (en) Far infrared heating element unit
JPS62285391A (en) Panel heater
JPS6211468A (en) Far infrared radiation plate
JPH027379A (en) Manufacture of heating plate
JPS61149737A (en) Whole direction far infrared rays radiating type stove
JPS6242458Y2 (en)
JPS6217976A (en) Far infrared radiating body
JPH044390Y2 (en)
JPH02312179A (en) Planar far infrared radiation material and manufacture thereof
JPS62211888A (en) Far-infrared radiating ceramic unit and manufacture of the same
JPH0363192B2 (en)
JPS6214470Y2 (en)
JPH02155187A (en) Positive temperature coefficient thermistor heating element
JPH017990Y2 (en)
JPH0247592Y2 (en)
JPH0140253B2 (en)
JPH0249391A (en) Infrared ray generating heater using synthetic resin