JPS60198059A - Electrolyte supply structure of matrix type fuel cell - Google Patents

Electrolyte supply structure of matrix type fuel cell

Info

Publication number
JPS60198059A
JPS60198059A JP59053927A JP5392784A JPS60198059A JP S60198059 A JPS60198059 A JP S60198059A JP 59053927 A JP59053927 A JP 59053927A JP 5392784 A JP5392784 A JP 5392784A JP S60198059 A JPS60198059 A JP S60198059A
Authority
JP
Japan
Prior art keywords
electrolyte
liquid
hole
liquid receiver
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59053927A
Other languages
Japanese (ja)
Inventor
Noriyuki Nakajima
中島 憲之
Toshihiro Sugiyama
杉山 智弘
Masahiro Sakurai
正博 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59053927A priority Critical patent/JPS60198059A/en
Publication of JPS60198059A publication Critical patent/JPS60198059A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent liquid junction by arranging a hydrophilic material which faces a hole of liquid receiver and to which a hole of liquid receiver located in the direct upper part is vertically projected in each liquid receiver when the liquid receiver having a hole is installed in an electrolyte supply path and electrolyte is dropped to the lower liquid receiver. CONSTITUTION:Electrolyte is supplied from an electrolyte supply path 7 to a unit cell comprising a matrix 1, an oxidizing agent electrode 3, and an electrode substrate with rib 4 through a hydrophilic material 9. The electrolyte is supplied to the lower unit cell through holes 71a and 72a of plates 71 and 72 which serve as liquid receiver installed in the path 7. The hole 71a is arranged zigzag with the hole 72a. A hydrophilic material 9a which faces the hole 72a and to which at least a part of a hole 71b located in the direct upper part is projected is arranged in each liquid receiver. Therefore, since liquid dropped is spreaded without forming liquid drop, forming of liquid junction is prevented.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は垂直方向に配設された電解質補給通路に孔を
設けた液受けの複数個を設け、前記孔より下段の液受け
に電解質を滴下し、該液受けに停留した電解質をマトリ
ックスに連通ずる電解質補給路を介してマトリックスに
補給するマトリックス形燃料電池の電解質補給構造に関
する。
[Detailed description of the invention] [Technical field to which the invention pertains] This invention provides a plurality of liquid receivers each having a hole in an electrolyte replenishment passage arranged vertically, and the electrolyte is supplied to the liquid receiver below the hole. The present invention relates to an electrolyte replenishment structure for a matrix fuel cell in which the electrolyte dripped and retained in the liquid receiver is replenished to the matrix via an electrolyte replenishment path communicating with the matrix.

〔従来技術とその問題点〕[Prior art and its problems]

電解質を担持したマトリックスに電解質を補給するマト
リックス形燃料電池の電解質補給構造として、単位電池
等からなる単位体を多数積層してなるセルスタックに設
けられた垂直方向の補給通路よシミ解質を滴下してマト
リックスに電解質を補給する構造が知られている。以下
図面に基づいて従来の電解質補給構造について説明する
As an electrolyte replenishment structure for matrix-type fuel cells that replenishes electrolyte to a matrix supporting electrolyte, stain solute is dripped through a vertical replenishment passage provided in a cell stack made up of a number of stacked unit bodies such as unit cells. Structures that replenish electrolytes to the matrix are known. A conventional electrolyte replenishment structure will be described below based on the drawings.

第1図はマトリックス形燃料電池の単位電池の一例を示
す分解斜視図であり、燃料電池は第1図に示されるよう
にマトリックスlの両側に燃料電極2および酸化剤電極
3が配され、さらにその外側に矢印A方向に設けられた
溝4aを有する多孔性のリプ付電極基材4と、溝4aと
直交する方向に設けられた溝5aを有する多孔性のリプ
付電極基材5とから設けられている。リプ付電極基材4
,5は、それぞれ燃料電極2および酸化剤電極3に密着
されてマトリックス1とともに単位電池を構成し、単位
電池間にはセパレート板6が介装されて反応ガスを分離
し、これらが多数積層されてセルスタックを構成してい
る。反応ガスとしての燃料ガスが矢印A方向よシ、酸化
剤ガスが矢印B方向よシそれぞれリブ付電極基材4,5
の溝4a 、 5aに流れ、単位電池で電気化学反応を
して電気を発生する。
FIG. 1 is an exploded perspective view showing an example of a unit cell of a matrix type fuel cell. As shown in FIG. A porous lip-attached electrode base material 4 having grooves 4a provided on the outside in the direction of arrow A, and a porous lip-attached electrode base material 5 having grooves 5a provided in a direction orthogonal to the grooves 4a. It is provided. Electrode base material with lip 4
, 5 are in close contact with the fuel electrode 2 and the oxidizer electrode 3, respectively, to form a unit cell together with the matrix 1. A separator plate 6 is interposed between the unit cells to separate the reaction gas, and a large number of these are stacked. constitute a cell stack. The fuel gas as a reactive gas is directed in the direction of arrow A, and the oxidant gas is directed in the direction of arrow B, respectively, with ribbed electrode base materials 4 and 5.
The electric current flows through the grooves 4a and 5a, and causes an electrochemical reaction in the unit battery to generate electricity.

このような構成においてマトリックスに保持された電解
質は運転開始前または運転の継続に伴い蒸発、飛散する
ため運転中でも補給する必要が生じる。このだめの補給
構造として第2図に示すように、燃料電池を構成するセ
ルスタックに電解質補給通路7,7aを垂直方向に設け
、燃料電極側のリブ付電極基材4に補給通路7,7aと
連結する電解質補給路8を設けて、この補給路を介して
電解質を補なうものが提案されている。
In such a configuration, the electrolyte held in the matrix evaporates and scatters before the start of operation or as the operation continues, so it is necessary to replenish the electrolyte even during operation. As shown in FIG. 2, as a replenishment structure for this reservoir, electrolyte replenishment passages 7, 7a are vertically provided in the cell stack constituting the fuel cell, and replenishment passages 7, 7a are provided in the ribbed electrode base material 4 on the fuel electrode side. It has been proposed to provide an electrolyte replenishment path 8 connected to the electrolyte replenishment path and to replenish electrolyte via this replenishment path.

第3図は上記の電解質補給通路マおよび補給路8を有す
るリプ付電極基材等からなる単位電池を積層してなるセ
ルスタックの部分断面図であり、第3図においてリプ付
電極基材4の電解質補給路8はマトリックスlに面して
設けられ、電解質補給路8には親水性の材料9が充填さ
れている。
FIG. 3 is a partial cross-sectional view of a cell stack formed by stacking unit cells made of electrode base materials with lips and the like having the electrolyte replenishment passages 8 and 8. In FIG. The electrolyte supply channel 8 is provided facing the matrix l, and the electrolyte supply channel 8 is filled with a hydrophilic material 9.

電解質補給通路7には液受けとしてのプレート71がマ
トリックスlの面と同一レベルで取り付けられ、滴下孔
’71aが設けられている。そしてその下段の単位電池
のマトリックスに補給するために液受けとしてのプレー
ト72が′21と同様に設けられ滴下孔72aが設けら
れ、この様にして順次滴下孔が設けられている。滴下孔
は、電解質補給構造の部分平面図である第4図に示され
るように、次段に位置する滴下孔と千鳥配置となるよう
に設けられている。
A plate 71 as a liquid receiver is attached to the electrolyte supply passage 7 at the same level as the surface of the matrix l, and a drip hole '71a is provided. In order to replenish the matrix of unit cells in the lower stage, a plate 72 as a liquid receiver is provided in the same manner as '21, and drip holes 72a are provided, and the drip holes are sequentially provided in this manner. As shown in FIG. 4, which is a partial plan view of the electrolyte replenishment structure, the drip holes are provided in a staggered arrangement with the drip holes located at the next stage.

電解質をマトリックスに補給するには第3図において、
電解質補給通路フに電解質を補給し、プレート71に停
溜した電解質は補給路8に入り、親水性の材料9に含浸
されマトリックス1に補給される。一方、プレート71
に停留した電解質はある高さの波頭になると滴下孔71
aより下段のプレート72に滴下し、前述と同じように
下段のマトリックスに補給される。
To replenish the matrix with electrolytes, in Figure 3,
Electrolyte is replenished into the electrolyte replenishment channel 5, and the electrolyte accumulated in the plate 71 enters the replenishment channel 8, impregnated with a hydrophilic material 9, and replenished into the matrix 1. On the other hand, plate 71
When the electrolyte that remains in
It is dripped onto the lower plate 72 from a, and is replenished to the lower matrix in the same way as described above.

ところで、電解質補給路8は電解質が電極内のガス拡散
域へ浸透し、発電作用を妨げることのないように不浸透
性なものとするか、あるいは撥水性処理が施されている
。また上下方向の電解質補給通路7も電解質による液絡
を防ぐため撥水処理が行なわれている。しかしながら、
上述のように撥水処理が施された電解質補給通路では、
液受けの滴下孔より電解質を滴下するのにある程度の電
解質の液圧が必要となり、停留する電解質の塊が上段の
プレートに接することによる液絡を防ぐため、液受は間
距離を大きくしなければならず、電解質補給構造が大き
くなるという欠点がある。また電解質が滴下する際にも
、次に説明するような理由によシ液絡が生じる問題があ
る。
Incidentally, the electrolyte replenishment channel 8 is made impermeable or treated to be water repellent so that the electrolyte does not penetrate into the gas diffusion region within the electrode and impede the power generation action. Further, the electrolyte replenishment passage 7 in the vertical direction is also treated to be water repellent to prevent liquid tangling caused by the electrolyte. however,
In the electrolyte replenishment passage that has been treated with water repellent treatment as mentioned above,
A certain amount of electrolyte liquid pressure is required to drip the electrolyte from the drip hole of the liquid receiver, and the distance between the liquid receivers must be large to prevent a liquid junction caused by a lump of stagnant electrolyte coming into contact with the upper plate. However, there is a disadvantage that the electrolyte replenishment structure becomes large. Furthermore, when the electrolyte is dripped, there is a problem in that liquid junctions occur for reasons explained below.

第5図、第6図はプレートの滴下孔より電解質が滴下さ
れる際、液絡が生じる状態を示す断面図である。第5図
においてプレート71の滴下孔’71aを滴下する液滴
’71bが遂次滴下していくと、グレート等が撥水性を
有するため、次段(下部)のプレートに達した液滴”I
t)は集まって大きな液滴塊’72に+となる。この状
態がさらに進行すると、第6図に示されるように液滴塊
’i’21)は一度に流れて、滴下孔72aよシ流出す
るため、プレートフ2と73とは液柱72dで連絡し、
プレー) ’i’2 、73に停留する電解質(図示せ
ず)を介して液絡が生じる。これによシ、燃料電池を構
成する材料、例えばカーボン材の電食を起こす欠点があ
る。この欠点を除くためには、やはシブレート間の間隔
を大きくしなければならず、従来は燃料電池の運転中に
液絡を生じることなく電解質を補給することは困難であ
った。
FIGS. 5 and 6 are cross-sectional views showing a state in which a liquid junction occurs when electrolyte is dripped from the drip hole of the plate. In FIG. 5, when the droplet '71b dripping from the dripping hole '71a of the plate 71 drops one after another, since the grate etc. have water repellency, the droplet 'I
t) gathers to form a large droplet mass '72. As this state progresses further, as shown in FIG. 6, the droplet mass 'i'21) flows all at once and flows out of the drip hole 72a, so that the plates 2 and 73 are connected through the liquid column 72d. ,
play) A liquid junction occurs via an electrolyte (not shown) that remains at 'i'2 and 73. This has the disadvantage of causing electrolytic corrosion of the materials constituting the fuel cell, such as carbon materials. In order to eliminate this drawback, it is necessary to increase the interval between the sibrates, and conventionally it has been difficult to replenish electrolyte without causing a liquid junction during operation of the fuel cell.

〔発明の目的〕 この発明は前述のような欠点に鑑み、垂直方向の電解質
通路を滴下してマトリックスに電解質を補給する際、電
解質の液絡が生じない電解質補給構造を提供することを
目的とする。
[Object of the Invention] In view of the above-mentioned drawbacks, an object of the present invention is to provide an electrolyte replenishment structure that does not cause electrolyte junctions when replenishing electrolyte to a matrix by dropping it through a vertical electrolyte passage. do.

〔発明の要点〕[Key points of the invention]

上記の目的は、本発明によれば垂直方向に配設された電
解質補給通路に孔を設けた液受けの複数個を設け、この
孔よシ下段の液受けに電解質を滴下し、この液受けに停
留した電解質をマトリックスに連通ずる電解質補給路を
介してマトリックスに補給するものにおいて、各液受け
に、この液受けの孔に臨み直上に位置する液受けの孔の
少なくとも一部が垂直に投影する親水材を配設すること
によシ達成される。
According to the present invention, a plurality of liquid receivers having holes are provided in an electrolyte replenishment passage arranged vertically, and the electrolyte is dripped through the holes into a lower liquid receiver. In a device that replenishes the electrolyte accumulated in the matrix through an electrolyte replenishment path communicating with the matrix, each liquid receiver has at least a portion of the hole in the liquid receiver facing and located directly above the hole in the liquid receiver projected vertically. This can be achieved by providing a hydrophilic material.

〔発明の実施例〕[Embodiments of the invention]

以下図面に基づいて本発明の実施例について説明する。 Embodiments of the present invention will be described below based on the drawings.

第マ図は本発明の実施例による電解質補給構造を示す部
分断面図であり、第8図は第7図における電解質補給構
造の部分平面図であり、第7図以降の図において、第1
図ないし第6図と同一部分には同じ符号を付している。
FIG.
The same parts as those in the figures to FIG. 6 are given the same reference numerals.

第7図において、マトリックス1.酸化剤電極3.リプ
付電極基材4等からなる電池の構造および滴下孔11h
 。
In FIG. 7, matrix 1. Oxidizer electrode 3. Structure of battery consisting of electrode base material 4 with lip etc. and drip hole 11h
.

’72a等を有する液受けとしてのプレー) 71 、
 ’72等を有する電解質補給通路7および電解質補給
路8等の電解質の通路には撥水処理が施されており、こ
れらの構成は従来技術の項で述べたものと同じであるが
、マトリックスlの位置に取り付けられたプレー) 7
1 、 ’/2 、 ’73の滴下孔フla + 72
a + 73aの面積の半分まで親水性の材料からなる
被覆材9aが臨んでおり、この被覆材9aは電解質補給
路8に充填された親水性の材料9とつながっている。ま
た被覆材9aには、第8図に示されるように直上の滴下
孔71a゛の一部が垂直に投影されている(7Jb)。
Play as a liquid receiver with '72a etc.) 71,
The electrolyte passages such as the electrolyte replenishment passage 7 and the electrolyte replenishment passage 8 having the '72 etc. are subjected to water repellent treatment, and their configuration is the same as that described in the prior art section, but the matrix l (play mounted in position) 7
1, '/2, '73 drip hole fla + 72
A covering material 9a made of a hydrophilic material faces up to half of the area of a + 73a, and this covering material 9a is connected to the hydrophilic material 9 filled in the electrolyte supply channel 8. Further, as shown in FIG. 8, a part of the drip hole 71a' directly above is vertically projected onto the covering material 9a (7Jb).

親水性の材料はカーボンまたはシリコンカー・くイドの
繊維状のものを編んだものか、カーボン粉末を固めたも
のが使用される。
The hydrophilic material used is woven carbon or silicone fibers, or solidified carbon powder.

なお、被覆材9aが滴下孔’72aに臨む面積はO〜掻
が好ましく、したがって第9図に示されるよう ′に被
覆材9aの端部を滴下孔72a、投影部′71b等の周
縁に設置してもよく、また第1θ図に示される;うに舌
板9aの端部を切り欠いて憬う面積を匙以下にしてもよ
い。
The area of the covering material 9a facing the dripping hole '72a is preferably O ~ 0. Therefore, as shown in FIG. Alternatively, as shown in FIG. 1θ, the end portion of the sea urchin tongue plate 9a may be cut out to make the area smaller than a spoon.

さて上記のような構造にて、垂直方向の電解質補給通路
7より電解質を補給すると第1]図に示されるように、
例えば滴下孔’71aを滴下した電解質の液滴1bは被
覆材9aの上にの9、被株材9aが親水性を有するため
、電解質は液域とならずに拡がって平趙状の液溜i) 
72bとなり、滴下部に滞溜することなく円滑に滴下す
ることができ、したがって第6図に示すようなプレート
間の液柱による連絡が起こらず、電解質の液絡が生じな
い。このため液絡によるカーボン材等の電食がなくなる
Now, with the above structure, when electrolyte is replenished from the vertical electrolyte replenishment passage 7, as shown in Figure 1,
For example, the electrolyte droplet 1b dropped through the dripping hole 71a is deposited on the covering material 9a, and since the receiving material 9a has hydrophilic properties, the electrolyte does not form a liquid region but spreads out to form a flat liquid pool. i)
72b, and the liquid can be dripped smoothly without being accumulated in the dripping part. Therefore, communication by a liquid column between the plates as shown in FIG. 6 does not occur, and an electrolyte liquid junction does not occur. This eliminates electrolytic corrosion of carbon materials and the like due to liquid junctions.

なお、被覆材9aが滴下孔の面積の匈以主讐で臨むと電
解質の保持力が増し、親水性を有する被覆材9aの上に
溜って液域となる恐れがあり避けなければならない。ま
た、上記の実施例では滴下孔71a 、 72a等を千
鳥に設けたが、各滴下孔を垂直線上に配設しても同じ作
用が得られる。
In addition, if the covering material 9a faces beyond the area of the drip hole, the holding power of the electrolyte will increase, and there is a risk that the electrolyte will accumulate on the hydrophilic covering material 9a and form a liquid region, which must be avoided. Further, in the above embodiment, the drip holes 71a, 72a, etc. are provided in a staggered manner, but the same effect can be obtained even if the drip holes are arranged on a vertical line.

また、燃料電池のセルスタックの外部に各電解質補給路
に接続される垂直方向の電解質補給通路を設け、滴下孔
よシミ解質を滴下補給する構造においても、本発明によ
る親水性の被覆材を滴下孔に臨ませることにより同じ作
用が得られる。
The hydrophilic coating material of the present invention can also be used in a structure in which a vertical electrolyte replenishment passage connected to each electrolyte replenishment passage is provided outside the cell stack of a fuel cell, and stain solute is dripped through the dripping hole. The same effect can be obtained by placing it facing the drip hole.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば−直に
設けられた電解質補給通路内の液受けの孔より滴下して
、電解質をマトリックスに供給する構造において、前記
液受けに、この液受けの孔に臨み直上の液受けの孔の少
なくとも一部が垂直に投影する親水性の被覆材を配設す
ることにより、孔から滴下する液滴は親水性の被覆材の
上にて大きな液域とならずに拡、かって平義な液溜まり
とがり、滴下部に滞溜する仁となく円滑に滴下していく
ので、隣接する上段と下段の液受は間で電解質が液柱と
なって電解質の液絡を招くおそれはなくなシ、電池を構
成する構成部材、例えばカーボン材の電食を生じること
なく、電池の運転中に電解質を補給することが可能とな
る。
As is clear from the above description, according to the present invention, in a structure in which electrolyte is supplied to the matrix by dripping from a hole in a liquid receiver in an electrolyte replenishment passage provided directly, this liquid is added to the liquid receiver. By arranging a hydrophilic covering material that faces the receiving hole and at least a portion of the liquid receiving hole directly above it projects vertically, the droplets that drip from the hole will form large liquids on the hydrophilic covering material. The electrolyte becomes a liquid column between the upper and lower liquid receivers, which are adjacent to each other, as the liquid drips smoothly without any lumps accumulating in the dripping area. There is no risk of liquid junction of the electrolyte, and it becomes possible to replenish the electrolyte during operation of the battery without causing electrolytic corrosion of the structural members constituting the battery, such as carbon material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃料電池を構成する単位電池の分解斜視図、第
2図は電解質補給路を備えたリブ付電極基材の平面図、
第3図は従来技術による電解質補給構造を示す部分断面
図、第4図は第3図における電解質補給構造の部分平面
図、第5図、第6図は電解質が滴下する状態を示す部分
断面図、第7図は本発明の実施例による電解質補給構造
を示す断面図、第8図は第マ図におけるX−X部分断面
図、第9図、第10図は本発明の実施例による被覆材の
配設位置を示す説明図、第11図は本発明の実施例によ
る電解質の滴下状態を示す部分断面図である。 1・・・マトリックス、7・・・電解質補給通路、′7
1゜’72 、73 ・・・液受け、71a + ’i
’2a + ’73a−・・孔、フ11) ・・・投影
された孔、8・・・電解質補給路、9a・・・被覆材。 71図 才2図 30 j4図 (・; ’75図 才6図
FIG. 1 is an exploded perspective view of a unit cell constituting a fuel cell, FIG. 2 is a plan view of a ribbed electrode base material equipped with an electrolyte supply channel,
Fig. 3 is a partial sectional view showing an electrolyte replenishment structure according to the prior art, Fig. 4 is a partial plan view of the electrolyte replenishment structure in Fig. 3, and Figs. 5 and 6 are partial sectional views showing a state in which electrolyte is dripped. , FIG. 7 is a sectional view showing an electrolyte replenishment structure according to an embodiment of the present invention, FIG. 8 is a partial sectional view taken along line X-X in FIG. FIG. 11 is a partial sectional view showing the dripping state of electrolyte according to an embodiment of the present invention. 1... Matrix, 7... Electrolyte supply passage, '7
1゜'72, 73...liquid receiver, 71a + 'i
'2a + '73a-...hole, f11)...projected hole, 8...electrolyte supply path, 9a...coating material. 71 figure 2 figure 30 j4 figure (・; '75 figure 6 figure

Claims (1)

【特許請求の範囲】[Claims] 垂直方向に配設された電解質補給通路に孔を設けた液受
けの複数個を設け、前記孔より下段の液受けに電解質を
滴下し、該液受けに停留した電解質をマトリックスに連
通ずる電解質補給路を介してマトリックスに補給するマ
トリックス形燃料電池の電解質補給構造において、前記
各液受けに、該液受けの孔に臨み直上の液受けの孔の少
なくとも一部が垂直に投影する親水材を配設することを
特徴とするマトリックス燃料電池の電解質補給構造。
An electrolyte replenishment method in which a plurality of liquid receivers with holes are provided in an electrolyte replenishment passage arranged vertically, and the electrolyte is dripped from the holes into the lower liquid receiver, and the electrolyte stagnant in the liquid receiver is communicated with the matrix. In the electrolyte replenishment structure for a matrix fuel cell in which the matrix is replenished via a channel, each of the liquid receivers is provided with a hydrophilic material that faces the hole in the liquid receiver and at least a part of the hole in the liquid receiver directly above projects vertically. An electrolyte replenishment structure for a matrix fuel cell, characterized in that:
JP59053927A 1984-03-21 1984-03-21 Electrolyte supply structure of matrix type fuel cell Pending JPS60198059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59053927A JPS60198059A (en) 1984-03-21 1984-03-21 Electrolyte supply structure of matrix type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59053927A JPS60198059A (en) 1984-03-21 1984-03-21 Electrolyte supply structure of matrix type fuel cell

Publications (1)

Publication Number Publication Date
JPS60198059A true JPS60198059A (en) 1985-10-07

Family

ID=12956356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59053927A Pending JPS60198059A (en) 1984-03-21 1984-03-21 Electrolyte supply structure of matrix type fuel cell

Country Status (1)

Country Link
JP (1) JPS60198059A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0274003A2 (en) * 1986-12-10 1988-07-13 Westinghouse Electric Corporation Improved internal electrolyte supply system for reliable transport throughout fuel cell stack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0274003A2 (en) * 1986-12-10 1988-07-13 Westinghouse Electric Corporation Improved internal electrolyte supply system for reliable transport throughout fuel cell stack

Similar Documents

Publication Publication Date Title
EP0846347A2 (en) Electrochemical fuel cell with an electrode substrate having an in-plane nonuniform structure for control of reactant and product transport
SE446140B (en) BRENSLECELLSTAPEL
JPH08315839A (en) Solid high polymer type fuel cell and solid high polymer type fuel cell system
JPH0358152B2 (en)
EP1513213A1 (en) Fuel supply device for direct methanol fuel cells
CN100386909C (en) Fuel cell
US4596749A (en) Method and apparatus for adding electrolyte to a fuel cell stack
JPS60198059A (en) Electrolyte supply structure of matrix type fuel cell
CA1246139A (en) Process for adding electrolyte to a fuel cell stack
US3519486A (en) Control of electrolyte in a fuel cell
JPH0652656B2 (en) Molten carbonate fuel cell
JPS60189868A (en) Reaction fluid feed structure to fuel cell electrode layer
WO1994015377A1 (en) Proton exchange membrane fuel cell device with water transfer separator plates
JPS58166636A (en) Fuel cell
JPS58161267A (en) Matrix type fuel cell
JPH0414469B2 (en)
JPH081803B2 (en) Fuel cell
JPH0695459B2 (en) Fuel cell
JPS63241868A (en) Fuel cell stack
JPS5842179A (en) Fuel battery
JP2528922B2 (en) Molten carbonate fuel cell
JPH01146263A (en) Current collecting separator
JP2005222898A (en) Solid polymer fuel cell
JPS60225365A (en) Electrolyte supplementing structure for matrix type fuel cell
JPH0145095Y2 (en)