JPS58166636A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS58166636A
JPS58166636A JP57049485A JP4948582A JPS58166636A JP S58166636 A JPS58166636 A JP S58166636A JP 57049485 A JP57049485 A JP 57049485A JP 4948582 A JP4948582 A JP 4948582A JP S58166636 A JPS58166636 A JP S58166636A
Authority
JP
Japan
Prior art keywords
layer
phosphoric acid
electrode
hydrophilic
ribs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57049485A
Other languages
Japanese (ja)
Inventor
Shohei Uozumi
魚住 昇平
Takeo Yamagata
武夫 山形
Saburo Yasukawa
安川 三郎
Yasuyuki Tsutsumi
泰行 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP57049485A priority Critical patent/JPS58166636A/en
Publication of JPS58166636A publication Critical patent/JPS58166636A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To hold phosphoric acid in a matrix throughout a long period, by hydrophilically forming plural ribs forming a gas flow path in one surface of a fuel electrode and oxygen electrode further forming both a water repellent layer mutually betwen the ribs faced to the gas path and a hydrophilic layer communicating the ribs. CONSTITUTION:Ribs 11 of both electrodes form gas passages simultaneously are used as the reservoir for storage of phosphoric acid and as the hydrophilic area. Both electrode parts faced to gas passages 3, 4 are partitioned to at least one hydrophilic layer 12a and water repellent layer 12b. While at least a communication passage 14, that is, an electrolyte supplying means is provided to an end part 13 of the both electrodes 1, 2, and an opening part 15, through which phosphoric acid can be supplied from the outside, is provided to at least one place of said passage 14. Further the peripheral side of the both electrodes 1, 2 is wholly formed to a water repellent fine state, and a water repellent finely formed layer 16, used as the layer for preventing infiltration of phosphoric acid and diffusion of gas, is formed.

Description

【発明の詳細な説明】 本発明は燃料電池に係り、特にリン酸型電解質のリン酸
貯蔵方式の電極を用いた燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel cell, and more particularly to a fuel cell using a phosphoric acid storage type electrode of a phosphoric acid type electrolyte.

従来の燃料電池は第1図のように構成され、燃料カス及
び酸化剤ガスである空気を矢印のように直交するように
流し、水素と酸素の周知の反応で電気エネルギーを取出
している。
A conventional fuel cell is constructed as shown in FIG. 1, and fuel scum and air, which is an oxidant gas, flow perpendicularly to each other as shown by the arrows, and electrical energy is extracted by the well-known reaction between hydrogen and oxygen.

一方の面にガス通路3を有する空気極1は、ガス通路と
反対側の面には触媒層が処理されておシ、空気が触媒層
に速やかに達することができるようポーラスな炭素材料
で形成されている。空気極1と対也となる燃料極2は、
空気極1と同様にガス通路4及び触媒層を有し、かつポ
ーラスな炭素材料で形成されている。これら両極1.2
間には、イオンの良導体であるリン酸等の電解液を保持
するマトリックス5が含着するように配設されている。
The air electrode 1, which has a gas passage 3 on one side, has a catalyst layer treated on the side opposite to the gas passage, and is made of a porous carbon material so that air can quickly reach the catalyst layer. has been done. The fuel electrode 2, which is opposite to the air electrode 1, is
Like the air electrode 1, it has a gas passage 4 and a catalyst layer, and is made of a porous carbon material. These two poles 1.2
A matrix 5 holding an electrolytic solution such as phosphoric acid, which is a good conductor of ions, is disposed in between so as to be impregnated therebetween.

各−1,2とマトリックス5が一つの電池を構成する要
素で、この単位電池が竜パレータ6と交互に積層されて
、大容量の発電設備として構成されてiる。
Each -1, -2 and matrix 5 are elements constituting one battery, and this unit battery is alternately stacked with dragon pallets 6 to form a large-capacity power generation facility.

燃料及び空気をそれぞれ供給−しくは排出する九めの給
排装置7は、積層され圧電池本体の2g側面に固着され
、各単位電池に一括して矢印で示すように燃料H8及び
空気oIの給排を行っている。
The ninth supply/discharge device 7, which supplies or discharges fuel and air, respectively, is stacked and fixed to the 2g side of the pressure cell body, and supplies fuel H8 and air oI to each unit cell collectively as shown by the arrows. Supplying and discharging is carried out.

また、電池本体には数優の単位電池の積層41に冷却装
置8が挿入され、冷却水等によnt池の温*を一定に保
ちつつ、冷却を計るものである。
In addition, a cooling device 8 is inserted into the stack 41 of several unit cells in the battery body, and cools the battery while keeping the temperature of the battery constant using cooling water or the like.

このように構成され九燃料電池は、水素、酸素の反応に
よ動電気エネルギーを取出しているが、実際の現象とし
ては、それぞれのガス通路を通る水嵩及び空気中の酸素
は、ポーラスな脚嵩材料による電極基板内を拡散し、触
媒層に遍する。一般に触媒層での反応は、燃料@2では
、水素イオンと電子に分離し、水素イオンは電解質中に
拡散1この反応適度は比較的大きい。一方空気極1貴で
は、酸素分子が電子を取込みイオン化し、かつ電解質中
の水素イオンと結合して、水が生成される。
The fuel cell constructed in this way extracts dynamic electrical energy through the reaction of hydrogen and oxygen, but in reality, the volume of water and oxygen in the air passing through each gas passage is The material diffuses within the electrode substrate and spreads over the catalyst layer. Generally, in the reaction in the catalyst layer, the fuel@2 is separated into hydrogen ions and electrons, and the hydrogen ions are diffused into the electrolyte.1 The degree of this reaction is relatively large. On the other hand, at the air electrode No. 1, oxygen molecules take in electrons, are ionized, and combine with hydrogen ions in the electrolyte to produce water.

この゛反応は一般に水素側に比較すると速度が小さい。This reaction is generally slow compared to the hydrogen side.

このような過11における電子の授受が電気エネルギー
として取出せるが、この電気エネルギーへの変換効率は
、触媒の活性化程度によるのみではなく、特にマトリッ
クス5内のリン酸の挙動が重要なポイントになる。すな
わち、マトリックス5内のリン酸は、現行の燃料電池で
は一定量を閉じ込める方式を採用している丸め、内部の
リン酸が不足すると、水素イオンの移動を阻害し、かつ
触媒層との接触面積も減少し、電池内部抵抗の増大をき
たすことになる。
This exchange of electrons in the matrix 5 can be extracted as electrical energy, but the efficiency of conversion into electrical energy depends not only on the degree of activation of the catalyst, but also on the behavior of the phosphoric acid in the matrix 5. Become. In other words, current fuel cells use a method to confine phosphoric acid in a fixed amount.If there is insufficient phosphoric acid in the matrix 5, it will inhibit the movement of hydrogen ions and reduce the contact area with the catalyst layer. This also causes an increase in the internal resistance of the battery.

i九、リン酸の不足によシ、マトリックス5に気孔が発
生し1.これが水素、空気の混合を招き、直接燃焼を生
じ性能低下をき九す。
9. Due to the lack of phosphoric acid, pores are generated in the matrix 5.1. This leads to mixing of hydrogen and air, causing direct combustion and reducing performance.

このようなリン酸の不足は、リン酸の蒸発、熱膨張1機
械的締付環による体積変化による電極基材への浸出し勢
によって生じる。この丸め、あらかじめ電極基材部にリ
ン酸をりず−ブしておき、マトリックス層内のリン酸の
消失を防止するいくつかの提案がなされている。この代
表的例として、特開昭53−32352及び32353
 K開示されている方式があるが、この方式は、薄い電
極基材の触媒層側を撒水層、反対側を親木層とし、かつ
撒水層にはマトリックス材等の一本領域があ如、前記親
水層と連通できるようになってお〉、1九、前記親水層
には撥水層にガスを供給するための開口が設けられて−
る構成となっている。しかし、この方式は技術的に困難
であり★九ガス拡散不良を生じ中すく、さらに最大の欠
点はリダーブ層へのリン酸供給が困難で゛、初期にリザ
ーブした量でほぼ寿命が決まゐことである。
Such a shortage of phosphoric acid is caused by the evaporation of phosphoric acid and the force of leaching into the electrode base material due to thermal expansion and volume change due to the mechanical tightening ring. Several proposals have been made to prevent the loss of phosphoric acid in the matrix layer by applying phosphoric acid to the electrode base material beforehand. As a representative example of this, Japanese Patent Application Laid-open No. 53-32352 and 32353
There is a method disclosed in K. In this method, the catalyst layer side of the thin electrode base material is a water sprinkling layer, and the opposite side is a parent wood layer, and the water sprinkling layer has one area such as a matrix material. 19. The hydrophilic layer is provided with an opening for supplying gas to the water-repellent layer.
The configuration is as follows. However, this method is technically difficult and tends to cause poor gas diffusion, and the biggest drawback is that it is difficult to supply phosphoric acid to the redundant layer, and the lifespan is almost determined by the amount reserved at the beginning. It is.

本発明の目的は、電−全体にて電解液のリザーブを行な
わせ、製造が害鳥で作業性が良く、かつ長期に渡ってマ
トリックス内のリン酸を保持できる燃料電池を提供する
ことにある。
An object of the present invention is to provide a fuel cell in which an electrolytic solution is reserved throughout the cell, which is easy to manufacture and has good workability, and which can retain phosphoric acid in the matrix for a long period of time.

本脅明の燃料電池は、燃料極と酸素極の一方の面にガス
流路を形成する複数のリブを親水性に形成し、かつガス
通路に面するリブ相互間に撥水層を形成すると共にガス
通路の長さ方向にリブ関を連絡する少なくとも一つの親
水層を形成するようにして、マトリックス内のリン酸の
消失を防止するようKしたことを特徴とするものである
The fuel cell of this invention has a plurality of hydrophilic ribs forming gas flow paths on one side of the fuel electrode and the oxygen electrode, and a water-repellent layer is formed between the ribs facing the gas path. In addition, at least one hydrophilic layer is formed to connect the ribs in the length direction of the gas passage, thereby preventing the loss of phosphoric acid in the matrix.

以下、本発明の一実施例を!@2図乃至第5図により説
明する。
Below is an example of the present invention! This will be explained with reference to FIGS. 2 to 5.

それぞれガス通路3.4を有する空気極1.燃料極2は
、周知のように多孔性炭素材料で形成されており、両極
1,2にはガス通路3.4と反対匈の面に触媒ノ19.
10が処理され、基材と接合されている。
Air electrodes 1. each having a gas passage 3.4. As is well known, the fuel electrode 2 is made of a porous carbon material, and both the electrodes 1 and 2 have catalyst holes 19.4 on the opposite sides of the gas passages 3.4.
10 has been processed and bonded to the substrate.

電解質であるリン酸を保持するマトリックス5u、st
c等の粉体をポリテトラフロロエチレン(以下PTF 
Eと称する)等の結合材で結合され、これらの間隙にリ
ン酸が保持されている。
Matrix 5u, st that holds phosphoric acid as an electrolyte
Powder such as c is converted into polytetrafluoroethylene (hereinafter referred to as PTF).
(referred to as E), etc., and phosphoric acid is held in the gap between these.

両極のリブ11は、ガス通路形成と同時に、電池を多積
−したときの電流路ともなシ、さらにリブ11は、リン
酸を貯蔵する丸めのリザーバで4あり、親水性の領域に
し、である。
The ribs 11 on both poles form a gas path and also serve as a current path when batteries are stacked.Furthermore, the ribs 11 are round reservoirs for storing phosphoric acid, and are made into hydrophilic areas. be.

ガス通路3.4に面する両極部分は、少なくとも一つ以
上の親水層121と撥水層12bに区画されている。撥
水層12bは、反応ガスが触媒層9.10に拡散できる
ようリブ11のリン酸が浸透しない様に像化されている
。一方親水層12mはリン酸が浸透しやすい層である。
Both pole portions facing the gas passage 3.4 are divided into at least one hydrophilic layer 121 and a water repellent layer 12b. The water-repellent layer 12b is patterned so that the phosphoric acid of the ribs 11 does not penetrate so that the reaction gas can diffuse into the catalyst layer 9.10. On the other hand, the hydrophilic layer 12m is a layer into which phosphoric acid easily permeates.

したがって第3図に示すようにリザーブ層となるリブ1
1は独立することがなく、親水層12mによって連通し
てシシ、矢印のようにリン酸の移動が可能となっている
。また、両極1.2の肩部13には少なくとも一つの電
解液供給手段である連通路14があシ、かつこの連通路
14は、少なくとも一個所、外部からリン酸が補給でき
る開口部15が備えられている。さらに、両極1.2の
外周辺は全体に渡って、破水、緻密化されておシ、リン
酸の浸透及びガスの拡散防止層となる撥水緻密化層16
が形成されている。
Therefore, as shown in Fig. 3, the rib 1 which becomes the reserve layer
1 is not independent, but communicates through the hydrophilic layer 12m, allowing the movement of phosphoric acid as shown by the arrow. Furthermore, the shoulder portion 13 of both electrodes 1.2 has at least one communication passage 14 serving as an electrolyte supply means, and this communication passage 14 has at least one opening 15 through which phosphoric acid can be supplied from the outside. It is equipped. Furthermore, the entire outer periphery of both poles 1.2 is densified and water-repellent layer 16 serves as a layer to prevent penetration of water and phosphoric acid and diffusion of gas.
is formed.

このような撥水)111112b、親水層12m、撥水
緻密化層16の具体的形成法について以下説明する。
A specific method for forming the water repellent layer 111112b, the hydrophilic layer 12m, and the water repellent densified layer 16 will be described below.

撥水層12bは、PTFEの微粉末を界面活性剤で水に
分散したディスパージョン液を塗布し、加熱融解するこ
とで容易に得られる。なお塗布する際、あらかじめ電極
を水の沸点よりも高い温度にしておくと、ディスパージ
ョン液がリプ側に広がるのを防止できる好都合である。
The water-repellent layer 12b can be easily obtained by applying a dispersion liquid in which fine powder of PTFE is dispersed in water using a surfactant, and heating and melting the dispersion liquid. Note that when applying, it is convenient to heat the electrode to a temperature higher than the boiling point of water in advance to prevent the dispersion liquid from spreading to the lip side.

つぎに親水層12aであるが、電極の炭素基板そのまま
でも良いが、若干〇H基を含ませた方が良く、この丸め
に、フェノール系樹脂を水に分散させた液を塗布し、P
TFEが分解しない程度の温度以下で炭化させることで
容易に得られる。この際も電極を水の沸点以上に加熱し
ておくと、前記撥水層には、遣水効果以上に液が浸透し
にくく、好都合である。
Next, for the hydrophilic layer 12a, the carbon substrate of the electrode may be used as is, but it is better to include some 〇H groups.A liquid prepared by dispersing phenolic resin in water is applied to this rounded layer, and P
It can be easily obtained by carbonizing at a temperature below a temperature at which TFE does not decompose. At this time, it is also advantageous to heat the electrode to a temperature higher than the boiling point of water, as this makes it difficult for the liquid to penetrate into the water-repellent layer beyond the water-spraying effect.

また、撥水緻密化層16は、たとえばSiC粉と前記P
TFEディスパージョン液を混合した高粘度液を電極端
部に含浸し、PTFE加熱融解すれば容易に得られる。
Further, the water-repellent densified layer 16 is made of, for example, SiC powder and the P
It can be easily obtained by impregnating the electrode end with a high viscosity liquid mixed with a TFE dispersion liquid and heating and melting the PTFE.

リン酸を供給する九めの開口部12は、第4図及び第5
図に示すようにたとえば白金、タンタル尋の耐リン酸性
の良好な金属あるいは:  PTFE等のチューブを電
極内に潴込むことで容易に得られる。このチューブの電
極側先端に凸起をつけること、あるいは拡管すること等
は、チューブが抜けるのを防止するのに有効である。
The ninth opening 12 for supplying phosphoric acid is shown in FIGS.
As shown in the figure, it can be easily obtained by inserting a tube of metal with good phosphoric acid resistance, such as platinum or tantalum, or PTFE, into the electrode. Providing a protrusion or enlarging the electrode-side tip of the tube is effective in preventing the tube from coming off.

このように構成して、開口部15からリン酸を注入する
と、リン酸は、連通路14.IN水層121を通り、リ
ザーブ層となるリブ11に達し、リン酸を貯蔵すること
ができる。
With this configuration, when phosphoric acid is injected from the opening 15, the phosphoric acid flows through the communication path 14. It passes through the IN water layer 121 and reaches the rib 11, which serves as a reserve layer, where phosphoric acid can be stored.

また、開口部15を電池内部もしくは外部に設は九リン
酸貯蔵タンクと連結することによシ、電池の運転状態で
あって4リン酸をリザーブ層に補給することが可能であ
る。
Furthermore, by providing the opening 15 inside or outside the battery and connecting it to a non-phosphoric acid storage tank, it is possible to replenish the reserve layer with tetra-phosphoric acid while the battery is in operation.

この実施例では、す/酸のリザーブ層となるリブ11と
連通路14を親水層12mで連通し、かつ、連通路14
1電極外に開口部を設けることによシ、リン酸を外部か
ら供給できるため、電池組立時の作業性が非線に良くな
シ、かつ適宜リン酸を補給できるので電池を安定して運
転できる効果がおる。
In this embodiment, the rib 11 serving as a reserve layer for acid/acid is communicated with the communicating path 14 through a hydrophilic layer 12m, and the communicating path 14
By providing an opening outside one electrode, phosphoric acid can be supplied from the outside, which improves workability during battery assembly, and phosphoric acid can be replenished as needed, allowing stable operation of the battery. There is an effect that can be done.

つぎに、第6図の実施例では、開口部15を各種1.2
の角部から導出したもので、第2図乃至第5図のものと
異な9、ガス給排装置の外1lll力為らリン酸の補給
ができるので、構成が容易となシ、かつメンテナンスも
容易となる効果がある。
Next, in the embodiment shown in FIG.
This is derived from the corner of 9, which is different from those shown in Figures 2 to 5. Phosphoric acid can be replenished from outside the gas supply and exhaust system, making it easy to construct and easy to maintain. This has the effect of making it easier.

上述の各実施例においては、各種のリブ11及び親水層
12mに電解液供給手段である連通路  514からリ
ン酸を供給する例で説明したが、連通路14を省略して
各リブ11にリン酸をリザーブ゛させただけでも、従来
に比べて電池寿命を一層延ばすことができる。
In each of the above-mentioned embodiments, phosphoric acid is supplied to the various ribs 11 and the hydrophilic layer 12m from the communication passage 514, which is an electrolyte supply means, but the communication passage 14 is omitted and phosphoric acid is supplied to each rib 11. Even just by reserving acid, the battery life can be further extended compared to conventional methods.

また、本発明の別の実施例である第7図の例では、両極
1.2は、第2図と同様一方の面にガス通路3.4を形
成するためのリブ13を有し他面に触媒層9,10を設
けた多孔性の炭素材よりなり、リブ11を親水層とし、
かつリプ11間の撥水7#12bやリブ11間を連絡す
るための親水ノーが形成されている。そして、触媒層9
,10のリブ11に対向する面の一部には、親水化され
た連通ノ1117を形成し、リプ11とマトリックス5
と接触しており、その親水性によってリン酸が移動でき
るものである。ま九この連通層17は、第8図に示すよ
うにリプ11の長さ方向に複数個点在させ友方が、ll
l9図に示すように拡散部分が広く取れて好都合である
。l1mはリブ13の面を示している。この連通層17
の具体的構成法は、電極の平坦面に処理した触媒層9の
リブ11と対向する部分に、九とえはフェノールレジン
をスクリーン印綱等の方法で塗布すると、連通層17と
なる部分にレジンが充填されるから、このレジンを加熱
硬化させ、かつ高温で炭化させると容易に得られる。
Further, in the example of FIG. 7 which is another embodiment of the present invention, the poles 1.2 have ribs 13 on one side for forming gas passages 3.4 and the other side as in FIG. It is made of a porous carbon material with catalyst layers 9 and 10 provided thereon, and the ribs 11 are hydrophilic layers.
In addition, water repellent holes 7#12b between the ribs 11 and hydrophilic holes for communicating between the ribs 11 are formed. And catalyst layer 9
, 10 facing the rib 11 is formed with a hydrophilic communication hole 1117, which connects the rib 11 and the matrix 5.
, and its hydrophilicity allows for the transfer of phosphoric acid. As shown in FIG.
As shown in Figure 19, it is advantageous to have a wide diffusion area. l1m indicates the surface of the rib 13. This communication layer 17
The specific construction method is to apply phenol resin to the part facing the ribs 11 of the catalyst layer 9 treated on the flat surface of the electrode using a method such as a screen seal, and then to the part that will become the communication layer 17. Since it is filled with resin, it can be easily obtained by heating and curing this resin and carbonizing it at a high temperature.

この訳化工程は、一般的に触媒層は撥水性をもたせる必
要上、フッソ系高分子、九とえばPTFE等を含んでい
るので、これらが分解しない41!![の温度で行うの
が良<、PTFEのような場合は、約350C以下が好
ましい。
In this translation process, the catalyst layer generally contains fluorine-based polymers, such as PTFE, in order to have water repellency, so that these do not decompose41! ! In the case of PTFE, the temperature is preferably about 350C or less.

このように構成すると、マトリックス5内のリン酸の膨
張、収縮は、触媒層9の連通層17を通つてリブ11の
リザーブ層に出入り出来る。また蒸発によるリン酸の減
少に対しては、リザーブノーからの補給によ#)補償さ
れる。また、マトリックス5は、平坦に構成できるので
、気泡の発生等がなく、かつ、作業性が良好となる。
With this configuration, the expansion and contraction of phosphoric acid in the matrix 5 can go in and out of the reserve layer of the ribs 11 through the communication layer 17 of the catalyst layer 9. Also, the decrease in phosphoric acid due to evaporation is compensated for by replenishment from the reserve. Moreover, since the matrix 5 can be constructed flat, there is no generation of bubbles and the workability is improved.

本発明によれば、両極に電解液のリザーブ層を容易に構
成できるので、電池の組立作業が容易となり、かつ、リ
ザーブ層のリン酸を一定に管理できるので、電池を安定
に長期間運転できる効果がある。
According to the present invention, a reserve layer of electrolyte can be easily formed on both electrodes, making it easy to assemble the battery, and since the phosphoric acid in the reserve layer can be controlled at a constant level, the battery can be operated stably for a long period of time. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の燃料電池の積J−構成を示す分解−面図
、第2図は本発明の一実施例である燃料電池の電極の部
分断面図、第3図は第2図のA −A’視面図第4図は
第3図の部分平面図、第5図は第4図のB−B’視面図
第6図は電池隅部の構成を示す部分断面図、第7図は本
発明の他の実施例である燃料電池の電極の部分断面図、
第8図は第7図のc−c’視面図第9図は第7図のD−
D’視面図ある。 1・・・空気極、2・・・燃料極、3,4・・・ガス通
路、5・・・マトリックス、9.・10・・・触媒層、
11・・・リプ、12J1・・・媛水層、12b・・・
撥水層、14・・・連通路、15・・・開口部、16・
・・撥水緻密化層、17・・・連通第2図 15 第6図
Fig. 1 is an exploded cross-sectional view showing the product structure of a conventional fuel cell, Fig. 2 is a partial cross-sectional view of an electrode of a fuel cell according to an embodiment of the present invention, and Fig. 3 is an A of Fig. 2. -A' perspective view Figure 4 is a partial plan view of Figure 3; Figure 5 is a BB' perspective view of Figure 4; Figure 6 is a partial sectional view showing the structure of the battery corner; The figure is a partial sectional view of an electrode of a fuel cell according to another embodiment of the present invention.
Fig. 8 is a view from c-c' in Fig. 7. Fig. 9 is a view taken from D--C in Fig. 7.
There is a D' view. 1... Air electrode, 2... Fuel electrode, 3, 4... Gas passage, 5... Matrix, 9.・10...catalyst layer,
11...Rip, 12J1...Himesui layer, 12b...
Water repellent layer, 14... Communication path, 15... Opening, 16.
... Water-repellent densified layer, 17... Connection Figure 2 15 Figure 6

Claims (1)

【特許請求の範囲】 1、一方の面にガス通路を形成する複数のリプを有する
と共に他方の面に触媒層を施した燃料極と空気極とを互
いに触媒層を向い合せ、前記両極の触媒層間に電解液を
保持する!トリックスを配置した40において、前記両
極はその各リプを親水性に形成し、かつガス通路Kli
!するリプ相互間に撥水層を形成すると共にガス通路の
長さ方向にリプ関を連絡する少なくとも一つ以上の親水
層を形成し九ことを特徴とする燃料電池。 2、特許請求の範囲第1項において、前記電極の端部に
は外1!に開口部を有する少々くとも一つの電解液供給
手段を備え九ことを特徴とする燃料電池。 & 特許請求の範囲第1項において、前記触媒層には、
リプに対応する位置に親水性連通層を形成したことを%
黴とする燃料電池。 4 特許請求の範S鎮2項において、前記電解液供給手
段を含む親水層は、撥水緻密化層により囲んだことを特
徴とする燃料電池。 & %ffm求の範囲第2項において、前記電解液供給
手段の開口部は、電極の隅部に設けたことを特徴とする
燃料電池。
[Claims] 1. A fuel electrode and an air electrode each having a plurality of lips forming gas passages on one surface and having a catalyst layer on the other surface are arranged so that the catalyst layers face each other, Retain electrolyte between layers! In the TRIX arrangement 40, the two poles each have a hydrophilic lip and a gas passageway Kli.
! 9. A fuel cell characterized in that a water-repellent layer is formed between the lips, and at least one or more hydrophilic layer is formed that connects the lips in the length direction of the gas passage. 2. In claim 1, the end of the electrode has an outside 1! 9. A fuel cell comprising at least one electrolyte supply means having an opening at the bottom of the fuel cell. & In claim 1, the catalyst layer includes:
% that a hydrophilic communication layer was formed at the position corresponding to the lip.
Fuel cells that turn into mold. 4. The fuel cell according to claim 2, wherein the hydrophilic layer including the electrolyte supply means is surrounded by a water-repellent densified layer. & %ffm The fuel cell according to item 2, wherein the opening of the electrolyte supply means is provided at a corner of the electrode.
JP57049485A 1982-03-27 1982-03-27 Fuel cell Pending JPS58166636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57049485A JPS58166636A (en) 1982-03-27 1982-03-27 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57049485A JPS58166636A (en) 1982-03-27 1982-03-27 Fuel cell

Publications (1)

Publication Number Publication Date
JPS58166636A true JPS58166636A (en) 1983-10-01

Family

ID=12832454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57049485A Pending JPS58166636A (en) 1982-03-27 1982-03-27 Fuel cell

Country Status (1)

Country Link
JP (1) JPS58166636A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174265A (en) * 1984-09-18 1986-04-16 Fuji Electric Co Ltd Porous electrode base of fuel cell
JPS61188862A (en) * 1985-02-15 1986-08-22 Fuji Electric Co Ltd Rib-attached electrode base material for fuel cell
JPS61288376A (en) * 1985-06-14 1986-12-18 Hitachi Ltd Electrode plate for fuel cell
JPS62268064A (en) * 1986-05-15 1987-11-20 Toshiba Corp Fuel cell
KR100649088B1 (en) * 2001-08-16 2006-11-24 미쓰비시덴키 가부시키가이샤 Electrochemical element
JP2009530782A (en) * 2006-03-17 2009-08-27 コミサリア、ア、レネルジ、アトミク Fuel cell comprising an assembly capable of controlling water produced by the fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174265A (en) * 1984-09-18 1986-04-16 Fuji Electric Co Ltd Porous electrode base of fuel cell
JPS61188862A (en) * 1985-02-15 1986-08-22 Fuji Electric Co Ltd Rib-attached electrode base material for fuel cell
JPS61288376A (en) * 1985-06-14 1986-12-18 Hitachi Ltd Electrode plate for fuel cell
JPH0552629B2 (en) * 1985-06-14 1993-08-05 Hitachi Ltd
JPS62268064A (en) * 1986-05-15 1987-11-20 Toshiba Corp Fuel cell
KR100649088B1 (en) * 2001-08-16 2006-11-24 미쓰비시덴키 가부시키가이샤 Electrochemical element
JP2009530782A (en) * 2006-03-17 2009-08-27 コミサリア、ア、レネルジ、アトミク Fuel cell comprising an assembly capable of controlling water produced by the fuel cell

Similar Documents

Publication Publication Date Title
US4038463A (en) Electrode reservoir for a fuel cell
US6743541B2 (en) Monopolar cell pack of proton exchange membrane fuel cell and direct methanol fuel cell
US5534363A (en) Hollow artery anode wick for passive variable pressure regenerative fuel cells
US8263207B2 (en) Gas diffusion layer, manufacturing apparatus and manufacturing method thereof
KR100513183B1 (en) Fuel cell
US4064322A (en) Electrolyte reservoir for a fuel cell
JP2007522642A (en) Capillary layer in the flow field to manage water in the PEM fuel cell
JPH06231793A (en) Solid high polymer electrolytic type fuel cell
JPH06275284A (en) Solid polymer electrolyte film type fuel cell
JP2009538509A (en) Fuel cell heat and water management device and management method
JPH03182052A (en) Porous electrode and its usage
JP3106554B2 (en) Solid polymer electrolyte fuel cell and method for supplying water and gas contained in the membrane
JPS58166636A (en) Fuel cell
JP2001015123A (en) Electrode substrate and electrode for fuel cell and fuel cell using the same
KR100627749B1 (en) Fuel cell
JP2814716B2 (en) Cell structure of solid polymer electrolyte fuel cell and method of supplying water and gas
JPS5848366A (en) Fuel cell
US20030170528A1 (en) Moldable separator plate for electrochemical devices and cells
JPS63152876A (en) Fuel battery having matrix assembly of electrolytic liquid
JP2002093433A (en) Solid polymer fuel cell
JPH06251778A (en) Solid polymer electrolyte fuel cell
JP2004103592A (en) Fuel cell
JPH0577152B2 (en)
JPS624831B2 (en)
JPH0695459B2 (en) Fuel cell