JPH01146263A - Current collecting separator - Google Patents

Current collecting separator

Info

Publication number
JPH01146263A
JPH01146263A JP62303181A JP30318187A JPH01146263A JP H01146263 A JPH01146263 A JP H01146263A JP 62303181 A JP62303181 A JP 62303181A JP 30318187 A JP30318187 A JP 30318187A JP H01146263 A JPH01146263 A JP H01146263A
Authority
JP
Japan
Prior art keywords
flow path
air
separator
groove
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62303181A
Other languages
Japanese (ja)
Inventor
Toshio Ogawa
敏雄 小川
Osamu Kuroda
修 黒田
Katsuya Ebara
江原 勝也
Sankichi Takahashi
燦吉 高橋
Ryota Doi
良太 土井
Seiji Koike
小池 清二
Norio Ikemoto
池本 徳郎
Katsumoto Otake
大嶽 克基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62303181A priority Critical patent/JPH01146263A/en
Publication of JPH01146263A publication Critical patent/JPH01146263A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent performance deterioration caused by oxygen shortage by installing a means preventing the blockage of passages in fuel and air supply passages. CONSTITUTION:Horizontal passages 4-5 intersecting to vertical passages 4-2 in air passage in a separator are installed in the air passage, and horizontal passages 4-5 intersecting to vertical passages 4-2 are also installed in the vicinity of the outlet of an air exhaust port. If blockage caused by condensed water arises in some vertical passage 4-2, air flows through horizontal passages 4-5 to bypass the blocked part and returns again to vertical passage 4-2. If all outlets in the lower part of air passage 4-3 are blocked, air is not exhausted, however, at least one exhaust port is opened by the pressure of air to eliminate blockage. If one exhaust port exists, air from each vertical passage flows to this exhaust port. Performance deterioration caused by blockage is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池の集電セパレータに係り、特にメタノ
ール燃料電池に好適な集電セパレータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a current collector separator for a fuel cell, and particularly to a current collector separator suitable for a methanol fuel cell.

〔従来の技術〕[Conventional technology]

メタノール燃料電池の構成を説明する。第8図(A) 
及び(B)に従来セパレータの一例を示す。
The configuration of a methanol fuel cell will be explained. Figure 8 (A)
and (B) show an example of a conventional separator.

集電セパレータ(10)は高密度カーボン等(比重1.
8〜2.0)の導電材よりなる。図はセパレータのメタ
ノール極側の平面とA−A断面を示してある。セパレー
タは液供給孔1.液排出孔2が各2個設けである。液の
供給及び排出孔からは案内する流路溝7が設けである。
The current collector separator (10) is made of high-density carbon or the like (specific gravity 1.
8 to 2.0). The figure shows the plane of the separator on the methanol pole side and the AA cross section. The separator has liquid supply hole 1. Two liquid discharge holes 2 are provided in each case. A channel groove 7 is provided to guide the liquid from the supply and discharge holes.

流路溝上にはプレートの受け(1)6が設けである。セ
パレータの中央部は溝山3−1.液溝4−1が設けであ
る。また、上下部位には浮島状の突起5−1が設けであ
る。
A plate receiver (1) 6 is provided on the channel groove. The central part of the separator is Mizoyama 3-1. A liquid groove 4-1 is provided. Furthermore, floating island-shaped projections 5-1 are provided at the upper and lower portions.

第9図(A)及び(B)は従来セパレータの空気極側の
平面及びC−C断面を示す。セパレータ中央に縦空気溝
4−2が設けである。上部位の空気排出部にはプレート
の受け(2)8がある。
FIGS. 9(A) and 9(B) show a plane of a conventional separator on the air electrode side and a cross section taken along line C-C. A vertical air groove 4-2 is provided in the center of the separator. There is a plate receiver (2) 8 in the air discharge part of the upper part.

第10図は第9図(A)のD−D断面を示す。FIG. 10 shows a DD cross section in FIG. 9(A).

空気流路溝の下部断面で空気流路溝4−3はプレート(
2)9−2でカーバされる。プレートを受けた面の厚み
はセパレータの厚みと同一厚みになるように形成しであ
る。
In the lower section of the air flow groove, the air flow groove 4-3 has a plate (
2) Covered at 9-2. The thickness of the surface receiving the plate is the same as the thickness of the separator.

第11図は第8図(A)のB−B断面を示す。FIG. 11 shows a BB cross section in FIG. 8(A).

液供給、排出孔部位の断面で、流路溝7はプレート(1
)9−1でカバーされる。プレートを受けた面の厚みは
セパレータ厚みと同一になるように形成しである。
In the cross section of the liquid supply and discharge hole portion, the channel groove 7 is connected to the plate (1
) Covered by 9-1. The thickness of the surface receiving the plate is the same as the thickness of the separator.

第12図(A)及び(B)はセパレータの積層でシール
に使うガスケット形状を示しである。ガスケット39は
軟質ゴム材等を使う。外郭、孔はセパレータ寸法と同一
で、厚さは締代分電極より厚くセパレータ中央部に位置
する部位は抜いである。
FIGS. 12(A) and 12(B) show the shape of a gasket used for sealing when separators are laminated. The gasket 39 is made of soft rubber material or the like. The outer shell and hole have the same dimensions as the separator, and the thickness is thicker than the electrode for the interference, and the part located in the center of the separator is blank.

第13図は積層電池の構成を示した。電解質としてのイ
オン交換膜140を空気極41−1とメタノール42−
1の画電極で挟み、その両外側をガスケット39が位置
する。さらに両外側を集電セパレータ (10)が位置
し、これらを密着すると単位電池が構成する。イオン交
換膜40.ガスケット39.セパレータ(10)で囲ま
れた空間は空気またはアノライトの流路の溝室を構成す
る。空気電極の介在する側が空気流路の溝室、メタノー
ル電極の介在する側がアノライト流路の溝室、である。
FIG. 13 shows the structure of the stacked battery. An ion exchange membrane 140 as an electrolyte is connected to an air electrode 41-1 and methanol 42-.
It is sandwiched between two picture electrodes, and gaskets 39 are placed on both sides thereof. Furthermore, current collecting separators (10) are placed on both outer sides, and when these are brought into close contact, a unit battery is constructed. Ion exchange membrane 40. Gasket 39. The space surrounded by the separator (10) constitutes a groove chamber for the air or anolyte flow path. The side where the air electrode is located is the groove chamber of the air flow path, and the side where the methanol electrode is located is the groove chamber of the anolyte flow path.

実際は単位電池を必要数同様に積層して使う。In reality, unit batteries are stacked in the same number of layers as required.

次にアノライト31(例えば1 、5 M Has 0
4十1 、0 M CH2OH+ Hz○の混合液)の
供給は液供給孔1より流路溝7に流れ4−1を上昇し上
部の流路溝7より液排出孔2へ流出する。
Next, the anolyte 31 (e.g. 1,5 M Has 0
A mixed solution of 0 M CH2OH + Hz○ is supplied from the liquid supply hole 1 to the channel groove 7, ascends 4-1, and flows out from the upper channel groove 7 to the liquid discharge hole 2.

一方、空気32は上部から供給し、空気溝4−2を流下
し下部から排出する。
On the other hand, air 32 is supplied from the top, flows down the air groove 4-2, and is discharged from the bottom.

このように、7ノライト溝室及び空気溝室へそれぞれア
ノライト及び空気を供給することにより発電する。
In this way, electricity is generated by supplying anolite and air to the seven norite groove chambers and the air groove chamber, respectively.

第14図はメタノール燃料電池の構成と発電の原理を示
す。電解質としてのイオン交換膜40を挟んで9通気性
カーボン基板41−2上に触媒を塗布した空気極41−
1及び、同じく基板42−2上に触媒を塗布したメタノ
ール極42−1を膜側に密着させ、さらに外側にセパレ
ータを位置させると一対の単位電池が構成する。
FIG. 14 shows the configuration of a methanol fuel cell and the principle of power generation. An air electrode 41- in which a catalyst is coated on a 9-breathable carbon substrate 41-2 with an ion exchange membrane 40 as an electrolyte in between.
1 and a methanol electrode 42-1, which is also coated with a catalyst on a substrate 42-2, are brought into close contact with the membrane side, and a separator is further placed on the outside to form a pair of unit cells.

ここで、メタノール極にアノライトを、空気極に空気を
供給すると、メタノール極ではCIIaOt(+H2O
−+CC)z+6)(+ +6e−;空気極では6H+
+3/20z+6e−−+3HzO(7)電気化学反応
が起る。空気極は電子が欠乏した状態、メタノール極は
電子が過剰な状態になり、外部回路を接続すると、その
回路を通ってメタノール極から空気極への電子の流れが
生じ電力が得られる。この発電は電池へ空気とメタノー
ルを供給するかぎり継続する。発電中空気極側で生成し
た水は空気によって水蒸気の形で外部へ排出される。し
かし、露点が58℃位であるので、雰囲気温度がこれ以
下となると水蒸気が流路内で凝結し、液滴が次第に成長
してくる。
Here, when an anolite is supplied to the methanol electrode and air is supplied to the air electrode, CIIaOt(+H2O
-+CC)z+6)(+ +6e-; 6H+ at air electrode
+3/20z+6e--+3HzO (7) An electrochemical reaction occurs. The air electrode is in an electron-deficient state, and the methanol electrode is in an electron-abundant state. When an external circuit is connected, electrons flow from the methanol electrode to the air electrode through that circuit, and power is obtained. This power generation continues as long as air and methanol are supplied to the battery. During power generation, water generated on the air electrode side is discharged to the outside in the form of water vapor by the air. However, since the dew point is about 58° C., when the ambient temperature falls below this, water vapor condenses in the flow path and droplets gradually grow.

第15図(A)及び(B)は発電中のセパレータの空気
流路の一部状態を示したものである。空気流路ではイオ
ン交換膜透過水、供給空気中の水分及び生成水による水
蒸気等がおかれる雰囲気で凝結し、付着し次第に成長し
て流路を閉塞してくる。凝結水100が付着した流路及
び閉塞した流路は空気が流れずらく、また流れなくなる
ので酸素が不足し発電に寄与しなくなる。
FIGS. 15(A) and 15(B) show a partial state of the air flow path of the separator during power generation. In the air flow path, water that permeates through the ion exchange membrane, water in the supplied air, water vapor from generated water, etc. condenses in the atmosphere, adheres, and gradually grows to block the flow path. Air is difficult to flow through the channels to which the condensed water 100 has adhered and in the blocked channels, and since air does not flow, oxygen is insufficient and the channels do not contribute to power generation.

第16図は電池が発電した単位電圧を示したものである
。空気流路閉塞なしでは発生電圧0.4V/60mA負
荷であるが、閉塞すると発生電圧は0 、1 / 60
 m A負荷以下となり、これを放置しておくと負極に
転極する。″ 以上の如く空気流路の凝結水により閉塞は電池性能に大
きく影響する。しかし1.これまで、閉塞しない空気流
路の形状が考慮されていなかった。
FIG. 16 shows the unit voltage generated by the battery. When the air flow path is not blocked, the generated voltage is 0.4 V/60 mA load, but when the air flow path is blocked, the generated voltage is 0, 1/60
m A load or less, and if left unattended, it will reverse to negative polarity. ``As described above, blockage of air channels by condensed water greatly affects battery performance.However, 1. Until now, no consideration has been given to the shape of air channels that do not become clogged.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来のセパレータは凝結水による空気流路閉塞につ
いて配慮されておらず、これを使用した積層電池は、発
電性能に問題があった。
The above-mentioned conventional separator does not take into consideration air flow path clogging due to condensed water, and a stacked battery using this separator has a problem in power generation performance.

本発明の目的は電池がおかれている雰囲気の変化に対し
空気流路が閉塞しない。また、流路の一部が閉塞しても
設けた交叉流路を空気が流れることで流路全長、かつ、
全体が閉塞しないようにしたことにある。
An object of the present invention is to prevent air flow paths from being blocked due to changes in the atmosphere in which the battery is placed. In addition, even if a part of the flow path is blocked, the air can flow through the cross flow path provided, reducing the total length of the flow path and
The reason is to prevent the entire system from becoming blocked.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は従来の縦流路に交叉する巾1〜5IIw11
深さ1〜2I111の横流路を空気流路に5〜10数m
間隔で設ける。かつ、空気排出部の出口近傍にも交叉す
る横流路を設けることにより達成される。
The above purpose is to have a width of 1 to 5 IIw11 that intersects the conventional vertical flow path.
A horizontal flow path with a depth of 1-2I111 is used as an air flow path for 5-10 meters.
Provided at intervals. This can also be achieved by providing intersecting horizontal flow paths near the outlet of the air discharge section.

さらに、空気流路下端排出部に繊維布あるいは網等より
なるドレンカーテンを一部空気流路溝に接して設けるこ
とにより一層の効果が得られる。
Further, a further effect can be obtained by providing a drain curtain made of fiber cloth, net, etc. at the lower end discharge portion of the air flow path so as to be partially in contact with the air flow groove.

〔作用〕[Effect]

空気供給縦流路に交叉して設けた横流路は縦流路内に凝
結水による閉塞部が介在するとその部位は横流路の方を
迂回して空気が流れ再び縦流路に戻る蛇行流路が形成さ
れる。かつ、空気流路下端の出口部は、出口全部が閉塞
すると空気が排出できなくなるが、少なくとも1つの排
出口は空気圧によってすぐに開放となるので閉塞しない
。しかも、1つの排出口があれば、各縦流路からの空気
はこの出口に流れるので閉塞による性能低下を防げる。
If a blockage section due to condensed water is present in the vertical flow path, the horizontal flow path provided to intersect with the vertical air supply flow path will cause the air to bypass the horizontal flow path and return to the vertical flow path again. is formed. In addition, if all the outlets at the lower end of the air flow path are blocked, air cannot be discharged, but at least one outlet is immediately opened by air pressure, so it is not blocked. Furthermore, if there is one outlet, air from each vertical flow path flows to this outlet, thereby preventing performance degradation due to blockage.

さらに空気流路下端排出部に設けたドレンカーテンは凝
結水の付着力を弱め排出口の閉塞を起させない。
Furthermore, the drain curtain provided at the lower end discharge portion of the air flow path weakens the adhesion of condensed water and prevents the discharge port from clogging.

〔実施例〕〔Example〕

第1図(A)及び(B)に−本発明セパレータの一実施
例を示す。第1図(A)はセパレータのメタノール極側
平面、第1図(B)は(A)のA−A断面を示す。セパ
レータは液供給孔1.液排出孔2が各2個設けである。
FIGS. 1A and 1B show an embodiment of the separator of the present invention. FIG. 1(A) shows a plane of the separator on the methanol pole side, and FIG. 1(B) shows a cross section taken along line AA in FIG. 1(A). The separator has liquid supply hole 1. Two liquid discharge holes 2 are provided in each case.

液の供給及び排出孔からは案内流路溝7が設けである。A guide channel groove 7 is provided from the liquid supply and discharge holes.

案内流路溝上はプレートの受け(1)6が設けである。A plate receiver (1) 6 is provided above the guide channel groove.

セパレータの中央部は多数本の溝山3−1があり液溝4
−1が形成しである。また、上部及び下部には浮島状突
起5−1が設けである。溝山3−1には切欠部が設けて
あり、この切欠部は縦流路溝4−1に交叉した横流路溝
4−5となる。
The central part of the separator has many groove ridges 3-1, and liquid grooves 4.
-1 is formed. Further, floating island-like projections 5-1 are provided at the upper and lower parts. A notch is provided in the groove ridge 3-1, and this notch becomes a horizontal channel groove 4-5 that intersects the vertical channel groove 4-1.

横流路溝の深さは縦流路溝と同一、巾は1〜5m、間隔
は5〜20mmの範囲でセパレータの大きさから適宜に
寸法及び数を選定する。
The depth of the horizontal channel grooves is the same as that of the vertical channel grooves, the width is 1 to 5 m, and the interval is in the range of 5 to 20 mm, and the dimensions and number are appropriately selected based on the size of the separator.

第2図(A)はセパレータの空気極側平面。第2図(B
)はC〜C断面を示す。セパレータ中央部は上から下へ
流す空気溝4−2と溝山3−2とからなる。溝山3−2
には切欠部が設けてあり、この切欠部は空気溝4−2と
交叉した横流路溝4−5を形成する。
FIG. 2(A) is a plane of the separator on the air electrode side. Figure 2 (B
) shows the C-C cross section. The central part of the separator consists of a groove 4-2 for air flowing from top to bottom and a groove ridge 3-2. Mizoyama 3-2
is provided with a notch, and this notch forms a transverse channel groove 4-5 that intersects with the air groove 4-2.

切欠横流路溝の深さは縦流路溝と同一であり、屋は1〜
5m1間隔は5〜201mの範囲からセパレータの大き
さで、寸法、数を選定する。
The depth of the notched horizontal channel groove is the same as that of the vertical channel groove, and the depth is 1~
For the 5m1 interval, select the size and number of separators from a range of 5 to 201m.

下部にはプレートの受け(2)8がある。At the bottom there is a plate receiver (2) 8.

第3図は第2図(A)のD−D断面で、空気流路溝の下
部断面を示す。下部の空気流路溝4−3はプレート(2
)9−2でカバーされる。プレートを受ける溝山3−2
には横溝4−5が設けである。プレートを受けた面の厚
みはセパレータの厚みと同一に形成しである。
FIG. 3 is a cross section taken along the line DD in FIG. 2(A), showing a lower cross section of the air flow groove. The lower air flow groove 4-3 is formed by a plate (2
) Covered by 9-2. Groove mount 3-2 that receives the plate
A lateral groove 4-5 is provided in the lateral groove 4-5. The thickness of the surface receiving the plate is the same as the thickness of the separator.

第4図は第1図(A)のB−B断面を示す。液の供給及
び排出孔部位の断面である。流路溝7はプレート(1)
9−1でカバーされる。プレートを受けた面の厚みはセ
パレータ厚みと同一となるように形成しである。
FIG. 4 shows a BB cross section in FIG. 1(A). This is a cross section of the liquid supply and discharge hole portion. The channel groove 7 is a plate (1)
Covered by 9-1. The thickness of the surface receiving the plate is the same as the thickness of the separator.

第5図は本発明セパレータを積層し電池を構成したセパ
レータの空気流路溝4−2の状態を示した図である。
FIG. 5 is a diagram showing the state of the air flow passage grooves 4-2 of the separator in which a battery is constructed by laminating the separators of the present invention.

空気流路溝4−2では、イオン交換膜をメタノール極側
から透過してくる浸透液、供給空気中に含まれる水分及
び電池の電気化学反応による生成水等の一部が流路を空
気が流れる間に蒸発し排出されないで、運転中に次第に
凝結してくるため。
In the air flow path groove 4-2, some of the permeate that permeates the ion exchange membrane from the methanol electrode side, moisture contained in the supplied air, and water produced by the electrochemical reaction of the battery pass through the air flow path. This is because it evaporates while flowing and is not discharged, but gradually condenses during operation.

これが流路溝を閉塞してくる。しかも、この凝結水10
0は容易に流路溝を落下し排出しないために閉塞した流
路溝は酸素供給不足となり、電池の性能低下を起す。
This blocks the channel groove. Moreover, this condensed water 10
0 easily falls through the channel groove and is not discharged, resulting in insufficient oxygen supply to the blocked channel groove, resulting in a decrease in battery performance.

本発明の横流路溝を設けたセパレータでは、縦流路溝4
−2の一部に閉塞がおこると、その部域は迂回して図示
の如く横流路溝4−5を空気が流れるので、閉塞が起ら
ない。
In the separator provided with the horizontal channel grooves of the present invention, the vertical channel grooves 4
If a part of the channel -2 is partially blocked, the air bypasses that area and flows through the horizontal channel groove 4-5 as shown in the figure, so the blockage does not occur.

第6図(A)は本発明セパレータの実施例2の空気極側
平面を、また第6図(B)はそのA−A断面を示す。図
で空気流路溝下部のプレート受け(2)とプレート(2
)間には繊維布あるいは格子網等よりなるドレンカーテ
ン101が挿入しである。カーテンはプレート受け(2
)とプレート(2)とによって押えられ落下しないよう
になっている。また、ドレンカーテンの一部は空気流路
の溝上に露出しているが、これが空気流路と塞がないよ
うに設けである。また、カーテンを挿入した部分の厚み
はセパレータの他の部分と同一となるようにしである。
FIG. 6(A) shows a plane on the air electrode side of Example 2 of the separator of the present invention, and FIG. 6(B) shows its AA cross section. The figure shows the plate holder (2) and plate (2) at the bottom of the air flow groove.
) A drain curtain 101 made of fiber cloth or grid net is inserted between the two. The curtain has a plate holder (2
) and plate (2) to prevent it from falling. Also, a part of the drain curtain is exposed above the groove of the air flow path, but this is provided so that it does not block the air flow path. Further, the thickness of the portion where the curtain is inserted is the same as that of the other portions of the separator.

第7図(A)及び(B)は第6図(A)及び(B)に示
したセパレータで電池を構成した、セパレータの空気流
路側の状態を示した図である。
FIGS. 7(A) and 7(B) are diagrams showing the state of the air flow path side of the separator in which a battery is constituted by the separators shown in FIGS. 6(A) and (B).

浸透液、生成水等が空気流路溝4−2内で凝結水100
となり、これが、運転中に空気流路溝を流下してセパレ
ータ下端に達する。しかし、この硫酸を含んだ凝結水の
液滴100は下端から落下しないでいつまでも付着して
いる排気溝を塞いでしまう6そこで、これを落下しやす
くするには付着力を弱める手段が必要である。
Penetrating liquid, generated water, etc. condensate in the air flow path groove 4-2.
During operation, this flows down the air flow groove and reaches the lower end of the separator. However, the droplets 100 of condensed water containing sulfuric acid do not fall from the bottom end, but instead block the exhaust groove where they remain attached6.Therefore, in order to make them easier to fall, a means is needed to weaken the adhesion force. .

図では設けたドレンカーテンによって付着力が弱められ
1図示の如くセパレータの下端に達した液適はドレンカ
ーテンをつたわって落下しやすく。
In the figure, the adhesion force is weakened by the provided drain curtain, and as shown in Figure 1, the droplets that reach the lower end of the separator tend to fall down through the drain curtain.

下端には液滴が付着しなくなる。Droplets will no longer adhere to the bottom edge.

〔発明の効果〕〔Effect of the invention〕

本発明のセパレータを用いることによって、空気極側流
路における凝結水による流路閉塞が起らなくなるので、
空気極への酸素供給が滞らず、酸素不足による性能低下
がなくなる。
By using the separator of the present invention, flow path clogging due to condensed water in the air electrode side flow path will not occur.
Oxygen supply to the air electrode is not delayed, eliminating performance deterioration due to lack of oxygen.

また、従来の縦流路に横流路を設けたことにより、メタ
ノール極側ではアノライトに接する、また、空気極側で
は酸素と実際に接する触媒面積が増すため電池性能の向
上になる。また横流路を設けたことによって、セパレー
タがその分削り取られるため1重量が5〜10%程度軽
くなり軽量化にもなる。
Furthermore, by providing a horizontal flow path in the conventional vertical flow path, the area of the catalyst that is in contact with the anolite on the methanol electrode side and actually in contact with oxygen on the air electrode side is increased, which improves battery performance. Further, by providing the lateral flow path, the separator is shaved off by that amount, resulting in a weight reduction of about 5 to 10%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は本発明メタノール燃料電池セパレータの
メタノール極側の平面図、第1図(B)は第1図(A)
のA−A断面図、第2図(A)は本発明メタノール燃料
電池セパレータの空気極側の平面図、第2図(B)は第
2図(A)のC−C断面図、第3図は第2図(A)のD
−D断面図、第4図は第1図(A)のB−B断面図、第
5図は本発明セパレータの空気流路状態をモデルで示し
た図、第6図(A)は本発明の実施例(2)のメタノー
ル燃料電池セパレータの空気極側の平面図、第6図(B
)は(A)のA−A断面図、第7図(A)は実施例(2
)セパレータの空気流路状態をモデルで示した図、第7
図(B)は(A)のA〜A断面図、第8図(A)は従来
のセパレータのメタノール極側平面図、第8図(B)は
(A)のA−A断面図、第9図(A)は従来のセパレー
タの空気極側平面図、第9図(B)は(A)のC〜C断
面図、第10図は第9図(A)のD−D断面す斜視図、
第14図は発電の原理を示す図。第15図(A)はメタ
ノール燃料電池の空気流路の状態を示した図、第15図
は(B)は(A)のA〜A断面図、第16図は単位電池
の性能を示した図である。 1・・・液供給孔、2・・・液排出孔、3−1・・・溝
山、4−1・・・液溝、4−2・・・空気溝、4−3・
・・空気流路、4−5・・・横流路溝、5−1・・・突
起、6・・・プレート受け(1)、7・・・流路溝、8
・・・プレート受け(2)。 9−1・・・プレート(1)、9−2・・・プレート(
2)10・・・セパレータ、31・・・アノライト、3
2・・・空気、39・・・ガスケット、40・・・イオ
ン交換膜、41−1・・・空気極、42−1・・・メタ
ノール極、100・・・凝結水(液滴)、101・・・
ドレンカーテン。 第1図 (A)    ″ 嘱3図 毛4図 第5図 第6図 第7図 (Aン              CB)第8図 (A) A−、−A 躬°9図 (A)      (B) 第1O図 第1I図 第1Z図 (A) CB) 第14図 Z 第15図 (A)       <B) し        リ
Figure 1 (A) is a plan view of the methanol fuel cell separator of the present invention on the methanol electrode side, and Figure 1 (B) is Figure 1 (A).
2(A) is a plan view of the air electrode side of the methanol fuel cell separator of the present invention, FIG. 2(B) is a sectional view taken along CC of FIG. 2(A), and FIG. The figure is D in Figure 2 (A).
-D sectional view, FIG. 4 is a BB sectional view of FIG. 1(A), FIG. 5 is a model showing the state of the air flow path of the separator of the present invention, and FIG. FIG. 6 (B) is a plan view of the air electrode side of the methanol fuel cell separator of Example (2).
) is an AA sectional view of (A), and FIG. 7(A) is a cross-sectional view of Example (2).
) Diagram showing the state of the air flow path in the separator using a model, Part 7
Figure (B) is a sectional view taken from A to A in (A), Figure 8 (A) is a plan view of a conventional separator on the methanol pole side, and Figure 8 (B) is a sectional view taken from A to A in (A). Figure 9 (A) is a plan view of a conventional separator on the air electrode side, Figure 9 (B) is a sectional view taken from C to C in (A), and Figure 10 is a perspective view of the DD cross section in Figure 9 (A). figure,
FIG. 14 is a diagram showing the principle of power generation. Figure 15 (A) is a diagram showing the state of the air flow path of a methanol fuel cell, Figure 15 (B) is a sectional view from A to A in (A), and Figure 16 is a diagram showing the performance of the unit cell. It is a diagram. DESCRIPTION OF SYMBOLS 1...Liquid supply hole, 2...Liquid discharge hole, 3-1...Mitch crest, 4-1...Liquid groove, 4-2...Air groove, 4-3...
...Air flow path, 4-5...Horizontal flow path groove, 5-1...Protrusion, 6...Plate receiver (1), 7...Flow path groove, 8
...Plate holder (2). 9-1...Plate (1), 9-2...Plate (
2) 10... Separator, 31... Anolite, 3
2... Air, 39... Gasket, 40... Ion exchange membrane, 41-1... Air electrode, 42-1... Methanol electrode, 100... Condensed water (droplets), 101 ...
drain curtain. Figure 1 (A) '' Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 (A CB) Figure 8 (A) A-, -A Figure 9 (A) (B) 1O Figure 1I Figure 1Z (A) CB) Figure 14Z Figure 15 (A) <B)

Claims (1)

【特許請求の範囲】 1、電解質イオン交換膜を燃料物質を電気化学的に酸化
する燃料極及び酸化剤を電気化学的に環元する酸化剤極
の電極で挟み、その外側を導電体でかつ燃料及び酸化剤
を供給する流路を有し、かつ、両極による発生電気を集
電するセパレータを密集積層する電池のセパレータにお
いて、燃料及び空気の供給流路に流路の閉塞を防ぐ手段
を設けたことを特徴とする集電セパレータ。 2、特許請求の範囲第1項において、既流路に交叉する
流路を設けたことを特徴とする集電セパレータ。 3、特許請求の範囲第2項において、既縦流路には交叉
する横流路、既横流路には交叉する縦流路を設けたこと
を特徴とする集電セパレータ。 4、特許請求の範囲第3項において、交叉する流路の寸
法、間隔をセパレータの表裏同一あるいは異なる位置に
設けたことを特徴とする集電セパレータ。 5、特許請求の範囲第2項において、空気流路の排出部
近傍位置にも流路と交叉する流路を設けたことを特徴と
する集電セパレータ。 6、特許請求の範囲第1項において、空気流路の排出部
近傍位置の流路上に繊維布、格子網等の擬縮水排出手段
を取付けたことを特徴とする集電セパレータ
[Scope of Claims] 1. An electrolyte ion exchange membrane is sandwiched between a fuel electrode that electrochemically oxidizes a fuel substance and an oxidizer electrode that electrochemically cyclizes an oxidizing agent, and the outside thereof is made of a conductor and In a battery separator having a flow path for supplying fuel and an oxidizer and in which separators for collecting electricity generated by both electrodes are densely laminated, a means for preventing blockage of the flow path is provided in the fuel and air supply flow path. A current collecting separator characterized by: 2. A current collector separator according to claim 1, characterized in that a flow path is provided that intersects with the existing flow path. 3. A current collecting separator according to claim 2, characterized in that the existing vertical channels are provided with horizontal channels that intersect with each other, and the existing horizontal channels are provided with vertical channels that intersect with each other. 4. A current collecting separator according to claim 3, characterized in that the dimensions and intervals of the intersecting channels are provided at the same or different positions on the front and back sides of the separator. 5. A current collector separator according to claim 2, characterized in that a flow path intersecting the air flow path is also provided at a position near the discharge portion of the air flow path. 6. A current collector separator according to claim 1, characterized in that a pseudo condensation water discharge means such as a fiber cloth or a lattice network is attached to the flow path in the vicinity of the discharge portion of the air flow path.
JP62303181A 1987-12-02 1987-12-02 Current collecting separator Pending JPH01146263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62303181A JPH01146263A (en) 1987-12-02 1987-12-02 Current collecting separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62303181A JPH01146263A (en) 1987-12-02 1987-12-02 Current collecting separator

Publications (1)

Publication Number Publication Date
JPH01146263A true JPH01146263A (en) 1989-06-08

Family

ID=17917857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62303181A Pending JPH01146263A (en) 1987-12-02 1987-12-02 Current collecting separator

Country Status (1)

Country Link
JP (1) JPH01146263A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001075996A1 (en) * 2000-03-31 2001-10-11 Kabushiki Kaisha Toshiba Solid polymer fuel cell stack and method for operating the same, and air vent valve
JP2002527862A (en) * 1998-10-07 2002-08-27 プラグ パワー インコーポレイテッド Fuel cell assembly system that promotes fluid supply and design flexibility
JP2007317518A (en) * 2006-05-26 2007-12-06 Equos Research Co Ltd Fuel cell stack
CN102292860A (en) * 2009-01-23 2011-12-21 丰田自动车株式会社 Fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002527862A (en) * 1998-10-07 2002-08-27 プラグ パワー インコーポレイテッド Fuel cell assembly system that promotes fluid supply and design flexibility
WO2001075996A1 (en) * 2000-03-31 2001-10-11 Kabushiki Kaisha Toshiba Solid polymer fuel cell stack and method for operating the same, and air vent valve
JP2007317518A (en) * 2006-05-26 2007-12-06 Equos Research Co Ltd Fuel cell stack
CN102292860A (en) * 2009-01-23 2011-12-21 丰田自动车株式会社 Fuel cell

Similar Documents

Publication Publication Date Title
JP2000113899A5 (en)
CN103053057B (en) Fuel cell
JPS5937663A (en) Fuel battery containing oxide gas and produced water separator therein
CN111146471B (en) Integrated renewable fuel cell flow field plate and cell structure thereof
CA2192871A1 (en) Molten carbonate fuel cell and power generation system including the same
JPH07263003A (en) Gas separator for solid high polymer electrolytic fuel cell
EP0975039A2 (en) Solid electrolyte fuel cell stack
KR20050010969A (en) Fuel battery
CN112331878B (en) Proton exchange membrane fuel cell
CN112786914A (en) Bipolar plate and fuel cell
EP2926400B1 (en) Back plate-electrode-membrane assembly for a redox, flow energy storage electrochemical cell
JP2004185944A (en) Solid high polymer type fuel cell
JP2003068349A (en) Fuel cell stack and reactant gas supply method
JP4062797B2 (en) Gas manifold integrated separator for solid polymer electrolyte fuel cell and solid polymer electrolyte fuel cell
JPH01146263A (en) Current collecting separator
JP3454837B2 (en) How to install a fuel cell
JP2005093244A (en) Fuel cell
CA2403143C (en) Fuel cell stack
JPS63119166A (en) Fuel battery
JP3603871B2 (en) Polymer electrolyte fuel cell
JP3780775B2 (en) Solid polymer electrolyte fuel cell
JP4498681B2 (en) Polymer electrolyte fuel cell
WO2002041435A3 (en) Cell assembly for an electrochemical energy converter and method for producing such a cell assembly
JP2003288923A (en) Fuel cell
JP2006066225A (en) Fuel cell separator