JPS6019676B2 - semiconductor light emitting device - Google Patents

semiconductor light emitting device

Info

Publication number
JPS6019676B2
JPS6019676B2 JP53149999A JP14999978A JPS6019676B2 JP S6019676 B2 JPS6019676 B2 JP S6019676B2 JP 53149999 A JP53149999 A JP 53149999A JP 14999978 A JP14999978 A JP 14999978A JP S6019676 B2 JPS6019676 B2 JP S6019676B2
Authority
JP
Japan
Prior art keywords
layer
light emitting
emitting device
semiconductor light
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53149999A
Other languages
Japanese (ja)
Other versions
JPS5577184A (en
Inventor
佳男 飯塚
恒夫 古川
誠 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP53149999A priority Critical patent/JPS6019676B2/en
Publication of JPS5577184A publication Critical patent/JPS5577184A/en
Publication of JPS6019676B2 publication Critical patent/JPS6019676B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】 この発明は半導体発光装置に関し、特にGapを材料と
した緑色発光素子の構造を改良して高効率の半導体発光
装置を得ることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor light emitting device, and in particular, an object of the present invention is to obtain a highly efficient semiconductor light emitting device by improving the structure of a green light emitting element made of GAP material.

Gapは禁制帯幅が広いため、発光中心として亜鉛、酸
素をドープして赤色の発光が得られ、窒素をドープして
緑色の発色が得られる。最近は緑色発光素子の需要が多
く、かつ高性能の緑色発光素子の要望が強くなっている
。従釆Gapを材料とした緑色発光素子の製造方法とし
ては次のようなものがある。
Since Gap has a wide forbidden band width, it can be doped with zinc and oxygen as a luminescent center to obtain red luminescence, and doped with nitrogen to produce green color. Recently, there has been a large demand for green light emitting elements, and there has been a strong demand for high performance green light emitting elements. There are the following methods for manufacturing a green light emitting device using a secondary gap as a material.

すなわちGap基板上に気相成長によって窒素をドープ
してn型成長層を作り、亜鉛拡散によってpn接合を作
る方法、Gap基板を用いて液相成長によってp層とn
層との別々に成長させてpn接合を作る方法、Gap基
板上にpn接合を一度の工程によって形成させる方法な
どがある。いずれにしても半導体発光装置としての発光
効率をあげるためには発光領域への少数キャリアの注入
率をあげ、少数キャリアの寿命をできるだけ長くし、発
光中心となる窒素原子をできるだけ多量に結晶中へ導入
することが必要である。しかし従来の方法で形成された
緑色発光素子は発光効率が前記の要望に達せず、また再
現性、量産性の点でいまだ十分と言えないものであった
。この発明はこれらの点にかんがみなされたものであっ
て、高性能にして再現性よく量産できる緑色発光素子を
用いてなる半導体発光装置を提供するものである。
That is, a method of doping nitrogen on a Gap substrate by vapor phase growth to form an n-type growth layer and creating a pn junction by zinc diffusion, and a method of forming a p-layer and an n-type growth layer by doping with nitrogen using a Gap substrate by liquid phase growth.
There are a method of forming a pn junction by growing the pn junction separately from a layer, and a method of forming a pn junction on a gap substrate in a single process. In any case, in order to increase the luminous efficiency of a semiconductor light emitting device, the injection rate of minority carriers into the light emitting region should be increased, the lifetime of the minority carriers should be made as long as possible, and as many nitrogen atoms as the luminescent center should be injected into the crystal as possible. It is necessary to introduce However, green light-emitting elements formed by conventional methods do not have luminous efficiency that meets the above-mentioned requirements, and are still unsatisfactory in terms of reproducibility and mass production. The present invention has been made in consideration of these points, and provides a semiconductor light-emitting device using a green light-emitting element that has high performance and can be mass-produced with good reproducibility.

すなわちいずれも液相成長法によってn型Gap基板上
に先ずn層を成長させ、その上に発光中心たる窒素をド
ープした第1のp層を成長させ、さらにその上に第2の
p層を成長させて緑色発光素子を得るものであって、第
1のp層を発光領域とすることを特徴とするものである
。このような素子においては、不純物のプロフアィルは
n層のドナー濃度をNo、第1および第2のp層のアク
セプタ濃度をそれぞれN^,,N^2とするとき、No
/N^,>1,N^2/N^,〉1となるように制御す
る。好ましくはN。/N^,>10にしたものがよい。
したがってキャリアの注入はn層から第1のp層へおこ
り、第1のp層が発光領域となるものである。発光効率
は発光中心濃度が一定であれば、注入効率によってさま
るので、前記ND/N^,の比は大きくされたものがよ
い。また前記の工程において用いられるn層のドナーは
シリコンであり、第1のp層および第2のp層のアクセ
プタは夫々炭素、亜鉛である。以下図面を参照してこの
発明の実施例について説明する。
That is, in both cases, an n-layer is first grown on an n-type Gap substrate by a liquid phase growth method, a first p-layer doped with nitrogen, which is a luminescent center, is grown on top of the n-layer, and a second p-layer is further grown on top of that. A green light emitting element is obtained by growing the green light emitting element, and is characterized in that the first p layer is used as a light emitting region. In such a device, the impurity profile is No, where the donor concentration of the n-layer is No, and the acceptor concentrations of the first and second p-layers are N^, , N^2, respectively.
/N^,>1, N^2/N^,>1. Preferably N. /N^, it is better to set it to >10.
Therefore, carrier injection occurs from the n layer to the first p layer, and the first p layer becomes a light emitting region. Since the luminous efficiency depends on the injection efficiency if the luminescent center concentration is constant, it is preferable that the ratio ND/N^ be large. Furthermore, the donor of the n-layer used in the above process is silicon, and the acceptors of the first p-layer and the second p-layer are carbon and zinc, respectively. Embodiments of the present invention will be described below with reference to the drawings.

第1図に示すようにボート本体1に凹部2が形成されて
いて、この凹部2の上を図の左から右へ摺鰯する溶液溜
3が前記ボート本体1上に戦遣されて液相成長装置が形
成されている。これは作業時は反応管(図示せず)中に
挿入されるものである。緑色発光素子を製作するときは
、前記凹部2に石英板4を入れ、その上にn型Cap基
板5を戦鷹する。
As shown in Fig. 1, a recess 2 is formed in the boat body 1, and a solution reservoir 3 is sent onto the boat main body 1 to slide over the recess 2 from left to right in the figure. A growth device is formed. This is inserted into a reaction tube (not shown) during operation. When manufacturing a green light emitting device, a quartz plate 4 is placed in the recess 2, and an n-type cap substrate 5 is placed on top of the quartz plate 4.

前記溶液溜3は本体はカーボンで形成され、内部は石英
6でライニングが施されていて、この中にGa溶液7が
入れられている。この装置を反応管内に入れ、雰囲気ガ
スとして水素を50そ/Hrの割合で流し、所定温度た
とえば1000℃に達したら、炉外から操作して港液溜
を基板上に摺動させ、基板上に溶液8をたとえば厚さ2
脚に均一に付け、さらに溶液溜3をボート本体1上を摺
動させて第2図に示すように基板にかからない状態にお
く。この状態で30分保持し、基板の一部を溶解させる
。次いで970℃まで徐々に冷却させて行き、石英が水
素と反応して遊離したシリコンが主要なドナーとなって
基板上にn層を成長させる。シリコンがドナ−であるの
でブロフアイルはきわめて平坦となる。n層の成長が終
了したところで、雰囲気ガスをアルゴンに切りかえて、
10夕/Hrの割合で流すと同時に、窒素をドープさせ
るためNH3ガスを0.5夕/minの割合で流すよう
にする。
The main body of the solution reservoir 3 is made of carbon, and the inside is lined with quartz 6, and a Ga solution 7 is placed therein. This device is placed in a reaction tube, and hydrogen is flowed as an atmospheric gas at a rate of 50 som/hr. When a predetermined temperature, for example 1000°C, is reached, the port liquid reservoir is slid onto the substrate by operating from outside the reactor. For example, add solution 8 to a thickness of 2
The solution is applied uniformly to the legs, and the solution reservoir 3 is slid on the boat body 1 so that it does not cover the substrate as shown in FIG. This state is maintained for 30 minutes to partially dissolve the substrate. Next, the substrate is gradually cooled to 970° C., and the n-layer is grown on the substrate, with silicon liberated by the reaction of quartz with hydrogen serving as the main donor. Since silicon is the donor, the broach is very flat. When the growth of the n-layer was completed, the atmospheric gas was changed to argon.
At the same time, NH3 gas is flowed at a rate of 0.5 evening/min to dope nitrogen.

このNH3ガスの濃度は0.5%でアルゴンでうすめて
ある。このまま6雌ふ間保持して後、再び徐々に冷却し
窒素がドープされて第1のp層を成長させる。このとき
の主要なアクセプ外ま炭素である。つまりドナーのSi
はNH3の一部と反応して窒化物となるためにドナー濃
度がN馬導入によって低下し、それまで残留アクセプタ
となっていた炭素がァクセプタとなってp層が形成され
るのである。930qoになったら再び降温を止め、6
船ふ間保持し、亜鉛の蒸気を送り、溶液を高濃度のp型
にして、再び冷却をはじめて第2のp層を成長させる。
The concentration of this NH3 gas is 0.5% and diluted with argon. After this state is maintained for 6 hours, it is gradually cooled again and nitrogen is doped to grow the first p layer. At this time, the main acceptor is carbon. In other words, donor Si
reacts with a portion of NH3 to form nitrides, so the donor concentration decreases due to the introduction of N, and carbon, which had been a residual acceptor, becomes an acceptor, forming a p-layer. When the temperature reaches 930 qo, the temperature decrease is stopped again and 6
The solution is held for a while, and zinc vapor is sent to make the solution highly concentrated p-type, and cooling is started again to grow a second p-layer.

このときの主要なアクセプタは亜鉛である。900qo
にまでなったら、アルゴンのみを流し他は止めて、室温
まで冷却し、基板をとり出す。
The main acceptor at this time is zinc. 900qo
When the temperature reaches 100, only the argon is supplied and everything else is turned off, cooled to room temperature, and the substrate is taken out.

このようにしてn層、第1および第2のp層を成長させ
た基体の一部をへき関して、へき開面を周知の方法でエ
ッチングし成長層の厚さを測定した。
A part of the substrate on which the n-layer, first and second p-layers were grown in this manner was cleaved, the cleavage plane was etched by a known method, and the thickness of the grown layer was measured.

第3図に示すようにn層は25仏、第1のp層は20#
、第2のp層は30山であり、またこれを約5“音‘こ
角度研摩して、ショットキ法により不純物濃度を測定し
た結果は第3図に示すとおりであった。第3図の縦軸は
不純物濃度をあらわし、機軸は各層の厚さ寸法を示す。
さらにこの基体にp型電極およびn型電極を形成して後
、0.3仰角のべレットにして発光効率を測定した、ベ
レット20ケの平均で0.25%(lf=2仇A)とな
り、従来の各種の方法で作られるものの0.05〜0.
1%に比で、格段に高い発光効率を示した、またばらつ
きも±20%以内と少なかった。
As shown in Figure 3, the n layer is 25# and the first p layer is 20#.
, the second p layer had 30 peaks, and the impurity concentration was measured by the Schottky method after polishing at an angle of about 5" and the results were as shown in Figure 3. The vertical axis represents the impurity concentration, and the horizontal axis represents the thickness of each layer.
Furthermore, after forming a p-type electrode and an n-type electrode on this substrate, it was made into a pellet with an elevation angle of 0.3 and the luminous efficiency was measured. The average of the 20 pellets was 0.25% (lf = 2 A). , 0.05 to 0.05 for those made by various conventional methods.
1%, it showed a much higher luminous efficiency, and the variation was small, within ±20%.

このように特性の格段の向上がはかられた。また量産性
についても、ボートを大型化して、基板をlq交戦直し
て行なったところ、発光効率は0.22〜0.35%と
高く、しかもばらつきは±30%以内であり、従釆の緑
色発光素子と比較して格段に特性の向上したものが量産
できることが分った。前記n層ならびに第1および第2
のp層の成長に用いたドナーならびにアクセプタはシリ
コンならびに炭素、亜鉛であるが、この発明の要旨に従
って、前記したように制御できれば他の元素を、すなわ
ちドナーとしていおう、テルル、セレンを用いてよいこ
と勿論である。また上記は発光中心を第1のp層のみに
添加した例であるが、SiとN&との反応によりドナー
レベルが低下し、第1のp層が生成される直前一部のn
層中に窒素が導入される場合も考えられるが、このよう
な構造においても、主要な発光領域は第1のp層であり
、この発明の趣旨に反しないことは当然である。このよ
うにこの発明のものは従来のものの不具合を除去して、
発光効率が高く再現性よくかつ量産可能な緑色発光素子
を用いてなる特性のよい半導体発光装置であって、工業
的に有用なものである。
In this way, the characteristics were significantly improved. Regarding mass production, when the boat was made larger and the board was re-coated, the luminous efficiency was as high as 0.22 to 0.35%, and the variation was within ±30%. It has been found that it is possible to mass-produce devices with significantly improved characteristics compared to light-emitting devices. the n-layer and the first and second
The donors and acceptors used in the growth of the p-layer are silicon, carbon, and zinc; however, according to the gist of the present invention, other elements, such as tellurium and selenium, may be used as donors if they can be controlled as described above. Of course. Furthermore, although the above is an example in which the luminescent center is added only to the first p-layer, the donor level decreases due to the reaction between Si and N&, and just before the first p-layer is formed, some n
Although it is conceivable that nitrogen may be introduced into the layer, even in such a structure, the main light emitting region is the first p-layer, which naturally does not contradict the spirit of the present invention. In this way, the product of this invention eliminates the defects of the conventional product, and
The present invention is a semiconductor light emitting device with good characteristics that uses a green light emitting element that has high luminous efficiency, good reproducibility, and can be mass produced, and is industrially useful.

【図面の簡単な説明】 第1図と第2図はこの発明のGap基板を用いて緑色発
光素子を形成するときの昇温時と降温時との状態を示す
断面図、第3図はこの発明の発光素子の各層の不純物濃
度を示す曲線図である。 1・・・・・・ボート本体、2・・・・・・ボート本体
の凹部、3・・・・・・溶液溜、5・・・・・・Gap
基板、6・・・・・・溶液溜の石英管、7・・・・・・
溶液、8・・・・・・基板上の溶液。 籍1図第2図 纂8四
[Brief Description of the Drawings] Figures 1 and 2 are cross-sectional views showing the state when the temperature is rising and when the temperature is falling when forming a green light-emitting element using the Gap substrate of the present invention. FIG. 3 is a curve diagram showing the impurity concentration of each layer of the light emitting device of the invention. 1...Boat body, 2...Concave part of boat body, 3...Solution reservoir, 5...Gap
Substrate, 6...Quartz tube for solution reservoir, 7...
Solution, 8... Solution on the substrate. Book 1 Figure 2 Collection 84

Claims (1)

【特許請求の範囲】 1 n型GaP基板上に発光中心を添加せずに成長され
、厚さ方向に均一なドナー濃度分布を有するn層と、こ
のn層に隣接して炭素をドープしながら成長され、厚さ
方向に均一なアクセプタ濃度分布を有し発光中心が添加
された第1のp層と、この第1のp層上に成長され、厚
さ方向に均一なアクセプタ濃度分布を有する第2のp層
とを具備し、n層のドナー濃度をN_D、第1のp層の
アクセプタ濃度をN_A_1、第2のp層のアクセプタ
濃度をN_A_2としたとき、N_D/N_A_1>1
、N_A_2/N_A_1>1となるように制御された
階段状不純物濃度分布を有するこを特徴とする半導体発
光装置。 2 n層のドナーはシリコンであることを特徴とする特
許請求の範囲第1項記載の半導体発光装置。
[Claims] 1. An n-layer grown without adding a luminescent center on an n-type GaP substrate and having a uniform donor concentration distribution in the thickness direction; a first p-layer grown and having a uniform acceptor concentration distribution in the thickness direction and doped with a luminescent center; and a first p-layer grown on the first p-layer and having a uniform acceptor concentration distribution in the thickness direction. and a second p layer, and when the donor concentration of the n layer is N_D, the acceptor concentration of the first p layer is N_A_1, and the acceptor concentration of the second p layer is N_A_2, N_D/N_A_1>1
, N_A_2/N_A_1>1. 2. The semiconductor light emitting device according to claim 1, wherein the donor of the n-layer is silicon.
JP53149999A 1978-12-06 1978-12-06 semiconductor light emitting device Expired JPS6019676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53149999A JPS6019676B2 (en) 1978-12-06 1978-12-06 semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53149999A JPS6019676B2 (en) 1978-12-06 1978-12-06 semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPS5577184A JPS5577184A (en) 1980-06-10
JPS6019676B2 true JPS6019676B2 (en) 1985-05-17

Family

ID=15487246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53149999A Expired JPS6019676B2 (en) 1978-12-06 1978-12-06 semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPS6019676B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4946247B2 (en) * 2006-08-04 2012-06-06 信越半導体株式会社 Epitaxial substrate and liquid phase epitaxial growth method

Also Published As

Publication number Publication date
JPS5577184A (en) 1980-06-10

Similar Documents

Publication Publication Date Title
JPS6057214B2 (en) Method of manufacturing electroluminescent materials
JPH0770755B2 (en) High brightness LED epitaxial substrate and method of manufacturing the same
US3931631A (en) Gallium phosphide light-emitting diodes
US4001056A (en) Epitaxial deposition of iii-v compounds containing isoelectronic impurities
US4252576A (en) Epitaxial wafer for use in production of light emitting diode
JP3143040B2 (en) Epitaxial wafer and method for manufacturing the same
EP0685892A2 (en) Method for producing light-emitting diode
JPS6019676B2 (en) semiconductor light emitting device
JP3625686B2 (en) Compound semiconductor epitaxial wafer, method for manufacturing the same, and light emitting diode manufactured using the same
JPS6350851B2 (en)
JP3104218B2 (en) Method for growing nitrogen-doped GaP epitaxial layer
JP3633806B2 (en) Epitaxial wafer and light-emitting diode manufactured using the same
JPH0463040B2 (en)
JPH08335555A (en) Fabrication of epitaxial wafer
JPS58115818A (en) Growing method of silicon carbide epitaxial film
JPH04328878A (en) Manufacture of light emitting diode epitaxial wafer
JPS606552B2 (en) Gallium phosphide green light emitting device
JPS584833B2 (en) Method for manufacturing G↓aA↓s light emitting diode
JP2001036137A (en) Epitaxial wafer and light emitting diode
JP2009212112A (en) Epitaxial wafer
JPH04328823A (en) Manufacture of epitaxial wafer for light emitting diode
JPS5935193B2 (en) light emitting element
USRE29648E (en) Process for the preparation of electroluminescent III-V materials containing isoelectronic impurities
JPS5929416A (en) Manufacture of semiconductor device
JPS6019155B2 (en) Manufacturing method of semiconductor issuing device