JPS60195528A - Waveguide type optical switch - Google Patents
Waveguide type optical switchInfo
- Publication number
- JPS60195528A JPS60195528A JP5111984A JP5111984A JPS60195528A JP S60195528 A JPS60195528 A JP S60195528A JP 5111984 A JP5111984 A JP 5111984A JP 5111984 A JP5111984 A JP 5111984A JP S60195528 A JPS60195528 A JP S60195528A
- Authority
- JP
- Japan
- Prior art keywords
- waveguide
- polarization control
- light
- polarization
- mode light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/31—Digital deflection, i.e. optical switching
- G02F1/313—Digital deflection, i.e. optical switching in an optical waveguide structure
- G02F1/3137—Digital deflection, i.e. optical switching in an optical waveguide structure with intersecting or branching waveguides, e.g. X-switches and Y-junctions
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔技術分野〕
本発明は、導波路中を進む光の方向を電気的に偏向する
導波路形光スイッチに関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a waveguide optical switch that electrically deflects the direction of light traveling through a waveguide.
従来、この種の光スィッチは導波光の偏光の方向により
スイッチ特性が異ってしまうと言う欠点があった。そこ
で、この欠点を解決するために、非対称分岐を用いた光
スィッチや、電極形状に工夫を加えたΔβカプラスイッ
チ等が考えられた。Conventionally, this type of optical switch has had the drawback that the switching characteristics vary depending on the direction of polarization of the guided light. In order to solve this drawback, optical switches using asymmetric branching and Δβ coupler switches with modified electrode shapes were devised.
しかし寿から、このような光スィッチは、前者において
は動作電圧が高いと共に消光比が低いと言う欠点があり
、また後者においては、スイッチ各部に高い寸法精度を
必要とするため製作性がよくないと言う欠点がちる。However, Kotobuki has learned that such optical switches have the drawbacks of high operating voltage and low extinction ratio in the former case, and poor manufacturability as the latter requires high dimensional accuracy for each part of the switch. There are many drawbacks.
本発明は、前記した諸欠点を解決するためになされたも
のであり、その目的は、偏光依存性がないと共に製作性
のよい導波路形光スイッチを比較的低電圧で動作できる
ようにすることにある。The present invention has been made in order to solve the above-mentioned drawbacks, and its purpose is to provide a waveguide type optical switch that has no polarization dependence and is easy to manufacture and can be operated at a relatively low voltage. It is in.
前記した目的を達成するため、本発明は、緩やかな寸法
精度で製作できると共に消光比が高いと言う利点を有す
るバイポーラ型光スイッチにTE偏光制御用電極を取付
けることによシ、従来のバイポーラ型光スイッチの利点
を生かしつつ、欠点である偏光依存性をなくしたことを
特徴とする。In order to achieve the above-mentioned object, the present invention provides a bipolar optical switch that can be manufactured with moderate dimensional accuracy and has the advantage of having a high extinction ratio. It is characterized by eliminating the polarization dependence, which is a drawback, while taking advantage of the advantages of an optical switch.
以下、本発明の一実施例を第1図、第2図(A)。 An embodiment of the present invention is shown in FIGS. 1 and 2 (A) below.
(B)及び第3図に基づいて説明する。This will be explained based on (B) and FIG.
第1図において、1,2は光の入力導波路、3は前記入
力導波1,2の入力分岐部、4,5は前記入力導波路1
,2と対称的に配置した光の出力導波路、6は前記出力
導波路4,5の出力分岐部、7.8は前記入力分岐部3
と出力分岐部6との間にそれぞれ隣接配置したTE偏光
制御導波路とTM偏光制御導波路、9,10は前記TE
偏光制御導波路7に取付けたTE光を制御するTE偏光
制御用電極、11,12.13は前記TM偏光制御導波
路8に取付けた7M光を制御するTM偏光制御用電極で
ある。In FIG. 1, 1 and 2 are optical input waveguides, 3 is an input branch of the input waveguides 1 and 2, and 4 and 5 are the input waveguides 1.
, 2 are optical output waveguides arranged symmetrically with the output waveguides 4 and 5, 6 is the output branch of the output waveguides 4 and 5, and 7.8 is the input branch 3.
A TE polarization control waveguide and a TM polarization control waveguide are respectively arranged adjacently between the TE and the output branching section 6;
TE polarization control electrodes 11, 12, and 13 are attached to the polarization control waveguide 7 to control the TE light, and TM polarization control electrodes 11, 12, and 13 are attached to the TM polarization control waveguide 8 to control the 7M light.
尚、この種の光スィッチは、通常電気光学効果の大き々
LiNbO3のZ cut基板にTiを拡散して導波路
を形成した構成であり、本発明による導波路形光スイッ
チもこの構成で、Y分岐を背中合せに着けて0ギヤツブ
方向性績合器の形に形成し、その2つの入力導波路と出
力導波路との間にTE偏光制御導波路とTM偏光制御導
波路とを隣接配置しである。また、光はX伝播とする。This type of optical switch usually has a structure in which a waveguide is formed by diffusing Ti into a Z-cut substrate of LiNbO3, which has a large electro-optic effect, and the waveguide-type optical switch according to the present invention also has a structure in which a waveguide is formed by diffusing Ti into a Z-cut substrate of LiNbO3, which has a large electro-optic effect. The branches are attached back to back to form a 0-gear directional combiner, and a TE polarization control waveguide and a TM polarization control waveguide are arranged adjacently between the two input waveguides and the output waveguide. be. Furthermore, the light is assumed to be X-propagated.
第2図(A) 、 (B)において、同図は導波路形ス
イッチの動作原理を示し、14は入力光で、その電場強
度分布を示す。15,16.17は0次モード光で、そ
の電場強度分布を示す。18,19.20は1次モード
光で、その電場強度分布を示す。21゜22は出力光で
、その電場強度分布を示す。2(A) and 2(B), the same figure shows the operating principle of a waveguide type switch, 14 is input light, and its electric field intensity distribution is shown. 15, 16, and 17 are zero-order mode lights, and their electric field intensity distributions are shown. 18, 19, and 20 are first-order mode lights, and their electric field intensity distributions are shown. Reference numerals 21 and 22 indicate output light and its electric field intensity distribution.
次に、前記構成の作用を説明すると、先ず入力導波路1
に入射した光は、入力分岐部3で0次モード光15と−
1・次モード光18とに分離する。この2つの0次モー
ド光15と1次モード光18間の位相差は光の伝播と共
に変化し、出方分岐部6において0次モード光15と1
次モード光18との位相差が同位相かまたはπだけ位相
差がある場合、光はそれぞれ出力導波路4,5に選択的
に出射する。Next, to explain the operation of the above configuration, first, the input waveguide 1
The incident light is split into the 0th-order mode light 15 and - at the input branching section 3.
The light is separated into first-order mode light 18. The phase difference between the two zero-order mode lights 15 and the first-order mode light 18 changes with the propagation of the light, and at the output branching section 6, the zero-order mode light 15 and the first-order mode light 18 change.
When the phase difference with the next mode light 18 is the same phase or there is a phase difference of π, the light is selectively emitted to the output waveguides 4 and 5, respectively.
ここで、0次モード光15と1次モード光18の位相定
数差は、第1図に示したTE偏光制御用電極9,10及
びTM偏光制御用電極11 、12゜13に電圧を印加
することにより、電気光学効果でTE偏光制御導波路7
及びTM偏光制御導波路8の屈折率を変化して制御する
ことができる。ところで、前記電気光学効果の大きさは
偏光により異なると共に印、加する電場の方向によって
も異なるため、任意の偏光に対して同一のスイッチ特性
を得るには、本発明に係る導波路形光スイッチの如(T
EとTMとを別々に制御する構成が必要となる。Here, the phase constant difference between the 0th-order mode light 15 and the 1st-order mode light 18 is determined by applying a voltage to the TE polarization control electrodes 9 and 10 and the TM polarization control electrodes 11 and 12° 13 shown in FIG. By this, the TE polarization control waveguide 7 is
and can be controlled by changing the refractive index of the TM polarization control waveguide 8. By the way, since the magnitude of the electro-optic effect differs depending on the polarization and also depends on the direction of the applied electric field, in order to obtain the same switching characteristics for arbitrary polarization, it is necessary to use the waveguide type optical switch according to the present invention. Like (T
A configuration is required to control E and TM separately.
そこで、TEとTMとの偏光をどのように制御するかを
下記する式によシ説明すると、第1図において、TE偏
光制御導波路7及びTM偏光制御導波路8に電場を印加
しない場合、入力導波路1に入射した光の出力分岐部6
での0次モード光と1次モード光との位相差をTEがψ
0及びTMがψeとすれば、光が出力導波器4,5に選
択的に出射する条件は次式で表わせる。Therefore, how to control the polarization of TE and TM will be explained using the following formula. In FIG. 1, when no electric field is applied to the TE polarization control waveguide 7 and the TM polarization control waveguide 8, Output branch section 6 for the light incident on the input waveguide 1
TE is the phase difference between the 0th mode light and the 1st mode light at ψ
If 0 and TM are ψe, the conditions for selectively emitting light to the output waveguides 4 and 5 can be expressed by the following equation.
出力導波路4に光が出射する条件
出力導波路5に光が出射する条件
したδK。、δKIll+δKo′ 及びδに′、は、
TE偏光制御用電極9,10及びTM偏光制御用電極1
1゜12.13に電圧を印加することにより変化したT
E及びTMq湘 差であり、次式により与えられる。Conditions for light to be emitted to the output waveguide 4 Conditions for light to be emitted to the output waveguide 5 δK. , δKIll+δKo′ and δ′, are
TE polarization control electrodes 9 and 10 and TM polarization control electrode 1
T changed by applying voltage to 1°12.13
E and TMqxiang are the differences and are given by the following equation.
尚、上記したδKoG 及びδKo6’は、TE偏光制
御用電極9,10に電圧を印加して生ずる電場E6゜E
6′によるTEの0次モード光と1次モード光の位相定
数差の変化を示し、また上記したδKo7及びδK。7
′は、TM偏光制御用電極11 、12.13に電圧を
印加して生ずる電場ET + E?’によるTF200
次モード光と1次モード光の位相定数差の変化を示し、
更に上記したδに8う及びδK e3 Lは、TM偏光
制御用電極11,12.13に電圧を印加して生ずる電
場E7 、 E7’によるTMの0次モード光と1次モ
ード光の位相定数差の変化を示す。また、L2及びL5
はそれぞれTE偏光制御導波路7と7M偏光制御導波路
8の長さを示す。Note that the above-mentioned δKoG and δKo6' are the electric field E6°E generated by applying a voltage to the TE polarization control electrodes 9 and 10.
6' shows the change in the phase constant difference between the 0-order mode light and the 1st-order mode light of TE, and also the above-mentioned δKo7 and δK. 7
' is an electric field ET + E? generated by applying a voltage to the TM polarization control electrodes 11 and 12.13. TF200 by '
Indicates the change in the phase constant difference between the next mode light and the first mode light,
Furthermore, δ above and δK e3 L are the phase constants of the 0th-order mode light and the 1st-order mode light of the TM due to the electric fields E7 and E7' generated by applying a voltage to the TM polarization control electrodes 11, 12, and 13. Indicates a change in difference. Also, L2 and L5
indicate the lengths of the TE polarization control waveguide 7 and the 7M polarization control waveguide 8, respectively.
従って、前記した(a)〜(h)式よりスイッチング動
作に必要な電圧をめることができる。Therefore, the voltage required for the switching operation can be calculated from the above-mentioned equations (a) to (h).
例えば、LiNbO3の−Z根板上導波路形光スイッチ
を作成した場合について考えてみると、この場合、TE
偏光制御用電極9,1oは、互に反対の極性を与えてY
方向の電場EG t E6’を生じ、また7M偏光制御
用電極11,12.13は、TM偏光制御電極12と7
M偏光制御用電極11,13との間に反対の極性を与え
てZ方向の電場E7+E7’を生ずる0ここで〜 δに
06.δに06’ +δに07.δKo7’+δKa7
及びδKe 7”は、結晶の電気光学係数riTを用
いて表わすと次のようになる。For example, if we consider the case of creating a LiNbO3 -Z root plate waveguide type optical switch, in this case, the TE
The polarization control electrodes 9 and 1o provide opposite polarities to Y.
The 7M polarization control electrodes 11, 12.13 generate an electric field EG t E6' in the direction of the TM polarization control electrodes 12 and 7.
Provide opposite polarity between the M polarization control electrodes 11 and 13 to generate an electric field E7+E7' in the Z direction. 06' to δ + 07 to δ. δKo7'+δKa7
and δKe 7'' are expressed as follows using the electro-optic coefficient riT of the crystal.
δKo6二δKoor22E6 −−(t、1)δに0
7:δKoorF5E6 −−(t−2)δに8.2δ
Keor9.E7・・・・・・(6,3)δKo&’=
δKoOr22E6’ ・=−・・(to4)δKo?
”””δKoOr115E6’ 萌” (t、5)δK
ey””δKaor>>E7’ 叫−・(t、6)ここ
で、第3図は、δKo6.δに07+δK。6.δに0
6’1δに07′及びδKe□/をCt、 l)弐〜(
t、6)式で表わしたときの(a)弐〜(h)式をグラ
フにした実施例の説明図で、TEとTMが同時にスイッ
チするときの電場E6+ E7 ”*たは電場”’6’
+ E7’の条件は、(−)式と(b)式または(c
)式と(d)式が同時に成立っときであシ、これはこの
2本の直線を示す(a)式と(b)式または(c)式と
(d)式の交点で表わされる。この交点の座標値EY
* EZがそれぞれE61 E7 fたJ”l: E6
’ 、 E7’の値となる。δKo62 δKoor22E6 --(t, 1) 0 for δ
7: δKoorF5E6 --(t-2) 8.2 δ in δ
Keor9. E7...(6,3)δKo&'=
δKoOr22E6' ・=-...(to4) δKo?
"""δKoOr115E6'Moe" (t, 5) δK
ey""δKaor>>E7' (t, 6) Here, FIG. 3 shows δKo6. 07+δK for δ. 6. 0 for δ
Ct 07' and δKe□/ to 6'1δ, l) 2~(
This is an explanatory diagram of an example in which equations (a) to (h) are graphed when expressed by equations (t, 6), and the electric field E6+E7 ``*or electric field'''6 when TE and TM switch simultaneously. '
The conditions for +E7' are (-) and (b) or (c
) and (d) hold true at the same time, and this is represented by the intersection of these two straight lines, either (a) and (b) or (c) and (d). The coordinate value EY of this intersection
*EZ is E61, E7 and J”l: E6
' , becomes the value of E7'.
一方、第1図において、TE偏光制御導波路7及び7M
偏光制御導波路8に電場を印加しない場合、入力導波路
2により入光した光の出力分岐路6での0次モード光と
1次モード光との位相差をであるから、出力導波路5に
光が出射する条件は、また、出力導波器4に光が出射す
る条件は、となる。On the other hand, in FIG. 1, the TE polarization control waveguides 7 and 7M
When no electric field is applied to the polarization control waveguide 8, the phase difference between the 0th mode light and the 1st mode light at the output branch path 6 of the light incident through the input waveguide 2 is The conditions for light to be emitted to the output waveguide 4 and the conditions for light to be emitted to the output waveguide 4 are as follows.
従って、(a)弐〜(d)式及び(、)式〜(r)式に
基づいてTE偏光制御導波路7にTE偏光制御用電極9
゜10で電場E6をかけ、更に7M偏光制御導波路8に
7M偏光制御用電極11,12,13で電場E7をかけ
た場合、光は入力導波路1→出力導波路4、入力導波路
2→出力導波路5の如く進む。Therefore, based on formulas (a)2 to (d) and formulas (,) to (r), the TE polarization control electrode 9 is connected to the TE polarization control waveguide 7.
When an electric field E6 is applied at 10 °C and an electric field E7 is applied to the 7M polarization control waveguide 8 at the 7M polarization control electrodes 11, 12, and 13, the light flows from input waveguide 1 to output waveguide 4 to input waveguide 2. → Proceeds like the output waveguide 5.
また、TE偏光制御導波路7にTE偏光制御用電極9,
10で電場E 6/をかけ、更に7M偏光制御導波路8
に7M偏光制御用電極11,12,13で%’、場E7
’をかけた場合、光は入力導波路1→出力導波路5、入
力導波路2→出力導波路4の如く進み、このようにして
導波路形光スイッチを作動することができる。Furthermore, the TE polarization control waveguide 7 is provided with a TE polarization control electrode 9,
10, an electric field E 6/ is applied, and a 7M polarization control waveguide 8 is applied.
%' at 7M polarization control electrodes 11, 12, and 13, field E7
', the light travels from the input waveguide 1 to the output waveguide 5 and from the input waveguide 2 to the output waveguide 4, and in this way the waveguide type optical switch can be operated.
尚、上記したTE偏光制御用電極9,10の幅は、TE
偏光制御導波路7の幅の1/4より小さい寸法にし力け
ればならない。即ち、これはTE偏光導波路Tの側面の
屈折率変化によシ導波光の伝播定数が変化するのを防ぐ
ために行う。Note that the width of the TE polarization control electrodes 9 and 10 described above is TE
The size must be smaller than 1/4 of the width of the polarization control waveguide 7. That is, this is done in order to prevent the propagation constant of the guided light from changing due to a change in the refractive index of the side surface of the TE polarization waveguide T.
上記した如く、本発明に係る導波路形光スイッチによれ
ば、Y分岐を背中合せに着けてOギャップ方向性結合器
の形に形成し、その入力分岐路と出力分岐路との間にT
E偏光制御導波路とTM偏光制御導波路とを設け、前記
TE偏光制御導波路にTE光を制御するTE偏光制御用
電極を取付けると共に、前記TM偏光制御導波路にTM
光を制御するTM偏光制御用電極を取付けることによっ
て、TE偏光制御用電極及びTM偏光制御用電極を介し
て光のスイッチング動作を容易に行うことができるため
、以下に示す有意砂な効果を発輝する。As described above, according to the waveguide type optical switch according to the present invention, Y branches are attached back to back to form an O-gap directional coupler, and a T is formed between the input branch and the output branch.
An E polarization control waveguide and a TM polarization control waveguide are provided, a TE polarization control electrode for controlling TE light is attached to the TE polarization control waveguide, and a TM polarization control waveguide is provided to the TM polarization control waveguide.
By attaching the TM polarization control electrode that controls light, the light switching operation can be easily performed via the TE polarization control electrode and the TM polarization control electrode, which produces the significant effects shown below. Shine.
即ち、偏光依存性をなくすことができるために、例えば
TE及びTM酸成分同じ強度有する導波光のスイッチン
グ動作に際して消光比を理論上8dB程度改善すること
ができるため、機能性の向上をはたすことかでき、更に
TE偏光制御導波路及びTM偏光制御導波路の長さを調
整するだけで、従来の非対称X分岐を用いた光スィッチ
では難しかった動作電圧の低下を容易にはたすことかで
きる効果がある。That is, since the polarization dependence can be eliminated, the extinction ratio can theoretically be improved by about 8 dB during the switching operation of guided light having the same intensity of TE and TM acid components, which can improve functionality. Furthermore, by simply adjusting the lengths of the TE polarization control waveguide and the TM polarization control waveguide, it is possible to easily reduce the operating voltage, which was difficult with conventional optical switches using asymmetric X-branches. .
また、動作電圧の低下が容易な非対称分岐を用いた干渉
型の光スィッチと比べても消光比が最低となシ、実験的
にも4dB改善できると共に単純な構成となり、Δβカ
ゾラスイッチを改良した光スィッチと比べても構成が単
純となって高い寸法精度を必要としなくなる効果がある
。In addition, the extinction ratio is the lowest compared to interference-type optical switches that use asymmetric branching, which can easily lower the operating voltage, and it can be experimentally improved by 4 dB and has a simple configuration. Compared to a switch, it has a simpler configuration and does not require high dimensional accuracy.
第1図は本発明の一実施例を示す構成図、第2図囚、(
B)は動作原理の説明図、第3図は実施例におけるスイ
ッチング動作する際の電場の説明図である。
3・・・入力分岐路 6・・・出力分岐路 7・・・T
E偏光制御導波路 8・・・TM偏光制御導波路 9,
10・・・’l偏光制御用電極 11,12.13・・
・TM偏光制御用電極
特許出願人 沖電気工業株式会社
代理人弁理士 金 倉 n 二
角IC1ll
嚢20
(A) (B)
@3−
手続補正書(自発)
昭和59年9月12日
特許庁長官 志 賀 学 殿
1、事件の表示
昭和59年特許願 第051119号
2、発明の名称 導波路形光スイッチ
3、補正をする者
事件との関係 特許出願人
住 所 東京都港区虎ノ門1丁目7番12号名 称 (
029)沖電気工業株式会社代表者 橋 本 南海男
4、代 理 人
5、補正命令の日付 自発
補正の内容
1 明細書第6頁第9行から第9頁第20行1でを下記
の如く補正する。
尚、上記したδKo7及びδKo7’は、TEE光制御
用電極9.10に電圧を印加して生ずる電場E7.E7
’によるTEの0次モード光と1次モード光の位相定数
差の変化を示し、また上記したδKo3及びδKo8’
は、TM 偏光制御用電極11゜12.13に電圧を印
加して生ずる電場E8 + E8’によるTEの0次モ
ード光と1次モード光の位相定数差の変化を示し、更に
上記したδKeB及びδKeB’は、1M偏光制御用電
極11,12.13に電圧を印加して生ずる電場E8.
E〆によるTMの0次モード光と1次モード光の位相定
数差の変化を示す。また、L2及びり、はそれぞれTE
偏偏光制御導波路色TM偏光制御導波路8の長さを示す
。
従って、前記した(、)〜(h)式よりスイッチング動
作に必要な電圧をめることができる。
例えば、LiNbO3の一2板上に導波路形光スイッチ
を作成した場合について考えてみると、この場合、TE
E光制御用電極9,10は、互に反対の極性を与えてY
方向の電場E7.E7’を生じ、また1M偏光制御用電
極11.12.13は、1M偏光制御電極12と1M偏
光制御用電極11.13との間に反対の極性を与えて2
方向の電場E8+胸′を生ずる。ここで、δKo7.δ
Ko7’。
δKog、δKoB’、δKe8及びδKaB’は、結
晶の電気光学係数J7を用いて表わすと次のようになる
。
δに07=δKoor22E7 ・・・・・・(ム1)
δKo8°δに00r13E5 ・== (t、2)δ
KeB°δKeor55E8 ”””(ム3)δKo7
’=δKoor22E7’ −==・(z+4)δに0
8′。δKoor15Eg’ ・、、、(t、5)δK
eB’=δKeOr55E8’ (t、6)ここで、第
3図は、δに07.δKo8.δKeg。
δKo7’ 、δに08′及びδKe B’を(2,1
)弐〜(Z、6)式で表わしたときの(、)弐〜(h)
式をグラフにした実施例の説明図で、TEとTMが同時
にスイッチするときの電場”7 + E8または電場E
7′、E8′の条件は、(a)式と(b)式または(c
)式と(d)式が同時に成立つときであり、これはこの
2本の直線を示す(、)式と(b)式または(c)式と
(d)式の交点で表わされる。この交点の座標値EYJ
ZがそれぞれE7゜E8 またはE7’14’の値とな
る。
一方、第1図において、TEE光制御導波路7及びTM
偏光制御導波路8に電場を印加しない場合、入力導波路
2により入光した光の出力分岐路6での0次モード光と
1次モード光との位であるから、出力導波路5に光が出
射する条件は、
また、出力導波器4に光が出射する条件は、となる。
従って、(a)弐〜(d)式及び(0)弐〜(r)式に
基づいてTE偏光制御導波路7KTE偏光制御用電極9
.10で電場E7をかけ、更にTM偏光制御導波路8に
TM偏光制御用電極11,12.13で電場E8をかけ
た場合、光は入力導波路1→也力導波路4、入力導波路
2→出力導波路5の如く−進む。
壕だ、TE偏光制御導波路7KTE偏光制御用電極9,
10で電場E7’をかけ、更にTM偏光制御導波路8に
TM偏光制御用電極11,12゜13で電場E8′をか
けた場合、光は入力導波路1→出力導波路5、入力導波
路2→出力導波路4の如く進み、このようにして導波路
形光スイッチを作動することができる。」
2 明細書第11頁第9行〜第10行に、「最低となり
、」とあるのを「高くなり、」と補正す3 第3図を添
付図面の如く補正する。FIG. 1 is a configuration diagram showing an embodiment of the present invention, FIG.
B) is an explanatory diagram of the operating principle, and FIG. 3 is an explanatory diagram of the electric field during switching operation in the embodiment. 3...Input branch path 6...Output branch path 7...T
E polarization control waveguide 8...TM polarization control waveguide 9,
10...'l Polarization control electrode 11, 12.13...
・TM polarization control electrode patent applicant: Oki Electric Industry Co., Ltd. Representative Patent Attorney Kanakura n Bigonal IC 1ll Capacity 20 (A) (B) @3- Procedural amendment (voluntary) September 12, 1980 Patent Office Director Manabu Shiga1, Indication of the case 1982 Patent Application No. 0511192, Title of the invention Waveguide type optical switch 3, Relationship to the amended person case Patent applicant address 1-chome Toranomon, Minato-ku, Tokyo No. 7 No. 12 Name (
029) Oki Electric Industry Co., Ltd. Representative Nankai Hashimoto 4, Agent 5, Date of amendment order Contents of voluntary amendment 1 From page 6, line 9 of the specification to page 9, line 20, 1 are as follows: to correct. Note that δKo7 and δKo7' described above are caused by the electric field E7. which is generated by applying a voltage to the TEE light control electrode 9.10. E7
' shows the change in the phase constant difference between the 0-order mode light and the 1st-order mode light of TE, and also the above-mentioned δKo3 and δKo8'
shows the change in the phase constant difference between the 0th-order mode light and the 1st-order mode light of TE due to the electric field E8 + E8' generated by applying a voltage to the TM polarization control electrode 11°12.13, and also the above-mentioned δKeB and δKeB' is the electric field E8. which is generated by applying a voltage to the 1M polarization control electrodes 11, 12.13.
It shows the change in the phase constant difference between the 0th-order mode light and the 1st-order mode light of TM due to E〆. Also, L2 and RI are each TE
Polarization control waveguide color TM The length of the polarization control waveguide 8 is shown. Therefore, the voltage required for the switching operation can be calculated from the above-mentioned equations (,) to (h). For example, if we consider the case where a waveguide type optical switch is fabricated on one or two LiNbO3 plates, in this case, the TE
The E light control electrodes 9 and 10 are given opposite polarities to Y.
Electric field in direction E7. E7', and the 1M polarization control electrode 11.12.13 provides opposite polarity between the 1M polarization control electrode 12 and the 1M polarization control electrode 11.13.
This produces an electric field in the direction E8+chest'. Here, δKo7. δ
Ko7'. δKog, δKoB', δKe8, and δKaB' are expressed as follows using the electro-optic coefficient J7 of the crystal. 07 to δ = δKoor22E7 ・・・・・・(Mu1)
δKo8°δ00r13E5 ・== (t, 2) δ
KeB°δKeor55E8 “”” (Mu3)δKo7
'=δKoor22E7' -==・(z+4) 0 for δ
8′. δKoor15Eg' ・,, (t, 5) δK
eB'=δKeOr55E8' (t, 6) Here, FIG. 3 shows that δ is 07. δKo8. δKeg. δKo7', 08' and δKe B' to δ(2,1
)2~(Z,6) When expressed by the formula (,)2~(h)
This is an explanatory diagram of an example in which the formula is graphed, and the electric field "7 + E8 or electric field E when TE and TM switch simultaneously.
The conditions for 7' and E8' are formulas (a) and (b) or (c
) and (d) are simultaneously established, and this is expressed by the intersection of these two straight lines, (,) and (b), or (c) and (d). The coordinate value of this intersection EYJ
Z has a value of E7°E8 or E7'14', respectively. On the other hand, in FIG. 1, the TEE optical control waveguide 7 and the TM
When no electric field is applied to the polarization control waveguide 8, the light entering the input waveguide 2 is at the same level as the 0th mode light and the 1st mode light at the output branch path 6, The conditions for the light to be emitted are as follows.The conditions for the light to be emitted to the output waveguide 4 are as follows. Therefore, based on formulas (a)2 to (d) and formulas (0)2 to (r), the TE polarization control waveguide 7KTE polarization control electrode 9
.. When an electric field E7 is applied to the TM polarization control waveguide 8 and an electric field E8 is applied to the TM polarization control waveguide 8 at the TM polarization control electrodes 11, 12. → Proceed like the output waveguide 5. It's a moat, TE polarization control waveguide 7KTE polarization control electrode 9,
When an electric field E7' is applied to the TM polarization control waveguide 8 at 10, and an electric field E8' is applied to the TM polarization control waveguide 8 at the TM polarization control electrodes 11, 12 and 13, the light flows from the input waveguide 1 to the output waveguide 5 to the input waveguide. 2→output waveguide 4, and in this way the waveguide type optical switch can be operated. 2. On page 11 of the specification, lines 9 and 10, the phrase "becomes the lowest," is amended to "becomes higher." 3. Figure 3 is amended as shown in the attached drawing.
Claims (1)
の形に形成し、その入力分岐部と出力分岐路との間にT
E偏光制御導波路と7M偏光制御導波路とを設け、前記
TE偏光制御導波路にTE光を制御するTE偏光制御用
電極を取付けると共に、前記7M偏光制御導波路にTM
偏光制御用電極を取付けたことを特徴とする導波路形光
スイッチ。The I and Y branches are attached back to back to form a 0 gear directional combiner, and a T is connected between the input branch and the output branch.
An E polarization control waveguide and a 7M polarization control waveguide are provided, a TE polarization control electrode for controlling TE light is attached to the TE polarization control waveguide, and a TM polarization control waveguide is provided to the 7M polarization control waveguide.
A waveguide optical switch characterized by having a polarization control electrode attached.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5111984A JPS60195528A (en) | 1984-03-19 | 1984-03-19 | Waveguide type optical switch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5111984A JPS60195528A (en) | 1984-03-19 | 1984-03-19 | Waveguide type optical switch |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60195528A true JPS60195528A (en) | 1985-10-04 |
Family
ID=12877916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5111984A Pending JPS60195528A (en) | 1984-03-19 | 1984-03-19 | Waveguide type optical switch |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60195528A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62133428A (en) * | 1985-12-05 | 1987-06-16 | Nippon Telegr & Teleph Corp <Ntt> | Optical switch |
JPH05210013A (en) * | 1991-07-11 | 1993-08-20 | Koninkl Ptt Nederland Nv | Polarization filter |
-
1984
- 1984-03-19 JP JP5111984A patent/JPS60195528A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62133428A (en) * | 1985-12-05 | 1987-06-16 | Nippon Telegr & Teleph Corp <Ntt> | Optical switch |
JPH05210013A (en) * | 1991-07-11 | 1993-08-20 | Koninkl Ptt Nederland Nv | Polarization filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR860002027A (en) | Electrically Switched Fiber Optic Directional Couplers | |
EP0105693B1 (en) | Bipolar voltage controlled optical switch using intersecting waveguide | |
JPS60195528A (en) | Waveguide type optical switch | |
JPS57161837A (en) | Optical switching method | |
DE3322508A1 (en) | Optical single-mode strip waveguide junction | |
JPS57158616A (en) | Optical coupler | |
JPS6034094B2 (en) | electro-optic modulator | |
JP2812974B2 (en) | Polarization independent optical switch | |
JPS6123529B2 (en) | ||
JP3236426B2 (en) | Optical coupler | |
JPS5993430A (en) | Optical circuit element | |
WO2016158283A1 (en) | Light modulator | |
JPH01246529A (en) | Waveguide type optical switch | |
JPH05346560A (en) | Optical modulator | |
JPS61160703A (en) | Te-tm mode splitter | |
JP3018621B2 (en) | Waveguide type light controller | |
JPS6187137A (en) | Waveguide type optical switch | |
JPS60217346A (en) | Optical switch of waveguide type | |
JP2659786B2 (en) | Mode light separator | |
Belanger et al. | A novel Ti: LiNbO 3 ridge waveguide linear mode confinement modulator fabricated by reactive ion-beam etching | |
JPS60202430A (en) | Light and circuit | |
JPH0713685B2 (en) | Crossed-waveguide optical switch | |
JPS60260925A (en) | Optical "and" circuit | |
JPS6142620A (en) | Optical exor circuit | |
JPS6134525A (en) | Optical logical circuit |