JP3018621B2 - Waveguide type light controller - Google Patents

Waveguide type light controller

Info

Publication number
JP3018621B2
JP3018621B2 JP21498691A JP21498691A JP3018621B2 JP 3018621 B2 JP3018621 B2 JP 3018621B2 JP 21498691 A JP21498691 A JP 21498691A JP 21498691 A JP21498691 A JP 21498691A JP 3018621 B2 JP3018621 B2 JP 3018621B2
Authority
JP
Japan
Prior art keywords
control electrode
waveguide
voltage
light
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21498691A
Other languages
Japanese (ja)
Other versions
JPH0553156A (en
Inventor
雄二 伊関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21498691A priority Critical patent/JP3018621B2/en
Publication of JPH0553156A publication Critical patent/JPH0553156A/en
Application granted granted Critical
Publication of JP3018621B2 publication Critical patent/JP3018621B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は導波路形光制御器に係わ
り、特にZカットLiNbO3 基板を用い、TE/TM
モード光分離器として使用することが好適な導波路形光
制御器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waveguide type optical controller, and more particularly to a TE / TM using a Z-cut LiNbO 3 substrate.
The present invention relates to a waveguide type light controller suitable for use as a mode light splitter.

【0002】[0002]

【従来の技術】従来の導波路形光制御器、例えば偏光分
離器としては、方向性結合器形の片側の導波路に金属膜
を付加した構成、分岐や交さ導波路を用いた構成、方向
性結合器形で電極を長さ方向に分割し、電界を反転させ
た(反転Δβ形)構成等が提案されている。これらの各
偏光分離器は、TE偏光またはTM偏光に対する伝播定
数を各々の方法で変化させるようにしている。
2. Description of the Related Art As a conventional waveguide type optical controller, for example, a polarization splitter, a configuration in which a metal film is added to a waveguide on one side of a directional coupler type, a configuration using a branched or crossed waveguide, There has been proposed a configuration in which an electrode is divided in the length direction in a directional coupler type and an electric field is inverted (inverted Δβ type). Each of these polarization splitters changes the propagation constant for TE polarized light or TM polarized light in each method.

【0003】今、反転Δβ形構造のものについて図6お
よび図7を用いて説明する。図6に示すように、導波路
1上に設けられた制御電極2は2分割されており、互い
に逆位相の電界を印加された構成となっている。図7は
この構成でのスイッチング・ダイヤグラムである。縦軸
はTEおよびTM両偏光の完全結合長で規格化した結合
長、横軸は電界に比例する近接する導波路の伝播定数の
差ΔβL/πで、L/LTM≒2、L/LTE=2+αに設
定していた例である。このとき、電圧V0 を印加する
と、破線で示したTM偏光は直進状態(図で(=)と表
示。)になり、一方実線で示したTE偏光はクロス状態
(図で(×)と表示。)になり、図6に示すように入力
端3から入射した光は各々出力端4および出力端5から
出射される。
Now, an inverted Δβ type structure will be described with reference to FIGS. 6 and 7. FIG. As shown in FIG. 6, the control electrode 2 provided on the waveguide 1 is divided into two, and has a configuration in which electric fields having phases opposite to each other are applied. FIG. 7 is a switching diagram in this configuration. The vertical axis is the coupling length normalized by the complete coupling length of both TE and TM polarizations, and the horizontal axis is the difference ΔβL / π between the propagation constants of adjacent waveguides proportional to the electric field, L / L TM ≒ 2, L / L This is an example in which TE = 2 + α is set. At this time, when the voltage V 0 is applied, the TM polarized light indicated by the broken line is in a straight traveling state (indicated by (=) in the figure), whereas the TE polarized light indicated by the solid line is in a cross state (indicated by (x) in the figure). ), And the light incident from the input terminal 3 is emitted from the output terminal 4 and the output terminal 5 as shown in FIG.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
この反転Δβ形構造の従来例にあっては、クロス状態か
ら直進状態へ移行させる際に高い動作電圧が必要になる
という問題があった。また、その他の構成の従来例では
位相変化を生ぜしめる部分(例えば金属膜付加部分)が
他の領域と作製プロセスが異なり、それぞれ高い作製精
度を必要とするため、作製プロセスが複雑であるという
問題があった。
However, in the conventional example of the conventional inverted .DELTA..beta. Type structure, there is a problem that a high operating voltage is required when shifting from the cross state to the straight state. Further, in the conventional example of the other configuration, a portion that causes a phase change (for example, a portion to which a metal film is added) has a different manufacturing process from other regions, and requires a high manufacturing accuracy, so that the manufacturing process is complicated. was there.

【0005】本発明の目的は上述した問題に鑑みなされ
たもので、高い動作電圧を必要とせず、しかも作製プロ
セスを単純にした導波路形光制御器を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a waveguide type light controller which does not require a high operating voltage and has a simplified manufacturing process.

【0006】[0006]

【課題を解決するための手段】請求項1記載の発明
は、基板にTE偏光に対する完全結合長とTM偏光に
する完全結合長が一致するTi拡散量で導波路が形成さ
れてなる導波路形光制御器において、導波路にZ方向の
垂直電界を印加する第1の制御電極と、この第1の制御
電極の中間および両側に形成されかつ導波路に横方向の
電界を印加する第2の制御電極と、TE偏光で最大透過
光を得る第2の制御電極の電圧をTM偏光で最小透過光
を得る第1の制御電極の電圧と一致させる制御電圧印加
手段とを導波路形光制御器に具備させる。
Means for Solving the Problems The invention according to claim 1so
Is the substrate with perfect coupling length for TE polarized light and TM polarized light.versus
DoWaveguide is formed with Ti diffusion amount with perfect coupling length matching
In the waveguide type optical controller, the
A first control electrode for applying a vertical electric field, and the first control electrode
Formed in the middle and both sides of the electrode and laterally
Second control electrode for applying an electric fieldAnd maximum transmission with TE polarized light
The voltage of the second control electrode for obtaining light is the minimum transmitted light with TM polarization.
Control voltage application to match the voltage of the first control electrode
Means are provided in the waveguide light controller.

【0007】[0007]

【0008】[0008]

【作用】このように本発明よれば、電極として垂直電
界を印加する第1の制御電極の他に横方向電界を印加す
る第2の制御電極を設け、この横方向電界によってTE
偏光に対するDCドリフトを故意に生じさせてTE偏光
の透過光が最大となる電圧を変化し得るようにTE偏光
で最大透過光を得る第2の制御電極の電圧をTM偏光で
最小透過光を得る第1の制御電極の電圧と一致させる。
したがって、作製プロセスの段階で高い作製精度を必要
としないので、作製プロセスの単純化を図ることができ
る。また、本発明は反転Δβ形構造ではないので、高い
動作電圧を必要としない。
As described above, according to the present invention , in addition to the first control electrode for applying a vertical electric field, a second control electrode for applying a lateral electric field is provided as an electrode.
In order to change the voltage at which the transmitted light of the TE polarized light is maximized by intentionally causing a DC drift with respect to the polarized light,
The voltage of the 2nd control electrode which obtains the maximum transmitted light by TM polarization
The voltage is made equal to the voltage of the first control electrode for obtaining the minimum transmitted light.
Therefore, high manufacturing accuracy is not required at the manufacturing process stage, so that the manufacturing process can be simplified. Also, the present invention does not require a high operating voltage because it is not an inverted Δβ structure.

【0009】[0009]

【実施例】次に、本発明について図面を参照して説明す
る。
Next, the present invention will be described with reference to the drawings.

【0010】図1は本発明に係わる導波路形光制御器の
一実施例を示す概略平面図、図2および図3は同導波路
形光制御器の動作説明図である。本実施例において、基
板10には結晶のカット面がZカットで、LiNbO3
により作製された基板を用いており、この基板10には
Tiを拡散して形成される一対の導波路11、12が設
けられている。この導波路11、12の互いに近接した
方向性結合器11A、12Aの上にはそれぞれ絶縁膜1
3を介して導波路11、12に図3で示すようにZ方向
の垂直電界を印加する第1の制御電極14、15が形成
されており、この第1の制御電極14、15の中間およ
び両側には導波路11、12に図2で示すように横方向
の電界を印加する第2の制御電極16〜18が形成され
ている。導波路11、12は、拡散するTi膜厚をある
値に設定することにより、TE偏光およびTM偏光に対
する完全結合長が一致するようにしている。本実施例に
おいては、入力光1.55μm、Ti膜厚約470A
°、Ti拡散を1050°Cで8時間行った。
FIG. 1 is a schematic plan view showing an embodiment of a waveguide type light controller according to the present invention, and FIGS. 2 and 3 are explanatory diagrams of the operation of the waveguide type light controller. In this embodiment, the substrate 10 has a Z-cut crystal cut surface and LiNbO 3
The substrate 10 is provided with a pair of waveguides 11 and 12 formed by diffusing Ti. An insulating film 1 is formed on the directional couplers 11A and 12A of the waveguides 11 and 12 which are close to each other.
As shown in FIG. 3, first control electrodes 14 and 15 for applying a vertical electric field in the Z direction to the waveguides 11 and 12 through the third control electrode 3 are formed between the first control electrodes 14 and 15. On both sides, second control electrodes 16 to 18 for applying a horizontal electric field to the waveguides 11 and 12 are formed as shown in FIG. By setting the diffused Ti film thickness to a certain value, the waveguides 11 and 12 have the same perfect coupling length for TE polarized light and TM polarized light. In this embodiment, the input light is 1.55 μm and the Ti film thickness is about 470 A.
° and Ti diffusion at 1050 ° C for 8 hours.

【0011】このときの電圧と第2の出力端19で見た
光出力との関係は、図4で示すように、電圧0VでTE
偏光(実線)とTM偏光(破線)の光出力が共に最大と
なる偏光無依存の状態となる。この後第2の制御電極1
6〜18に図2で示すように基板10に対し横方向の電
界を長時間印加する。すると、この横方向電界によりT
E偏光だけに寄与する屈折率変化が生じ、さらには、図
5に示すようにTE偏光に対する電圧−光出力特性が変
化するDCドリフト現象が発生する。電圧の印加時間に
よってDCドリフト量を調整すれば、TM偏光が消光状
態となる電圧(VSW(TM))とTE偏光の光出力が最
大となる電圧VP (TE)とを一致させることが可能と
なる。図5はVP (TE)とVSW(TM)とが一致した
状態を示す。この状態で電圧(V)=VP (TE)=V
SW(TM)を印加すれば、図1に示す第1の入力端20
からの入力光のTE偏光成分を第2の出力端19から、
およびTM偏光成分を第1の出力端21からそれぞれ分
離して出力させることが可能となる。
At this time, the relationship between the voltage and the optical output seen at the second output terminal 19 is as shown in FIG.
The polarization-independent state in which the light output of the polarized light (solid line) and the light output of the TM polarized light (dashed line) are both maximized. After this, the second control electrode 1
As shown in FIG. 2, a lateral electric field is applied to the substrate 10 for a long time at 6 to 18. Then, this lateral electric field causes T
A change in the refractive index contributing only to the E-polarized light occurs, and further, as shown in FIG. 5, a DC drift phenomenon occurs in which the voltage-light output characteristic changes with respect to the TE-polarized light. If the amount of DC drift is adjusted according to the voltage application time, the voltage (V SW (TM)) at which the TM polarized light is turned off and the voltage V P (TE) at which the optical output of the TE polarized light becomes maximum can be matched. It becomes possible. FIG. 5 shows a state where V P (TE) and V SW (TM) match. In this state, voltage (V) = V P (TE) = V
When SW (TM) is applied, the first input terminal 20 shown in FIG.
The TE polarization component of the input light from
And TM polarized light components can be output separately from the first output terminal 21.

【0012】[0012]

【発明の効果】以上説明したように請求項1記載の発明
によれば、導波路にZ方向の垂直電界を印加する第1の
制御電極と、この第1の制御電極の中間および両側に形
成されかつ導波路に横方向の電界を印加する第2の制御
電極とを備え、この横方向電界によってTE偏光に対す
るDCドリフトを故意に生じさせてTE偏光の透過光が
最大になる電圧を変化し得るよう構成したので、従来の
反転Δβ形構造のものに比べて高い動作電圧を必要とせ
ず、しかも金属膜を付加する従来の構造のものに比べて
作製プロセスの単純化を図ることができる。また、請求
項1記載の発明では、制御電圧印加手段でTE偏光で最
大透過光を得る第2の制御電極の電圧をTM偏光で最小
透過光を得る第1の制御電極の電圧と一致させることに
した。このためTE偏光成分とTM偏光成分をそれぞれ
異なった端子から分離して出力することが可能になる。
As described above, the invention according to claim 1 is described above.
According to the first aspect, a first control electrode for applying a vertical electric field in the Z direction to the waveguide, and a second control electrode formed on the middle and both sides of the first control electrode and applying a horizontal electric field to the waveguide Electrodes, and a DC drift with respect to the TE polarized light is intentionally caused by the lateral electric field so that the voltage at which the transmitted light of the TE polarized light is maximized can be changed. Therefore, the manufacturing process can be simplified as compared with a conventional structure in which a high operating voltage is not required and a metal film is added . Also, billing
In the invention described in Item 1, the control voltage applying means performs the maximum for the TE polarized light.
The voltage of the second control electrode for obtaining large transmitted light is the minimum in TM polarized light.
To match the voltage of the first control electrode to obtain the transmitted light
did. Therefore, the TE polarization component and the TM polarization component
It is possible to output separately from different terminals.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる導波路形光制御器の一実施例を
示す概略平面図である。
FIG. 1 is a schematic plan view showing one embodiment of a waveguide type light controller according to the present invention.

【図2】同導波路形光制御器の動作説明図である。FIG. 2 is an explanatory diagram of an operation of the waveguide type light controller.

【図3】同導波路形光制御器の動作説明図である。FIG. 3 is an explanatory diagram of an operation of the waveguide type light controller.

【図4】本発明の電圧と光出力との関係を示す図であ
る。
FIG. 4 is a diagram showing the relationship between voltage and light output according to the present invention.

【図5】本発明の電圧と光出力との関係を示す図であ
る。
FIG. 5 is a diagram showing the relationship between voltage and light output according to the present invention.

【図6】従来の導波路形光制御器の一例を示す概略平面
図である。
FIG. 6 is a schematic plan view showing an example of a conventional waveguide light controller.

【図7】従来構成の動作原理図である。FIG. 7 is an operation principle diagram of a conventional configuration.

【符号の説明】[Explanation of symbols]

10 基板 11、12 導波路 13 絶縁膜 14、15 第1の制御電極 16〜18 第2の制御電極 DESCRIPTION OF SYMBOLS 10 Substrate 11, 12 Waveguide 13 Insulating film 14, 15 First control electrode 16-18 Second control electrode

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板にTE偏光に対する完全結合長とT
M偏光に対する完全結合長が一致するTi拡散量で導波
路が形成されてなる導波路形光制御器において、 導波路にZ方向の垂直電界を印加する第1の制御電極
と、 この第1の制御電極の中間および両側に形成されかつ導
波路に横方向の電界を印加する第2の制御電極と、 TE偏光で最大透過光を得る第2の制御電極の電圧をT
M偏光で最小透過光を得る第1の制御電極の電圧と一致
させる制御電圧印加手段 とを備えたことを特徴とする導
波路形光制御器。
1. The substrate has a perfect coupling length for TE polarized light and T
In M polarization in waveguide type optical controller comprising a waveguide is formed by Ti diffusion quantity coupling length match against, a first control electrode for applying the vertical electric field in the Z-direction in the waveguide, the first T and a second control electrode for applying an electric field in the lateral direction in the middle and both sides are formed and the waveguide of the control electrode, the voltage of the second control electrode for obtaining the maximum transmitted light in the TE polarization
Match the voltage of the first control electrode to obtain the minimum transmitted light with M polarization
And a control voltage applying means for causing the waveguide to be controlled.
JP21498691A 1991-08-27 1991-08-27 Waveguide type light controller Expired - Lifetime JP3018621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21498691A JP3018621B2 (en) 1991-08-27 1991-08-27 Waveguide type light controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21498691A JP3018621B2 (en) 1991-08-27 1991-08-27 Waveguide type light controller

Publications (2)

Publication Number Publication Date
JPH0553156A JPH0553156A (en) 1993-03-05
JP3018621B2 true JP3018621B2 (en) 2000-03-13

Family

ID=16664815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21498691A Expired - Lifetime JP3018621B2 (en) 1991-08-27 1991-08-27 Waveguide type light controller

Country Status (1)

Country Link
JP (1) JP3018621B2 (en)

Also Published As

Publication number Publication date
JPH0553156A (en) 1993-03-05

Similar Documents

Publication Publication Date Title
EP0817988B1 (en) Polarization-insensitive, electro-optic modulator
RU2187134C2 (en) Integrated optical polarization device
JP3158460B2 (en) Polarized beam splitter for guide light
US5475771A (en) Polarization splitter haivng an anisotropic optical waveguide
JP2856880B2 (en) Polarization-independent optical switch / modulator and method of manufacturing the same
JPH09105894A (en) Polarization-independent optical device
JP3272064B2 (en) 4-section optical coupler
JP3189198B2 (en) Waveguide type optical device
JP2000028979A (en) Optical control element independent of polarization
JP3018621B2 (en) Waveguide type light controller
JP2754774B2 (en) Waveguide type optical circuit element
JPH05224044A (en) Waveguide type optical device with monitor
JP2635986B2 (en) Optical waveguide switch
JPH04282608A (en) Optical waveguide device
JP2739405B2 (en) Electric field sensor
JPH0553157A (en) Optical control device
JP2976608B2 (en) Waveguide type optical switch
JP2812974B2 (en) Polarization independent optical switch
JP3220003B2 (en) Polarization separation element
JPH04156423A (en) Light waveguide path type polarizer, light waveguide path device provided with such polarizer and manufacture of such device
JP2659786B2 (en) Mode light separator
JPH01246529A (en) Waveguide type optical switch
JP2659787B2 (en) Waveguide mode light selector
JPS6015251B2 (en) optical demultiplexer
JPS5891425A (en) Waveguide polarization regulator