JPS60195479A - Distance measuring device - Google Patents

Distance measuring device

Info

Publication number
JPS60195479A
JPS60195479A JP59050605A JP5060584A JPS60195479A JP S60195479 A JPS60195479 A JP S60195479A JP 59050605 A JP59050605 A JP 59050605A JP 5060584 A JP5060584 A JP 5060584A JP S60195479 A JPS60195479 A JP S60195479A
Authority
JP
Japan
Prior art keywords
light
reflected
distance
frequency
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59050605A
Other languages
Japanese (ja)
Inventor
Yasutomo Fujimori
康朝 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59050605A priority Critical patent/JPS60195479A/en
Publication of JPS60195479A publication Critical patent/JPS60195479A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To measure a distance with a high accuracy by irradiating a single pulse light from a light source to an object, amplifying its reflected light, irradiating it repeatedly to the object, oscillating it by a prescribed frequency, and also counting this frequency. CONSTITUTION:A pulse signal outputted from a pulse generator 21 is inputted to a laser oscillator 22, and a pulse laser light L is oscillated. Subsequently, the light L is reflected by a translucent mirror 23, made to pass through a collimator lens 24, reflected and made to ge back, also amplified by an optical amplifier 26, the object 25 is irradiated again, and it is repeated. Also, the light L is oscillated by a prescribed frequency (f) in a process of a closed loop, and a part of said light is reflected by the translucent mirror 23 and made incident on a photodetector 28, also converted to a pulse electric signal and inputted to an operating part 29, counted by a counter 30 and converted to a distance by a transducer 31. In this way, the measuring accuracy is improved by a simple device.

Description

【発明の詳細な説明】 〔発明の技術分野] この発明は光を利用し、て物体までの距離を測定する距
離測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a distance measuring device that uses light to measure the distance to an object.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

光を利用して物体までの距離を測定する装置として第1
図に示すものが知られている。っまり、図中1はパルス
発生器で、このパルス発生器1から出力されたtローの
パルス信V4は増幅器2で増幅されてレーザダイオード
3に人力される。これによってレーデダイオード3がら
けパルスレーザ光りが出力され、このレーザ1’Q I
、は第1の光学系4を涌って物体5の表面を照射する。
The first device to measure the distance to an object using light.
The one shown in the figure is known. In other words, 1 in the figure is a pulse generator, and a t-low pulse signal V4 outputted from the pulse generator 1 is amplified by an amplifier 2 and then inputted to a laser diode 3. As a result, the radar diode 3 outputs pulsed laser light, and this laser 1'Q I
, sends light to the first optical system 4 and illuminates the surface of the object 5.

この物体5で反射i〜だパルスレーザ光I伯は第2の光
学系6によ−)で第1の受光索子2に入射し、この第1
の受光索子7で光−・は変換されてから増幅器8を介し
て時間測定器9に入力する。一方、上記レーデダイオー
ド3がら出方されたパルスレーザ光■・の一部Lt半透
境1oによって第2の受光素子1ノに人力する。そして
、このパルスレーザ光は第2の受光素子1ノで光電変換
されてから、増幅器12で増幅きれて上記時間測定器9
に入力する。この時間測定器9は、第2の受光素子1ノ
から人力される信μと。
The pulsed laser beam I reflected by this object 5 enters the first light-receiving element 2 through the second optical system 6;
The light is converted by the light receiving cable 7 and then input to the time measuring device 9 via the amplifier 8. On the other hand, a portion of the pulsed laser beam (1) emitted from the radar diode 3 is applied to the second light receiving element 1 through the Lt semi-transparent boundary 1o. Then, this pulsed laser beam is photoelectrically converted by the second light receiving element 1, and then amplified by the amplifier 12, and is then amplified by the time measuring device 9.
Enter. This time measuring device 9 receives a signal input manually from the second light-receiving element 1.

第1の受光素子2から入力される信lとの時間差、つま
りパルスレーザ光りがレーサダイオード3から出力され
てから第2の受光素子11に入力するまでの時間を測定
する。したがって、この時間と既知である光の速度との
関係から上記物体5までの距離をめることかできる。
The time difference with the signal I input from the first light receiving element 2, that is, the time from when the pulsed laser light is output from the laser diode 3 until it is input to the second light receiving element 11 is measured. Therefore, the distance to the object 5 can be determined from the relationship between this time and the known speed of light.

ところで、このように時間測定器9に人力される信号の
時間差から距離をめる装ぼ1”によると、たとえばIO
の分解能を得ようとする場合、光速が約30万l(m/
 seeであることから、1/1s o n5ecで1
カウントする。つまり約611(HIZ程度のカウンタ
によって上記時間差を測定しなければならない。しかし
ながら、このような超高速のカウンタは極めて高価であ
るばかりか、取扱いが雛かしく、誤差が生じやすいから
物体までの距離を高精度に測定することができがいなど
の欠点がありた。
By the way, according to the device 1, which measures distance from the time difference between the signals manually input to the time measuring device 9, for example, the IO
When trying to obtain a resolution of
Since it is see, 1/1s on 5ec is 1
Count. In other words, the above-mentioned time difference must be measured with a counter of approximately 611 (HIZ). However, such an ultra-high-speed counter is not only extremely expensive, but also requires delicate handling and is prone to errors, so it is difficult to measure the distance to the object. It had drawbacks such as being difficult to measure with high precision.

〔発明の目的〕[Purpose of the invention]

この発明はパルス信号の時間差でなく、パルス光を閉ル
ープ内で発振させてその周波数により物体までの距離を
めるようにして、超高速のカウンタを必要とせずに高精
せな測定を行なえるようにした距離測定装置を提供する
ことにある。
This invention makes it possible to measure the distance to an object by oscillating pulsed light in a closed loop and using its frequency instead of using the time difference between pulse signals, making it possible to perform highly accurate measurements without the need for ultra-high-speed counters. The object of the present invention is to provide a distance measuring device that has the following features.

〔発明の概要〕[Summary of the invention]

この発明は、光源から出力される単一のパルス光を物体
に照射[7、この物体で反射するパルス光を増幅器で増
幅(7、この増幅器で増幅されたパルス光を上目[:物
体に照射することを繰り返すことによりパルス光を所定
の周波数で発振させ、この周波数を演算部でカウントす
ることに1つて上記物体までの距離をめるようにしたも
のである。
This invention aims to irradiate an object with a single pulsed light output from a light source [7, amplify the pulsed light reflected by this object with an amplifier (7) direct the pulsed light amplified by this amplifier to the upper eye [: By repeating the irradiation, the pulsed light is oscillated at a predetermined frequency, and this frequency is counted by the calculation unit to determine the distance to the object.

〔発明の実施例] 以下、この発明の一実施例を第2図を参照して説明する
。図中21はパルス発生器である。
[Embodiment of the Invention] An embodiment of the invention will be described below with reference to FIG. 2. In the figure, 21 is a pulse generator.

このパルス発生器21からは単一の数1secのパルス
信号が出力され、このパルス信号はレーザ発振器22に
人力される。このレーザ発振器22からは」二言己パI
レス信時によって数OWXのパルスレーザ光りが発振さ
れる。このレーザ光りは半透鏡23で反射してコリメー
タレンズ24に入射し、このコリメータレンズ24に4
か/れて物体25を照射する。物体25で反射1.たパ
ルスレーザ光■、け上記コリメータレンズ24と上記半
透鏡23とを通過17て増幅器26に入射する。この増
幅器26は反射鏡27を備えているとともに駆動部28
が接続されている。そして、増幅器26に入射17たパ
ルスレーザ光りは上記駆動部28からのエネルギにより
て光増幅されたのち、上記反射鏡27で反射して光増幅
器26から出射する。光増幅器26から出射したパルス
レーザ光りは上記半透鏡23とコリメータレンズ24を
通って物体25を照射する。
This pulse generator 21 outputs a single pulse signal of several seconds, and this pulse signal is manually input to a laser oscillator 22. From this laser oscillator 22,
A pulsed laser beam of several OWX is oscillated depending on the response time. This laser light is reflected by the semi-transparent mirror 23 and enters the collimator lens 24.
Then, the object 25 is irradiated. Reflected by object 25 1. The pulsed laser beam (1) passes through the collimator lens 24 and the semi-transparent mirror 23 and enters the amplifier 26. This amplifier 26 includes a reflecting mirror 27 and a driving section 28.
is connected. The pulsed laser beam incident 17 on the amplifier 26 is optically amplified by the energy from the driving section 28, and then reflected by the reflecting mirror 27 and output from the optical amplifier 26. The pulsed laser light emitted from the optical amplifier 26 passes through the semi-transparent mirror 23 and the collimator lens 24 and irradiates the object 25.

つまり、パルスレーザ光りは反射鏡27と物体25との
間の閉ループ内で所定の周波数で発振する。
That is, the pulsed laser light oscillates at a predetermined frequency within a closed loop between the reflecting mirror 27 and the object 25.

一方、上記光増幅器26から出射するパルスレーザ光り
の一部は半透鏡23で反射して光検出器28に入射し、
ここでパルス電気信qに変換される。この光検出器28
からのパルス電気信号は演算部29に、入力する。この
演W部29はパルス電気信号の周波数をカウントするカ
ウンタ30と、このカウンタ30によってカウントされ
た周波数を距離に変換する変換器31とから形成されて
いる。
On the other hand, a part of the pulsed laser light emitted from the optical amplifier 26 is reflected by the semi-transparent mirror 23 and enters the photodetector 28,
Here, it is converted into a pulse electric signal q. This photodetector 28
The pulsed electric signal from is input to the calculation section 29. This converter W section 29 is formed of a counter 30 that counts the frequency of the pulse electric signal, and a converter 31 that converts the frequency counted by the counter 30 into a distance.

つぎに、このように植成された装置の作動について説明
する。まず、パルス発、生器21から出力されたパルス
信号がレーザ発振器22に入力されると、このレーザ発
振器22からはパルスレーザ光りが発振される。このパ
ルスレーザ光りは半透鏡23で反射【7てコリメータレ
ンズ24を通り、物体25を照射する。そして、この物
体25から反射してコリメータレンズ24と半透鏡23
を通って光増幅器26に入射し、ここで増幅さ杭てから
再度上記物体25を照射するということを繰り返す。し
たがりて、パルスレーザ光りはこのような行程の閉ルー
プ内で所定の周波数fで発振することになる。また、周
波数fで発振するパルスレーザ光りの一部は。
Next, the operation of the device thus implanted will be explained. First, when a pulse signal output from the pulse generator 21 is input to the laser oscillator 22, the laser oscillator 22 emits pulsed laser light. This pulsed laser light is reflected by a semi-transparent mirror 23 [7], passes through a collimator lens 24, and irradiates an object 25. Then, it is reflected from this object 25 to the collimator lens 24 and the semi-transparent mirror 23.
The beam passes through the beam, enters the optical amplifier 26, is amplified here, and then irradiates the object 25 again. This process is repeated. Therefore, the pulsed laser beam oscillates at a predetermined frequency f within a closed loop of such a process. Also, part of the pulsed laser light that oscillates at frequency f.

半透鏡23で反射して光検IB器28に入射〔2、ここ
でパルス電気信号に変換されて演算部29に入力する。
It is reflected by the semi-transparent mirror 23 and enters the optical detector IB device 28 [2], where it is converted into a pulsed electrical signal and input to the calculation section 29 .

すると、演算部29のカウンタ30はそのパルス電気仁
9÷を−7+つ・′ト17、このカウント仁脣が変換器
、71に3にって距離に変換されることに々る。−)ま
り、物体25までの距離が測定される。
Then, the counter 30 of the arithmetic unit 29 calculates the pulse electric value 9 divided by -7+' (17), and this count value is converted into a distance by the converter 71 by 3. -) and the distance to the object 25 is measured.

上記周波数fは次式によりてめZ・ことができる。つま
り、 f−/2L ・・・・・・・・・・・・(1)式ただし
、Cは光速、■・は反射鏡27と物体25との間の距離
である3、したがって、周波数fが計測されれば、物体
25までの距離りが十a1゛演算部29によってj(1
出される。六とえば、反射鏡、27から物体25までの
距RI・が1mである場合、周波数fは15QMHzと
なる。この周波数fけ、従来の時間差によりて測定する
ときの周波数60GTTzに比べて400分の1程度と
なる。
The frequency f can be determined by the following equation. In other words, f-/2L (1) where C is the speed of light, and 3 is the distance between the reflecting mirror 27 and the object 25. Therefore, the frequency f is measured, the distance to the object 25 is calculated as j(1) by the calculation unit 29.
Served. For example, if the distance RI from the reflecting mirror 27 to the object 25 is 1 m, the frequency f will be 15QMHz. This frequency f is about 1/400 of the frequency of 60GTTz when measured using the conventional time difference.

したがって、上記演算部29VC設けられるカウンタ3
0は従来よりも低速のものを用いることができる。
Therefore, the counter 3 provided in the calculation section 29VC
0 may be slower than the conventional one.

F−rD″/s T、! ・・・・・・・・・・・(2
)式でめることができる。ここで、rけ物体25の反射
率、Dはコリメータレンズ24の径、■ノは反射鏡27
と物体25との間の距離である。
F−rD″/s T,! ・・・・・・・・・・・・(2
) can be determined by the formula. Here, the reflectance of the ragged object 25, D is the diameter of the collimator lens 24, and ■ is the reflector 27.
and the object 25.

そして、r =0. l 、D =O,]、 m、L 
= 1 m ト仮定すると、F=IX10−′ となる
。よって増幅器26の増幅率を]X1n5 以上とすれ
ば1発振するパルスレー→ド光りの光IAが減衰するこ
とがない。
And r = 0. l, D = O, ], m, L
= 1 m, then F=IX10-'. Therefore, if the amplification factor of the amplifier 26 is set to be equal to or higher than ]X1n5, the light IA of the pulsed laser beam that oscillates once will not be attenuated.

なお、この発明は上記一実施例に限定されず。Note that this invention is not limited to the above embodiment.

たとえば反射鏡27としてはペルス1ノーザ光りを入射
方向へ積極的に戻す71−ナキューブや位相共役波面反
射装置〆11などを用いてもよく、このようなものを用
いれば光学率のアライメントも容易となる。また、光増
幅器26と反射鏡、27とは一体的な構造でありでもよ
い。
For example, as the reflector 27, a 71-nacube or a phase conjugate wavefront reflector 11 that actively returns the Pelse 1 nose light to the incident direction may be used, and if such a mirror is used, alignment of the optical index will be easy. Become. Further, the optical amplifier 26 and the reflecting mirror 27 may have an integral structure.

〔発明の効果] 以上述べたようにこの発明は、パルス光を物体に照射し
7、この物体から反射するパルス光を光増幅器で増幅1
7、この増幅されたパルス光を上記物体に照射すること
を繰り返すことによりパルス光を所定の周波数で発振さ
せ、この周波数をカウントすることによって物体までの
距離をめるようにした。(7たがって、物体を往復する
パルス光の時間差から距1iIIIをめる従来の方式に
比ベカウントする周波数を十分低くすることができるか
ら、装置のコストダウンや取扱いの4易化などによる測
定粘度の面子が計れる。
[Effects of the Invention] As described above, the present invention irradiates an object with pulsed light 7 and amplifies the pulsed light reflected from the object with an optical amplifier 1
7. By repeatedly irradiating the object with this amplified pulsed light, the pulsed light was oscillated at a predetermined frequency, and by counting this frequency, the distance to the object was determined. (7) Therefore, compared to the conventional method that calculates the distance 1iIII from the time difference between the pulsed light going back and forth to the object, the counting frequency can be made sufficiently lower, which reduces the cost of the device and makes handling easier. You can measure the face of

また、パルス光を光学系によって発振させることができ
るから、″ル:気信畦に欧換17て発振させる場合に比
べ装置の面部化が計れる。
Furthermore, since the pulsed light can be oscillated by an optical system, it is possible to make the device more flexible than when the pulsed light is oscillated in a European manner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の装置の構成図、第2図はこの発明の一実
施例f示ず装置Rの構成図である。 22・・・レーザ発振器(光源)、24・・・コリメー
タレンズ(光学系)、25・・・物体、26・・・光増
幅器、29・・・演算部
FIG. 1 is a block diagram of a conventional apparatus, and FIG. 2 is a block diagram of an apparatus R (not shown) according to an embodiment of the present invention. 22... Laser oscillator (light source), 24... Collimator lens (optical system), 25... Object, 26... Optical amplifier, 29... Arithmetic unit

Claims (1)

【特許請求の範囲】 単一のパルス光を出力する光源と、この光源から出力さ
れたパルス光を物体に照射する光学系と、上記物体で反
射し、たパルス光を増幅しこの増幅されたパルス光を上
記光学系を介し、て上記物体に照射することを繰り返す
ことによりパルス光を所定の周波数で発振させる光増幅
器と。 この増幅器によって発振させられたパルス光の周波数を
カウントしこれによって上記物体までの距離をめる演算
部とを具備1.たことを特徴とする距離測定装置。
[Claims] A light source that outputs a single pulsed light; an optical system that irradiates an object with the pulsed light output from the light source; and a an optical amplifier that oscillates pulsed light at a predetermined frequency by repeatedly irradiating the object with pulsed light via the optical system; 1. An arithmetic unit that counts the frequency of the pulsed light oscillated by the amplifier and calculates the distance to the object based on the frequency.1. A distance measuring device characterized by:
JP59050605A 1984-03-16 1984-03-16 Distance measuring device Pending JPS60195479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59050605A JPS60195479A (en) 1984-03-16 1984-03-16 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59050605A JPS60195479A (en) 1984-03-16 1984-03-16 Distance measuring device

Publications (1)

Publication Number Publication Date
JPS60195479A true JPS60195479A (en) 1985-10-03

Family

ID=12863595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59050605A Pending JPS60195479A (en) 1984-03-16 1984-03-16 Distance measuring device

Country Status (1)

Country Link
JP (1) JPS60195479A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5534992A (en) * 1993-08-30 1996-07-09 Hamamatsu Photonics K.K. Optical measuring apparatus
JP2003048427A (en) * 2001-08-06 2003-02-18 Ansei:Kk Car door

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5534992A (en) * 1993-08-30 1996-07-09 Hamamatsu Photonics K.K. Optical measuring apparatus
JP2003048427A (en) * 2001-08-06 2003-02-18 Ansei:Kk Car door

Similar Documents

Publication Publication Date Title
JPS57128810A (en) Distance measuring device
GB1532980A (en) Systems for measuring the distance of interference sources from one end of a glass fibre
JPS6162885A (en) Distance/speed meter
JPS60195479A (en) Distance measuring device
JPH0619432B2 (en) Liquid level measuring device
GB2061495A (en) Improvements In or Relating To Measurement of the Thickness of a Liquid Film
JPS57197486A (en) Laser doppler speedometer
JPH068724B2 (en) Optical detector
JP3668129B2 (en) Optical dimension measuring method and apparatus
JPH0875433A (en) Surface form measuring device
JPH0131580B2 (en)
JPS5866881A (en) Surveying equipment by light wave
JPH0821849A (en) Measuring method for high-temperature body by laser doppler system
JPH0875434A (en) Surface form measuring device
SU887968A1 (en) Device for measuring back scattering in light-guides
JPS61200474A (en) Speckle speed sensor
JPH01118712A (en) Optical displacement measuring instrument
SU1681168A1 (en) Instrument to measure the object displacement
JP6414257B2 (en) Concentration measuring device and concentration measuring method
JPS5757222A (en) Power measurment mechanism of optical fiber for laser power transmission
JP2573673B2 (en) Optical displacement measuring device of triangulation method
JPS60195480A (en) Distance measuring device
JPH0534437A (en) Laser distance measuring apparatus
JPS6382344A (en) Optical fiber interferometer for detecting optothermal displacement
RU2091711C1 (en) Process of range measurement and device for its realization