JPS60193544A - 水素化用触媒 - Google Patents

水素化用触媒

Info

Publication number
JPS60193544A
JPS60193544A JP59048672A JP4867284A JPS60193544A JP S60193544 A JPS60193544 A JP S60193544A JP 59048672 A JP59048672 A JP 59048672A JP 4867284 A JP4867284 A JP 4867284A JP S60193544 A JPS60193544 A JP S60193544A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogenation
bond
carbon
base metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59048672A
Other languages
English (en)
Inventor
Junichi Iwamura
淳一 岩村
Susumu Nishiguchi
進 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INAHATA SANGYO KK
KINKIDAIGAKU
Original Assignee
INAHATA SANGYO KK
KINKIDAIGAKU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INAHATA SANGYO KK, KINKIDAIGAKU filed Critical INAHATA SANGYO KK
Priority to JP59048672A priority Critical patent/JPS60193544A/ja
Publication of JPS60193544A publication Critical patent/JPS60193544A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔技術分野」 この発明は、水素化反応に用いるための新規な触媒に関
するものである。ここにいう水素化反応には、結合の水
素分解(または解裂)、および不飽和結合またはカルボ
ニル基に対する水素添加が含まれるものとする。
〔従来技術〕
従来、水素化用触媒としては、白金、パラジウム等の貴
金属が多く用いられたが、これらは諏価につくという欠
点があった。また、ラネーニッケル等の卑金属触媒は、
通常、川崎展開する必要があるので手間がかかり、また
は湿潤状態で供給されるので、取扱い、計量等が不便で
あった。
〔発明の目的〕
この発明者は、安価かつ取扱い容易な水素化用触媒を開
発しようとして鋭意研究を重ねた結果、ガス中蒸発法で
製造した卑金属超微粒子が水素化反応において触媒活性
を有することを見出し、こめ発明を完成したのである。
〔発明の構成〕
すなわち、この発明は−ガス中蒸発法で製造した卑金属
またはその合金の超微粉からなる、水素化用触媒である
この発明で用いる卑金属としては、原子番号21ないし
30の遷移金属が含まれるが、そのうち鉄、コバルトお
よびニッケルが好ましい。卑金属の合金としては、上記
卑金属同志の合金が用いられる。
この発明にいう卑金属またはその合金の超微粉とは、粒
径約10ないし100OAの粉末粒子を指し、そのうち
粒径約100〜500λのものが好ましい。
この発明で用いる超微粉は一上記のような粉末粒子であ
って、ガス中蒸発法で製造したものである。ガス中蒸発
法とは、金属を低圧(0,1〜100mHfI)下の不
活性ガス(He 、 Ar等に所望により馬を混合)中
で加熱蒸発させ、ガス中で冷却するか、または水素雰囲
気中で金属をアーク溶解することによって金属超微粉を
得る方法である。
この発明の触媒は、上記の方法で得られた卑金属超微粉
そのものであってもよいし、これを担体に保時させたも
のでもよい。担体としては、アルミナ、シリカ、シリカ
アルミナ等の酸性耐火性無機化合物、およびモレキュラ
ーンーブ、活性炭等が用いられる。卑金属超微粉を担体
に保持させるには、適当な溶媒を用いて卑金属超微粉の
スラリー を作り、スラリーに担体を浸漬して超微粉を
付着させた後、乾燥すればよい。担体に対する超微粉の
保持率は、1ないし50%が適当であり、5ないし20
%が好ましく、10ないし15%が最も好ましい。
〔作用効果〕
上記のようなこの発明の触媒は、水素化反応に用いると
従来の貴金属触媒に劣らない活性を有し、しかも安価で
取扱い容易であるという利点を有する。水素化反応には
一前述のように一水素化分解(または解裂)および不飽
和結合またはカルボニル基の水素添加が含まれるが、そ
のうち代表的なものは、エステル、エーテル等における
炭素−酸素結合の解裂、チオエステル、チオエーテル(
硫黄原子が複素環の一員となるものを含む)、チオアル
コール等における炭素−硫黄結合の解裂、ニトロ基等に
おける窒素−酸素結合の解裂、アミン(窒素原子が複素
環の一員となるものを含む)等における炭素−窒素結合
の解裂、ハロゲン化炭素における炭素−ハロゲン結合の
解裂、ジスルスルフイドにおける硫黄−硫黄結合の解裂
、炭素−炭素2重結合または3重結合に対する水素添加
、炭素−窒素2重結合に対する水素添加、窒素−窒素2
重結合に対する水素添加、カルボニル基に対する水素添
加等である。この発明の触媒を用いてこのような反応を
行なうには、通常、基質化合物に対して工ないし50%
、好ましくは10ないし20%の触媒を用い、水素初圧
10ないし200Klil/d、好ましくは100ない
し150Kg/cJ(加熱すると200に9/ld前後
になる)の加圧下、および100ないし350℃、好ま
しくは200ないし250℃の加熱下、0.5ないし1
0時間、好ましくは1.5ないし2時間反応させる。な
お、触媒は固定床または流動床としても用いることがで
き、石油工業における脱硫工程、および油脂工業におけ
るエステル分解工程に適用することができる。
〔実施態様〕
以下、実施例によりこの発明の触媒の製造法および使用
法を詳細に説明する。
実施例1 (触媒の製造) 触媒としては、製造元から購入した卑金属超微粉を用い
ることもできるが、文献〔賀集、「材料科学」17巻3
・4号136−140頁(1980年)、和田、[固体
物理J1975年12月・別冊特集号57−62頁]の
記載を参照して製造することもできる。すなわち、容器
を1−トール以下の真空にし、HeまたはArを数〜数
百トール導入し、その雰囲気中でタングステン線または
板を加熱し、その上にのせた卑金属またはその合金を溶
解蒸発させる。蒸発原子は煙状となり器壁上に線状に付
着する。
実施例2 (炭素−硫黄結合または硫黄−硫黄結合の解裂)200
rnl容のオートクレーブに、基質(10ミリモル/エ
タノール50−)および触媒(基質に対して(1/1o
モル)を入れ、室温で100KP/−の水素圧をかける
。次に230℃に昇温すると。
水素圧は190〜200Kg/cJとなる。温度が23
0℃で一定となってから1.5時間反応を行ない、放冷
し、触媒を分離した後、反応混合物を分析する。定性分
析はガ スクロマトグラフィーにおいて標準品の保持時
間と比較して行ない、さらに各ピークを分離して赤外分
光光度計−LHおよび13C核磁気共鳴スペクトルにお
いて標準品と比較して行なう。定量はガスクロマドグラ
フィーによる。種々の基質について行なった結果は下記
の未 通りである、((なお、X il、、#認還元物質を示
す。)(触媒) (基質) (炭化水素 C113(CH2)9SH−=CIJ3(CH2)8C
H31−X+H2SN i 50.9% 38.3% 
0%Co 40.3% 46.9% 5.1%Fe 6
3.5% 27.8% 4.5%(触媒) (基質) 
(炭化水素) CI(3(CH2)9S(CH2)9CH3−CH3(
CH2)8CH3+H2SNi 60.2% 25,6
% Co 69.6% 14.6% Fe 71.6% 11.9% (触媒) (基質) (チオール) (炭化水素)CC
I(3(CH,、) 9S−] 2−CH5(C)(2
) 9SH−1−CI−1,、(CH2) 8CH,、
+X+−FJ、、SNi 7,1% 73.5% 11
.0% 4.9y。
Co 7.6% 56.5% 22.1% 8.1%F
e 11.5% 78.0% 3.8% 1.7%Ni
 75.6% 4.6% 20.2%の水素添加) 基質を変えたほかは、実施例2と同様に行なった。
(触媒)(基質→ (飽和体)(部分■」腫0 (解裂
体)N i 1.1% 97.2% 、i 0 、.1
% 少量Co 22.4% 0% 62.7% 0%F
e 49.6% 0% 45.9% θ%実施例4 (炭素−酸素結合の解裂) 基質を変えたほかは一実施例2と同様をこ行なった。
(触媒) (基質) (炭化水素1) (アルコール)
(炭(t、142.)Ni 0% 13.6% 45.
5% 40.6%Co 67.4% 18.4% 10
.1% 0%Fe 98.0% 0.9% 0% 0%
(触媒) (基質) (アルコール1) (アルコール
2)(CH3(CFL2)□oCOy巧−C馬(CI秘
)□。a智F■十clWHCo 92.9% 4.4% Fe 88.2% 3.6% 実施例5 (炭素−ハロゲン結合の解裂) 基質を変えたほかは、実施例2と同様に行なった。
(触媒) (基質) (炭化水素) CI(3(CI(2)10C町q−CH3(CI(2)
10C馬十■]ClNi 91.9% 7.0% Co 90.9% 7.2% Fe 91.9% 5.8% 実施例6 (炭素−炭素不飽和結合の水素添加) 基質を変えたほかは、実施例2と同様に行なった。
触媒 基質 (炭化水素) Ni O,0% 54.3% 439% 0.9%Co
 O,04,4% 2B% 882%Fe 88.9 
0.0% 00% 64%実施例7 (カルボニル基の水素添加) 基質を変えたほかは、実施例2と同様に行なった。
(触媒)(基質) (アルコール)

Claims (5)

    【特許請求の範囲】
  1. (1)ガス中蒸発法で製造した卑金属またはその合金の
    超微粉からなる、水素化用触媒。
  2. (2)卑金属が鉄、ニッケルまたはコバルトである、特
    許請求の範囲第1項記載の触媒。
  3. (3)超微粉が酸性耐火性無機化合物からなる担体上に
    保持されている一特許請求の範囲第1または2項記載の
    触媒。
  4. (4)水素化が炭素−酸素結合、炭素−硫黄結合、炭素
    −窒素結合、炭素−ハロゲン結合または硫黄−硫黄結合
    の水素化分解である、特許請求の範囲第1ないし3項の
    何れか1項記載の触媒。
  5. (5)水素化が不飽和結合またはカルボニル基の水素添
    加である、特許請求の範囲第1ないし3項のFJれか1
    項記載の触媒。
JP59048672A 1984-03-13 1984-03-13 水素化用触媒 Pending JPS60193544A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59048672A JPS60193544A (ja) 1984-03-13 1984-03-13 水素化用触媒

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59048672A JPS60193544A (ja) 1984-03-13 1984-03-13 水素化用触媒

Publications (1)

Publication Number Publication Date
JPS60193544A true JPS60193544A (ja) 1985-10-02

Family

ID=12809811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59048672A Pending JPS60193544A (ja) 1984-03-13 1984-03-13 水素化用触媒

Country Status (1)

Country Link
JP (1) JPS60193544A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197152A (ja) * 1986-02-25 1987-08-31 Sumitomo Cement Co Ltd 触媒関連材料の作成方法
JP2012517331A (ja) * 2009-02-09 2012-08-02 ビーエーエスエフ ソシエタス・ヨーロピア 水素化触媒、その製造方法およびその使用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197152A (ja) * 1986-02-25 1987-08-31 Sumitomo Cement Co Ltd 触媒関連材料の作成方法
JP2012517331A (ja) * 2009-02-09 2012-08-02 ビーエーエスエフ ソシエタス・ヨーロピア 水素化触媒、その製造方法およびその使用

Similar Documents

Publication Publication Date Title
EP0002575A1 (en) Method for preparing a high-activity supported nickel catalyst, and a catalyst thereby prepared
US4142962A (en) Hydrogenation and hydrocracking with highly dispersed supported nickel catalysts
Sales et al. Palladium, palladium–tin, and palladium–silver catalysts in the selective hydrogenation of hexadienes: TPR, Mössbauer, and infrared studies of adsorbed CO
AU630565B2 (en) Carbonylation of methanol
US4507401A (en) Intermetallic catalyst preparation
Rousset et al. Hydrogenation of toluene over γ-Al2O3-supported Pt, Pd, and Pd–Pt model catalysts obtained by laser vaporization of bulk metals
Schlögl et al. Bridging the “material gap” between single crystal studies and real catalysis
Belgued et al. Oxygen-free conversion of methane to higher alkanes through an isothermal two-step reaction on ruthenium
JPS60193544A (ja) 水素化用触媒
US2292570A (en) Process for the production of catalysts
Imamura et al. Methanation by catalysts formed from intermetallic compounds
Willocq et al. Hydrogenation of nitrobenzene over Pd/C catalysts prepared from molecular carbonyl–phosphine palladium clusters
Wu et al. TiO 2 Supported Nano-Au Catalysts Prepared Via Solvated Metal Atom Impregnation for Low–Temperature CO Oxidation
JPH10182122A (ja) 安定化炭化バナジウム及び炭化クロム相の合成
Boellaard et al. Behaviour of a cyanide-derived Fe/Al2O3 catalyst during Fischer-Tropsch synthesis
US4334107A (en) Catalytic purification of phenol
Zea et al. Plasma torch generation of carbon supported metal catalysts
JP3044280B2 (ja) 超微細カーボンチューブの合成方法及びそれに用いる触媒
Boellaard et al. Behaviour of cyanide-derived CuxFe/Al2O3 catalysts during Fischer–Tropsch synthesis
JPS5935898B2 (ja) シクロペンテン及び樟脳の同時製造法
Bauer et al. Reactivity studies of ethylene, benzene and cyclohexane on carbide-modified Mo (110) using high resolution X-ray photoelectron spectroscopy
Hall et al. Carbonaceous Deposits on Silica-Alumina Catalyst
JPS6333901B2 (ja)
Pugacheva et al. Magnetic-field-assisted preparation of ferromagnetic Ni–Co–Mn catalyst for deep oxidation/hydrogenation from a mixture of SHS-produced intermetallics
Jabŀoński et al. Effect of high-temperature reduction on Co/SiO 2 catalysts activity in the hydrogenation of benzene