JPS6019097B2 - Manufacturing method of thermionic emissive material - Google Patents

Manufacturing method of thermionic emissive material

Info

Publication number
JPS6019097B2
JPS6019097B2 JP52116869A JP11686977A JPS6019097B2 JP S6019097 B2 JPS6019097 B2 JP S6019097B2 JP 52116869 A JP52116869 A JP 52116869A JP 11686977 A JP11686977 A JP 11686977A JP S6019097 B2 JPS6019097 B2 JP S6019097B2
Authority
JP
Japan
Prior art keywords
supporting metal
thermionic
boride
tantalum
sputter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52116869A
Other languages
Japanese (ja)
Other versions
JPS5451465A (en
Inventor
隆一 寺崎
徹也 和田
秀雄 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP52116869A priority Critical patent/JPS6019097B2/en
Publication of JPS5451465A publication Critical patent/JPS5451465A/en
Publication of JPS6019097B2 publication Critical patent/JPS6019097B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Solid Thermionic Cathode (AREA)

Description

【発明の詳細な説明】 本発明は、熱電子放射材料の製造法、特に六棚化カルシ
ウム型構造を有する材料を主材料とする熱電子放射材料
の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a thermionic emissive material, particularly a method for producing a thermionic emissive material whose main material is a material having a hexagonal calcium structure.

六棚化ランタン(山B6)に代表される六棚化カルシウ
ム型構造を有する材料は、仕事関数が4・さく、熱電子
放射陰極としてはロッド状のものが一股的に使用されて
いる。しかし、この熱電子放射材料を高温下で作動させ
た場合、通常の支持金属であるタングステン、タンタル
などど化学反応を起こし、熱電子放射材が風化、支持金
属が腕化するなど長時間安定に作動させることが困難で
あった。
Materials having a six-shelf calcium structure represented by six-shelf lanthanum (mountain B6) have a work function of 4, and rod-shaped materials are commonly used as thermion-emitting cathodes. However, when this thermionic emitting material is operated at high temperatures, the usual supporting metals such as tungsten and tantalum undergo chemical reactions, causing the thermionic emitting material to weather and the supporting metal to form arms, resulting in long-term stability. It was difficult to operate.

この困難を解決するために、加熱用機体を熱電子放射材
と接触せずに、熱電子放射材の支持は冷却器を備えた機
体によって実現し、もって化学反応を阻止する提案(袴
公昭45−40576)があるが、このような提案では
、構造が複雑であり、しかも熱電子放射陰極が通常使用
される個所、例えば電子顕微鏡陰極、鰭子管陰極などで
は加熱時の電力は小さく10ヮト以下が普通である。従
って上記のような構造では加熱電力が大きすぎるという
欠点があった。本発明はこれらの欠点を解決したすぐれ
た熱電子放射陰極材料を提供しようとするものである。
In order to solve this difficulty, a proposal was made to prevent the chemical reaction by preventing the heating body from coming into contact with the thermionic radiation material and by supporting the thermionic radiation material by a body equipped with a cooler. -40576), but such a proposal has a complicated structure, and in places where thermionic emission cathodes are normally used, such as electron microscope cathodes and fin tube cathodes, the power required for heating is small (10%). It is normal for it to be less than Therefore, the above structure has the disadvantage that the heating power is too large. The present invention aims to provide an excellent thermionic-emitting cathode material that overcomes these drawbacks.

本発明は、六棚化カルシウム型構造を有する無機物質に
、これと反応し難い物質をスパッタ‐蒸着した後、さら
にその上に支持金属と、前記の無機物質と反応し難い物
質とも混合しスパッタ‐蒸着を行ない、徐々に支持金属
の割合を増加して、最終的には支持金属だけをスパッタ
‐蒸着することを特徴とする熱電子放射陰極材料の製造
法である。以下本発明について、さらに説明する。本発
明は前記したように六棚化カルシウム構造を有する無機
物質に、これと反応し難い物質(以下障壁材料という)
と支持金属との間に、これら混合物からなる蒸着層を設
けたことを特徴とするものである。これを図面に従って
説明すると、第1図は、六棚化カルシウム構造を有する
無機物質に障壁層、支持金属層を蒸着した熱電子放射材
料の断面図である。
The present invention involves sputter-depositing a substance that does not easily react with an inorganic substance having a six-shelf calcium type structure, and then sputtering a supporting metal and a substance that does not easily react with the inorganic substance. - A method for producing a thermionic-emitting cathode material, which is characterized by carrying out vapor deposition, gradually increasing the proportion of the supporting metal, and finally sputter-evaporating only the supporting metal. The present invention will be further explained below. As described above, the present invention uses an inorganic substance having a six-shelf calcium structure, and a substance (hereinafter referred to as a barrier material) that is difficult to react with the inorganic substance having a hexagonal calcium structure.
The device is characterized in that a vapor-deposited layer made of a mixture of these is provided between the metal and the supporting metal. To explain this according to the drawings, FIG. 1 is a cross-sectional view of a thermionic emission material in which a barrier layer and a support metal layer are deposited on an inorganic material having a hexagonal calcium structure.

1は、六棚化カルシウム型構造を有する無機物質、2は
障壁層、3は障壁材料と支持金属材との混合層、4は支
持金属層、である。
1 is an inorganic substance having a six-shelf calcium type structure, 2 is a barrier layer, 3 is a mixed layer of a barrier material and a supporting metal material, and 4 is a supporting metal layer.

また第2図は本発明品の使用例を示した説明図であって
、スパッタ−蒸着後、支持台に熱電子放射材料を取付け
たものである。
Further, FIG. 2 is an explanatory view showing an example of use of the product of the present invention, in which a thermionic emission material is attached to a support base after sputter deposition.

5はセラミック支持台を示し、6は電極、7は支持金属
線である。
5 is a ceramic support base, 6 is an electrode, and 7 is a support metal wire.

第1図に示したような熱子放射材料を、第2図のような
電子放射陰極として使用することができる。障壁材料の
スパッタ一物質としては、熱電子放射材および支持金属
と反応し難く、1900℃上の融点を持ち、かつ160
ぴCにおける片衡蒸気圧が10‐5Torr以下のもの
であれば、全て使用可能であるが、棚化物では、棚化ニ
オブ(Nb&)、棚化ジルコニウム(ZrB2)、棚化
ハフニウム(HfB2)、棚化タンタル(TaB2)、
炭化物では、炭化タンタル(TaC)、炭化ジルコニウ
ム(ZrC)、窒化物では、窒化ジルコニウム(ZrN
)、窒化タンタル(TaN)などが特に好ましい。又、
支持金属のスパッタ一物質としては、タンタル(Ta)
、タングステン(W)、ニオブ(Nb)、モリブデン(
Mo)などが特に好しし、。 3本発明品
は、小電力で作動し、長寿命であり、かつ電子放射特性
に優れ、冷却、加熱にし、熱電子放射陰極を得ることが
できる。スパッタ−葵着では、通常の真空蒸着と比較し
て基村への密着性が極めて良好で繊密な膜が形成可能で
ある。又、蒸3着と同時にガスが基材表面をスパッタ−
する効果があるので、基材の表面がクリーニングされ、
これも密着性を良くする理由の一つである。さらに障壁
層と支持金属との間に生ずる熱堀彰張率の差による歪応
力は、中間に障壁材料と支持金属を同時子にスパッタ‐
蒸着することにより緩和できる。本実施例では、LaB
6単結晶について説明するが、この方法は、他の六棚化
カルシウム構造を有する熱電子放射材料、例えば棚化バ
リウム、棚化イットリウム、棚化ユーロピウム、棚化ガ
ドリニウムなどの六棚化物単結晶熱電子材料も適用でき
る。更に、ホットプレス法等により成型した多結晶嬢結
体も適用できる。タ 以下実施例によって本発明を説明
する。
A thermon-emitting material as shown in FIG. 1 can be used as an electron-emitting cathode as shown in FIG. As a sputtering substance for the barrier material, it is difficult to react with the thermionic emitting material and supporting metal, has a melting point of 1900°C or higher, and has a melting point of 160°C.
Any material with an equilibrium vapor pressure of 10-5 Torr or less can be used, but shelved niobium (Nb&), shelved zirconium (ZrB2), shelved hafnium (HfB2), Shelved tantalum (TaB2),
Carbides include tantalum carbide (TaC) and zirconium carbide (ZrC), and nitrides include zirconium nitride (ZrN).
), tantalum nitride (TaN), etc. are particularly preferred. or,
Tantalum (Ta) is used as a sputtering material for the supporting metal.
, tungsten (W), niobium (Nb), molybdenum (
Mo) etc. are particularly preferred. 3. The product of the present invention operates with low power, has a long life, has excellent electron emission characteristics, and can be cooled and heated to obtain a thermionic emission cathode. Sputter deposition can form a dense film with extremely good adhesion to the substrate compared to normal vacuum deposition. Also, at the same time as the third vapor deposition, the gas sputters on the substrate surface.
This has the effect of cleaning the surface of the base material,
This is also one of the reasons for improving adhesion. Furthermore, the strain stress caused by the difference in thermal elongation between the barrier layer and the supporting metal can be reduced by sputtering the barrier material and the supporting metal at the same time.
It can be alleviated by vapor deposition. In this example, LaB
6 single crystal, but this method can also be applied to other thermionic emissive materials having a hexagonal calcium structure, such as hexagonal calcium shelving, yttrium shelving, europium shelving, gadolinium shelving, etc. Electronic materials can also be applied. Furthermore, a polycrystalline body formed by hot pressing or the like can also be used. The present invention will be explained below with reference to Examples.

実施例 1TaNおよびTaをスパッターターゲツトと
し、3×10‐3Torrのアルゴン雰囲気中、加速電
圧弧Vの条件で、スパッタ‐蒸着を行なった。被ス0バ
ッター物質はLa&単結晶チップであり「該チップの先
端は熱電子放射材料として使用するため黍着物が付着し
ないようにアルミ箔で覆った。まず最初にTaNを30
分間スパッタ‐蒸着し、次の30分間ではTaとTaN
を共にスパッタ‐蒸着した夕が、この間にTaNの蒸着
量を徐々に少なくし、逆にTaの蒸着量を徐々に増加さ
せ、最終的にはTaだけのスパッタ−蒸着をさらに3の
分間行なった。得られた陰極をスポット溶接によりW線
と結合し、5×10‐5Tmrの真空下でLaB6単結
晶チップ先端の温度が1600oo、50畑時間加熱し
たがLaB6単結晶部分には何の変化も見られなかった
。実施例 2 スパッターターゲットとして、TaBとWを使用し、実
施例1と同じ条件で、LaB単結晶上にスパッタ‐蒸着
を行なった。
Example 1 Sputter-evaporation was carried out using TaN and Ta as sputter targets in an argon atmosphere of 3.times.10@-3 Torr under conditions of acceleration voltage arc V. The batter material to be scorched was a La & single crystal chip, and the tip of the chip was covered with aluminum foil to prevent dust from adhering to it because it was used as a thermionic emission material.
Sputter-deposit for 30 minutes, then Ta and TaN for 30 minutes.
During this time, the amount of TaN was gradually reduced, and the amount of Ta was gradually increased, and finally, sputter-deposition of only Ta was performed for an additional 3 minutes. . The obtained cathode was connected to a W wire by spot welding, and heated under a vacuum of 5 × 10-5 Tmr at a temperature of 1600 oo at the tip of the LaB6 single crystal tip for 50 hours, but no change was observed in the LaB6 single crystal part. I couldn't. Example 2 Sputter-evaporation was performed on a LaB single crystal under the same conditions as in Example 1 using TaB and W as sputter targets.

すわち、仏B6単結晶に直接Ta&を30分間スパッタ
葵着し、次に30分階ma&とWを同時に蒸着しながら
徐々にTaB2の量を減少させ、逆にWの量を増加させ
、最終的にはWだけのスパッタ‐蒸着を30分間実施し
た。こうして得られた陰極をスポット溶接によりTa線
と結合し、3×10‐5Torrの真空下で、LaB単
結晶チップ先端温度が1700qoになるように3の砂
間加熱た後、急冷し、すぐに又加熱するサイクルを10
0の司繰り返したが、仏B6単結晶部分には何の変化も
なかった。
That is, Ta& was directly sputter-deposited on the B6 single crystal for 30 minutes, then Ma& and W were simultaneously deposited for 30 minutes, gradually decreasing the amount of TaB2, conversely increasing the amount of W, and finally Specifically, sputter-deposition of W alone was performed for 30 minutes. The cathode thus obtained was joined to a Ta wire by spot welding, heated in a sand bath under a vacuum of 3 x 10-5 Torr so that the tip temperature of the LaB single crystal tip reached 1700 qo, then rapidly cooled and immediately 10 heating cycles
0 repeated, but there was no change in the French B6 single crystal part.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例の熱電子放射材料の断面図:
第2図は、本発明品の使用例の説明図である。 符号1・・・六棚化カルシウム型構造を有する無機物質
、2・・・障壁層、3・・・障壁材料と支持金属材との
混合層、4・・・支持金属層、5・・・セラミック支持
台、6・・・電極、7・・・支持金属線。 ※1図 茅2図
FIG. 1 is a cross-sectional view of a thermionic emission material according to an embodiment of the present invention:
FIG. 2 is an explanatory diagram of an example of use of the product of the present invention. Reference numeral 1... Inorganic substance having a six-shelf calcium type structure, 2... Barrier layer, 3... Mixed layer of barrier material and supporting metal material, 4... Supporting metal layer, 5... Ceramic support base, 6... electrode, 7... support metal wire. *1 figure, 2 figures

Claims (1)

【特許請求の範囲】 1 六硼化カルシウム型構造をする無機物質に、これと
反応し難い物質をスパツター蒸着した後、その上に支持
金属と前記の反応し難い物質とを混合してスパツター蒸
着を行ない、徐々に支持金属との割合を増加して最終的
には支持金属だけをスパツター蒸着することを特徴とす
る熱電子放射材料の製造法。 2 反応し難い物質が硼化ニオブ、硼化ジルコニウム、
硼化ハフニウム、硼化タンタルから撰ばれた硼化物、炭
化タンタル、炭化ジルコニウム、から撰ばれた炭化物、
窒化ジルコニウム、窒化タンタルから撰ばれた窒化物で
ある特許請求の範囲第1項記載の熱電子放射材料の製造
法。 3 支持金属がタンタル、タングステン、ニオブ、モリ
ブデンから撰ばれた1種以上の金属である特許請求の範
囲第1項記載の熱電子放射材料の製造法。
[Claims] 1. Sputter deposition of a substance that does not easily react with an inorganic substance having a calcium hexaboride type structure, and then mix and sputter deposit a supporting metal and the above-mentioned substance that does not easily react with the inorganic substance. A method for producing a thermionic emitting material, which is characterized by gradually increasing the proportion of the supporting metal and finally sputter-depositing only the supporting metal. 2 Substances that are difficult to react with are niobium boride, zirconium boride,
Hafnium boride, boride selected from tantalum boride, tantalum carbide, zirconium carbide, carbide selected from
A method for producing a thermionic emission material according to claim 1, wherein the material is a nitride selected from zirconium nitride and tantalum nitride. 3. The method for producing a thermionic emission material according to claim 1, wherein the supporting metal is one or more metals selected from tantalum, tungsten, niobium, and molybdenum.
JP52116869A 1977-09-30 1977-09-30 Manufacturing method of thermionic emissive material Expired JPS6019097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52116869A JPS6019097B2 (en) 1977-09-30 1977-09-30 Manufacturing method of thermionic emissive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52116869A JPS6019097B2 (en) 1977-09-30 1977-09-30 Manufacturing method of thermionic emissive material

Publications (2)

Publication Number Publication Date
JPS5451465A JPS5451465A (en) 1979-04-23
JPS6019097B2 true JPS6019097B2 (en) 1985-05-14

Family

ID=14697633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52116869A Expired JPS6019097B2 (en) 1977-09-30 1977-09-30 Manufacturing method of thermionic emissive material

Country Status (1)

Country Link
JP (1) JPS6019097B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410632Y2 (en) * 1984-05-04 1992-03-16

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT15991U1 (en) * 2017-05-12 2018-10-15 Plansee Se High-temperature component
CN107190194B (en) * 2017-06-16 2018-06-22 华北电力大学 A kind of preparation method of boride ceramic particles enhancing niobium molybdenum-base composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410632Y2 (en) * 1984-05-04 1992-03-16

Also Published As

Publication number Publication date
JPS5451465A (en) 1979-04-23

Similar Documents

Publication Publication Date Title
US4467240A (en) Ion beam source
US4429250A (en) Direct heating cathode for high frequency thermionic tube
US5860844A (en) Cold cathode electron source element and method for making
JPS61183838A (en) Impregnated type cathode
JPS6148207B2 (en)
US4079164A (en) Base metal plate for directly heated oxide cathode
JPS6019097B2 (en) Manufacturing method of thermionic emissive material
JP2923980B2 (en) Method of manufacturing field emission cold cathode
JPH11265653A (en) Electrode, and display device having the electrode
JP5562211B2 (en) Method for manufacturing silicon carbide semiconductor device
Oshima et al. Thin film cathodes of lanthanum hexaboride (LaB6)
JP2950689B2 (en) Field emission type electron source
ES351239A1 (en) Microheating elements,more particularly for cathodes of electron tubes
JP3033178B2 (en) Field emission type emitter
JPS6054734B2 (en) thermionic emission cathode
Satoh et al. LEED and XPS studies of the ZrOW (100) surface
JP2969913B2 (en) Field emission type emitter
JPH0676730A (en) Thermonic emission cathode
JPH05205696A (en) Electrode for discharge lamp and manufacture of the same
JPH0797473B2 (en) Electron-emitting device
JPH0624091B2 (en) Oxide cathode structure
Hanasaka et al. Electron Emission from Vacuum Evaporated Tin-oxide Films
JPH0694196B2 (en) Composite corrosion resistant electrode with boride coating and composite corrosion resistant heating element
KR20020063394A (en) Metal cathode and indirectly heated cathode assembly having the same
JPS6261236A (en) Impregnated cathode body structure