JP2923980B2 - Method of manufacturing field emission cold cathode - Google Patents

Method of manufacturing field emission cold cathode

Info

Publication number
JP2923980B2
JP2923980B2 JP18114089A JP18114089A JP2923980B2 JP 2923980 B2 JP2923980 B2 JP 2923980B2 JP 18114089 A JP18114089 A JP 18114089A JP 18114089 A JP18114089 A JP 18114089A JP 2923980 B2 JP2923980 B2 JP 2923980B2
Authority
JP
Japan
Prior art keywords
cold cathode
film
field emission
carbon film
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18114089A
Other languages
Japanese (ja)
Other versions
JPH0346729A (en
Inventor
正則 渡辺
博行 加道
信幸 吉池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18114089A priority Critical patent/JP2923980B2/en
Publication of JPH0346729A publication Critical patent/JPH0346729A/en
Application granted granted Critical
Publication of JP2923980B2 publication Critical patent/JP2923980B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明はプレーナ型冷陰極を用いた電界放出型冷陰極
の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a field emission cold cathode using a planar cold cathode.

従来の技術 従来から薄膜を用いた電界放出型冷陰極は数多く報告
されている。その中でも、第4図(特開昭63−274047号
公報の第5図参照)に示すようなプレーナ型冷陰極は、
100V程度の低電圧で電子放出がおこることが知られてい
る。絶縁基板1の表面に冷陰極2とゲート電極3をお互
いに対向させて構成されている。ゲート電極3に対向す
る冷陰極2の端面には多数の凸状部4が設けられてい
る。冷陰極2には高融点金属W、Mo,Ta,Zr,Siなど、お
よびこれらの合金の他に、WC,SiC,ZrCなどの炭化物が一
般に使用されている。冷陰極2とゲート電極3の間に約
100Vの電圧を印加すると、冷陰極の先端部には約107V/c
mの高電界が加わり、電子放出が起こる。
2. Description of the Related Art Conventionally, many field emission cold cathodes using thin films have been reported. Among them, a planar-type cold cathode as shown in FIG. 4 (see FIG. 5 of JP-A-63-274047) is
It is known that electron emission occurs at a low voltage of about 100V. The cold cathode 2 and the gate electrode 3 are configured to face each other on the surface of the insulating substrate 1. A large number of convex portions 4 are provided on the end surface of the cold cathode 2 facing the gate electrode 3. For the cold cathode 2, carbide such as WC, SiC, ZrC, etc. is generally used in addition to the high melting point metal W, Mo, Ta, Zr, Si and alloys thereof. Approximately between cold cathode 2 and gate electrode 3
When a voltage of 100 V is applied, about 10 7 V / c is applied to the tip of the cold cathode.
When a high electric field of m is applied, electron emission occurs.

発明が解決しようとする課題 この構成の電界放出型冷陰極は比較的低電圧で動作す
ることから、最近、特に注目を浴びるようになってき
た。しかし、陰極材料に金属、炭化物を使用するこの種
の電界放出型冷陰極は、一般にスペックルノイズと呼ば
れる放出電流の変動があり、不安定な電子源とされてい
て実用化に至っていない。その主な原因は電子放出が0.
1μm2以下の極めて微少な電極表面から起こっていて、
使用中に電極表面の形状が変化したり、表面の仕事関数
が変化し、電子放出部分が転々と変化するためであると
考えられている。
Problems to be Solved by the Invention The field emission type cold cathode of this configuration has been receiving particular attention recently since it operates at a relatively low voltage. However, this type of field emission cold cathode using a metal or carbide as a cathode material has a fluctuation in emission current generally called speckle noise, and is regarded as an unstable electron source, and has not been put to practical use. The main cause is that electron emission is 0.
Originating from extremely small electrode surfaces of 1 μm 2 or less,
It is considered that this is because the shape of the electrode surface changes during use, the work function of the surface changes, and the electron emission portion changes from one to another.

本発明は、こうした放出電流の変動が極めて小さい電
界放出型冷陰極を安価に製造する方法を提供することを
目的とする。
It is an object of the present invention to provide a method for inexpensively manufacturing a field emission type cold cathode in which the fluctuation of the emission current is extremely small.

課題を解決するための手段 本発明は、絶縁基板表面に低抵抗膜と炭素膜を積層
し、ホトリソグラフィ技術によって前記積層した低抵抗
膜と炭素膜の所定領域を除去して冷陰極とゲート電極を
同時に形成することを特徴とする。
Means for Solving the Problems The present invention provides a method of laminating a low-resistance film and a carbon film on the surface of an insulating substrate, removing predetermined regions of the laminated low-resistance film and the carbon film by photolithography, and forming a cold cathode and a gate electrode. Are simultaneously formed.

作用 冷陰極表面に厚さ0.01〜0.2μm、比抵抗1〜107Ω−
cmの炭素膜を積層した場合、冷陰極表面の限られた微小
部分に電子放出が集中しようとすると、炭素膜の内部抵
抗によって表面電位が低下し、いわゆる負帰還作用が働
くため、冷陰極表面の広い領域から電子放出が起こるよ
うになる。従って、冷陰極表面の特定の部分の形状変化
が起こり難く、安定した電子放出が得られる。
Action 0.01 to 0.2 μm thick, specific resistance 1 to 10 7 Ω on cold cathode surface
When a carbon film of cm is laminated, if electron emission tends to concentrate on a small part of the surface of the cold cathode, the internal resistance of the carbon film lowers the surface potential and a so-called negative feedback effect acts. The electron emission occurs from a wide area. Therefore, a change in shape of a specific portion of the cold cathode surface hardly occurs, and stable electron emission can be obtained.

また、炭素膜は、O2、H2Oを主成分とする真空容器内
の残留ガスと化学反応しても、CO,CO2、炭化水素などの
気体となって離散するため、常に清浄な炭素面が保持さ
れ、冷陰極表面の仕事関数の変化が起こり難い。従っ
て、10-5〜10-6Torrの真空度であっても安定した電子放
出が得られる特徴がある。
In addition, even if the carbon film chemically reacts with the residual gas in the vacuum vessel mainly composed of O 2 and H 2 O, it is dispersed as a gas such as CO, CO 2 , hydrocarbon, etc. The carbon surface is maintained, and the work function of the cold cathode surface hardly changes. Therefore, there is a feature that stable electron emission can be obtained even at a vacuum degree of 10 -5 to 10 -6 Torr.

この様な冷陰極は低抵抗導電膜と炭素膜を積層して構
成することができる。電極表面に形成する炭素膜はCVD
法によるアモルファス炭素膜、グラファイト膜、ダイヤ
モンド膜、あるいは有機高分子膜を所定の厚さに塗布
し、非酸化性雰囲気中で焼成して炭素膜を形成する方
法、ホトリソグラフィ技術によって冷陰極を形成し、ホ
トレジストを残したまま非酸化性雰囲気中で焼成して電
極表面にのみ炭素膜を残す方法などによって形成するこ
とができる(以下これらの炭素膜をグラファイト様膜と
呼ぶ)。
Such a cold cathode can be formed by laminating a low resistance conductive film and a carbon film. The carbon film formed on the electrode surface is CVD
A method of applying an amorphous carbon film, graphite film, diamond film, or organic polymer film to a predetermined thickness by the method and baking it in a non-oxidizing atmosphere to form a carbon film, forming a cold cathode by photolithography technology However, it can be formed by a method of baking in a non-oxidizing atmosphere while leaving the photoresist to leave a carbon film only on the electrode surface (hereinafter, these carbon films are referred to as graphite-like films).

実施例 以下に、本発明の実施例について図面を参照しながら
説明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

実施例1 第1図に本発明の実施例1の電極構成の要部断面図を
示す。絶縁基板5の表面に冷陰極6とゲート電極7を対
向させて構成されている。冷陰極6は金属電極8と、そ
の表面に被覆した炭素膜9で構成されている。冷陰極6
とゲート電極7の対向する部分の基板面には凹部10が形
成されている。
Embodiment 1 FIG. 1 is a sectional view showing a main part of an electrode configuration according to Embodiment 1 of the present invention. The cold cathode 6 and the gate electrode 7 are configured to face the surface of the insulating substrate 5. The cold cathode 6 is composed of a metal electrode 8 and a carbon film 9 coated on its surface. Cold cathode 6
A concave portion 10 is formed in a portion of the substrate surface opposite to the gate electrode 7.

尚、第2図に示すように、冷陰極先端部下部の金属膜
をエッチングし、炭素膜の庇11を形成してもよい。
Incidentally, as shown in FIG. 2, the metal film under the cold cathode tip portion may be etched to form the carbon film eaves 11.

次に、第1図に示す電界放出型冷陰極の製造方法につ
いて、第3図に基ずいて説明する。
Next, a method for manufacturing the field emission cold cathode shown in FIG. 1 will be described with reference to FIG.

絶縁基板、例えば、ガラス基板5の表面にスパタリン
グ法などによって厚さ0.2μmのタングステン膜8を形
成し、その表面にポリアクリルニトリル(以下PANと呼
ぶ)の膜を厚さ0.3μm塗布し(第3図(a))、ホト
リソ技術によって冷陰極6とゲート電極7を同時に形成
する(第3図(b))。
A tungsten film 8 having a thickness of 0.2 μm is formed on the surface of an insulating substrate, for example, a glass substrate 5 by a sputtering method or the like, and a film of polyacrylonitrile (hereinafter referred to as PAN) is applied on the surface with a thickness of 0.3 μm (see FIG. 3 (a), the cold cathode 6 and the gate electrode 7 are simultaneously formed by the photolithography technique (FIG. 3 (b)).

次に、この電極基板を窒素ガス雰囲気中で600℃に加
熱して比抵抗が約103Ω−cmの炭素膜12′を形成する
(第3図(c))。更に、バッファエッチ溶液に浸漬し
てガラス基板表面をエッチングして庇部14を形成する
(第3図(d))。
Next, the electrode substrate is heated to 600 ° C. in a nitrogen gas atmosphere to form a carbon film 12 ′ having a specific resistance of about 10 3 Ω-cm (FIG. 3C). Further, the glass substrate surface is etched by immersion in a buffer etch solution to form the eaves portion 14 (FIG. 3D).

PANの薄膜形成はPANをジメチルフォルマアミド(DM
F)の溶液に解して金属層8の表面に塗布して形成し
た。PANは焼成温度によって膜の抵抗値を大きく変える
ことができる。例えば、400℃で焼成すると比抵抗約106
Ω−cmの炭素膜ができ、800℃で焼成すれば約10Ω−cm
の炭素膜がえられる。本実施例ではPANについて述べた
が、焼成することによって比較的低抵抗になる有機高分
子であれば、例えばアクリル系樹脂、イミド系樹脂な
ど、特に限定することなく使用することができる。ま
た、グラファイトの微結晶粉末、低抵抗の炭素微粉末を
有機高分子に混合したものを使用することもできる。
To form a thin film of PAN, use dimethylformamide (DM
It was formed by dissolving in the solution of F) and applying to the surface of the metal layer 8. PAN can greatly change the resistance value of the film depending on the firing temperature. For example, when fired at 400 ° C, the specific resistance is about 10 6
A carbon film of Ω-cm is formed, and if fired at 800 ° C., about 10 Ω-cm
Is obtained. In this embodiment, PAN has been described. However, any organic polymer having a relatively low resistance when fired, such as an acrylic resin or an imide resin, can be used without particular limitation. Further, a mixture of a graphite fine crystal powder and a low-resistance carbon fine powder mixed with an organic polymer can also be used.

実施例2 第1図に示す電界放出型冷陰極の他の製造方法につい
て説明する。絶縁基板、例えば、ガラス基板5の表面に
スパタリング法によって厚さ0.2μmのタングステン膜
8を形成し、ホトレジスト膜を約1500A塗布し、通常の
ホトリソ技術によって冷陰極6とゲート電極7を同時に
形成する。冷陰極とゲート電極の間隔は1〜4μmであ
る。次に、冷陰極6とゲート電極7の表面のホトレジス
ト膜を除去しないで残したまま真空中または不活性ガス
(非酸化性)雰囲気中において600℃に加熱すると、レ
ジスト膜が炭素膜になる。更に、この電極基板をバッフ
ァエッチ溶液に浸漬してガラス基板表面を深さ約1μm
エッチングすると、実施例1と同様に第1図に示す構造
の電界放出型冷陰極を製造することができる。
Example 2 Another method of manufacturing the field emission cold cathode shown in FIG. 1 will be described. A tungsten film 8 having a thickness of 0.2 μm is formed on a surface of an insulating substrate, for example, a glass substrate 5 by a sputtering method, a photoresist film is applied to about 1500 A, and a cold cathode 6 and a gate electrode 7 are simultaneously formed by a usual photolithography technique. . The distance between the cold cathode and the gate electrode is 1 to 4 μm. Next, when the photoresist film on the surface of the cold cathode 6 and the gate electrode 7 is heated to 600 ° C. in a vacuum or in an inert gas (non-oxidizing) atmosphere without removing the photoresist film, the resist film becomes a carbon film. Further, the electrode substrate was immersed in a buffer etch solution to reduce the surface of the glass substrate to a depth of about 1 μm.
By etching, a field emission cold cathode having the structure shown in FIG. 1 can be manufactured as in the first embodiment.

レジスト膜を焼成して形成した炭素膜は一般に比抵抗
が106Ω−cm以上であるが、より低い焼成温度で低抵抗
の炭素膜を得るには実施例1と同様に、焼成することに
よって閉環構造を作るPANなど、またはアクリル系樹
脂、イミド系の樹脂あるいはグラファイト様の微粉末な
どを所定量混合したホトレジスト材料を使用することが
望ましい。
A carbon film formed by baking a resist film generally has a specific resistance of 10 6 Ω-cm or more. However, in order to obtain a low-resistance carbon film at a lower baking temperature, baking is performed in the same manner as in Example 1. It is desirable to use a photoresist material in which a predetermined amount of PAN or the like that forms a ring-closed structure, or an acrylic resin, an imide-based resin, or a graphite-like fine powder is mixed.

なお、炭素膜表面から電子放出が起こる本発明による
電界放出型冷陰極においては、低抵抗導電膜は従来から
使用されてきたW,Mo、Taなどの高融点金属、WSi、MoSi
などの合金、あるいはWC,TaCなどの炭化物のように高融
点金属に限定する必要はない。
In the field emission type cold cathode according to the present invention, in which electrons are emitted from the carbon film surface, the low-resistance conductive film is a conventionally used high-melting metal such as W, Mo, Ta, etc., WSi, MoSi.
It is not necessary to limit the material to high melting point metals such as alloys such as WC and TaC.

発明の効果 以上説明したように、本発明によれば、冷陰極先端部
に電流が集中することによる突沸的な冷陰極表面の破壊
または形状変化、仕事関数の変化によって起こる放出電
流変動が極めて小さい電界放出型冷陰極を安価に得るこ
とができる。
Advantageous Effects of the Invention As described above, according to the present invention, the fluctuation of the emission current caused by the sudden destruction or shape change of the cold cathode surface due to the concentration of current at the tip of the cold cathode, and the change of the work function are extremely small. A field emission cold cathode can be obtained at low cost.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明にかかる電界放出型冷陰極の一実施例の
要部断面図、第2図は同冷陰極の他の実施例の要部断面
図、第3図は同冷陰極の製造方法を示す工程図、第4図
は従来の電界放出型冷陰極の斜視図である。 1、5……絶縁基板、2、6……冷陰極、3、7……ゲ
ート電極、4、11、14……冷陰極庇部、8……低抵抗導
電膜、9……炭素膜、10……絶縁基板凹部、12……PAN
膜、12′……炭素膜、13……レジスト膜。
FIG. 1 is a sectional view of an essential part of an embodiment of a field emission type cold cathode according to the present invention, FIG. 2 is a sectional view of an essential part of another embodiment of the cold cathode, and FIG. FIG. 4 is a perspective view of a conventional field emission cold cathode. 1, 5, an insulating substrate, 2, 6, a cold cathode, 3, 7, a gate electrode, 4, 11, 14, a cold cathode eaves, 8, a low-resistance conductive film, 9, a carbon film, 10 ... recessed insulating substrate, 12 ... PAN
Film, 12 ': carbon film, 13: resist film.

フロントページの続き (56)参考文献 特開 昭52−4163(JP,A) 特開 昭63−13247(JP,A) 特開 昭63−274047(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01J 1/30 H01J 9/02 Continuation of front page (56) References JP-A-52-4163 (JP, A) JP-A-63-13247 (JP, A) JP-A-63-274047 (JP, A) (58) Fields studied (Int .Cl. 6 , DB name) H01J 1/30 H01J 9/02

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁基板表面に低抵抗膜と炭素膜を積層
し、ホトリソグラフィ技術によって前記積層した低抵抗
膜と炭素膜の所定領域を除去して冷陰極とゲート電極を
同時に形成することを特徴とする電界放出型冷陰極の製
造方法。
1. A method of forming a cold cathode and a gate electrode simultaneously by laminating a low resistance film and a carbon film on the surface of an insulating substrate and removing a predetermined region of the laminated low resistance film and the carbon film by photolithography. A method for manufacturing a field emission cold cathode, which is characterized by the following.
【請求項2】絶縁基板表面に低抵抗導電膜と有機高分子
膜を積層し、ホトリソグラフィ技術によって電極を形成
後、加熱焼成して炭素膜を形成することを特徴とする請
求項1記載の電界放出型冷陰極の製造方法。
2. The carbon film according to claim 1, wherein a low-resistance conductive film and an organic polymer film are laminated on the surface of the insulating substrate, and electrodes are formed by photolithography, followed by heating and baking to form a carbon film. A method for manufacturing a field emission cold cathode.
【請求項3】有機高分子膜が、低抵抗の炭素微粉末を含
有するものであることを特徴とする請求項2記載の電界
放出型冷陰極の製造方法。
3. The method according to claim 2, wherein the organic polymer film contains a low-resistance carbon fine powder.
【請求項4】ホトリソグラフィ技術を用いて冷陰極を形
成し、レジスト膜を残したまま加熱焼成して電極表面に
炭素膜を形成することを特徴とする請求項1記載の電界
放出型冷陰極の製造方法。
4. A field emission type cold cathode according to claim 1, wherein a cold cathode is formed by photolithography, and the carbon film is formed on the electrode surface by heating and baking while leaving the resist film. Manufacturing method.
【請求項5】レジスト材料が、低抵抗の炭素微粉末を含
有するホトレジストであることを特徴とする請求項4記
載の電界放出型冷陰極の製造方法。
5. The method according to claim 4, wherein the resist material is a photoresist containing low-resistance carbon fine powder.
JP18114089A 1989-07-12 1989-07-12 Method of manufacturing field emission cold cathode Expired - Fee Related JP2923980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18114089A JP2923980B2 (en) 1989-07-12 1989-07-12 Method of manufacturing field emission cold cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18114089A JP2923980B2 (en) 1989-07-12 1989-07-12 Method of manufacturing field emission cold cathode

Publications (2)

Publication Number Publication Date
JPH0346729A JPH0346729A (en) 1991-02-28
JP2923980B2 true JP2923980B2 (en) 1999-07-26

Family

ID=16095589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18114089A Expired - Fee Related JP2923980B2 (en) 1989-07-12 1989-07-12 Method of manufacturing field emission cold cathode

Country Status (1)

Country Link
JP (1) JP2923980B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071758A1 (en) * 2000-03-24 2001-09-27 Kabushiki Kaisha Toshiba Electron source, method of manufacture thereof, and flat display with electron source
JP2005026238A (en) * 2000-09-01 2005-01-27 Canon Inc Electron emitting device, electron emitting element, electron source, image display device, and display device of television broadcasting

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994028571A1 (en) * 1993-06-02 1994-12-08 Microelectronics And Computer Technology Corporation Amorphic diamond film flat field emission cathode
US6246168B1 (en) 1994-08-29 2001-06-12 Canon Kabushiki Kaisha Electron-emitting device, electron source and image-forming apparatus as well as method of manufacturing the same
KR100477722B1 (en) * 1997-08-19 2005-10-06 삼성에스디아이 주식회사 Surface Emission Field Emission Display
KR100477727B1 (en) * 1997-08-29 2005-06-07 삼성에스디아이 주식회사 Field emission display device and manufacturing method thereof
JP2000090811A (en) * 1998-09-16 2000-03-31 Agency Of Ind Science & Technol Cold electron emitting element and manufacture thereof
JP3154106B2 (en) 1998-12-08 2001-04-09 キヤノン株式会社 Electron-emitting device, electron source using the electron-emitting device, and image forming apparatus using the electron source
JP3874396B2 (en) 2000-01-13 2007-01-31 パイオニア株式会社 ELECTRON EMITTING ELEMENT, MANUFACTURING METHOD THEREOF, AND DISPLAY DEVICE USING ELECTRON EMITTING ELEMENT
JP3647436B2 (en) 2001-12-25 2005-05-11 キヤノン株式会社 Electron-emitting device, electron source, image display device, and method for manufacturing electron-emitting device
JP3840251B2 (en) 2004-03-10 2006-11-01 キヤノン株式会社 ELECTRON EMITTING ELEMENT, ELECTRON SOURCE, IMAGE DISPLAY DEVICE, INFORMATION DISPLAY REPRODUCING DEVICE USING THE IMAGE DISPLAY DEVICE, AND METHOD FOR MANUFACTURING THE SAME

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071758A1 (en) * 2000-03-24 2001-09-27 Kabushiki Kaisha Toshiba Electron source, method of manufacture thereof, and flat display with electron source
GB2366073A (en) * 2000-03-24 2002-02-27 Toshiba Kk Electron source method of manufacture thereof and flat display with electron source
US6670747B2 (en) 2000-03-24 2003-12-30 Kabushiki Kaisha Toshiba Electron source device, method of manufacturing the same, and flat display apparatus comprising an electron source device
GB2366073B (en) * 2000-03-24 2005-03-23 Toshiba Kk Electron source, method of manufacture thereof, and flat display with electron source
JP2005026238A (en) * 2000-09-01 2005-01-27 Canon Inc Electron emitting device, electron emitting element, electron source, image display device, and display device of television broadcasting

Also Published As

Publication number Publication date
JPH0346729A (en) 1991-02-28

Similar Documents

Publication Publication Date Title
US5341063A (en) Field emitter with diamond emission tips
JP2923980B2 (en) Method of manufacturing field emission cold cathode
EP0535953A2 (en) Field-emission type electronic device
US5332627A (en) Field emission type emitter and a method of manufacturing thereof
US6899584B2 (en) Insulated gate field emitter array
US5656883A (en) Field emission devices with improved field emission surfaces
JPH0799169A (en) Manufacture of silicon carbide electronic device
JPH07245276A (en) Method for manufacturing silicon carbide electronic device
JP3033179B2 (en) Field emission type emitter and method of manufacturing the same
US5610471A (en) Single field emission device
JP2950689B2 (en) Field emission type electron source
JP3033178B2 (en) Field emission type emitter
JPH0963460A (en) Electric field emitting cold cathode, and manufacture of the cold cathode
JPH0547296A (en) Electric field emission type electron source and manufacture thereof
JP2727193B2 (en) Method for manufacturing electron-emitting device
JP4915890B2 (en) Glass plate with electrodes made of conductive material
JP3044386B2 (en) MIM type electron-emitting device and method of manufacturing the same
JP2969913B2 (en) Field emission type emitter
JP3084272B2 (en) Field emission electron source
JP3437007B2 (en) Field emission cathode and method of manufacturing the same
JP3390255B2 (en) Field emission cathode device and method of manufacturing the same
JPH0456040A (en) Minute vacuum device
JP3084280B2 (en) Method for manufacturing field emission electron source, method for manufacturing flat light emitting device, and method for manufacturing display device
JP4312326B2 (en) Electron emission device
JP4312331B2 (en) Electron emission device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees