JPS6148207B2 - - Google Patents

Info

Publication number
JPS6148207B2
JPS6148207B2 JP13990378A JP13990378A JPS6148207B2 JP S6148207 B2 JPS6148207 B2 JP S6148207B2 JP 13990378 A JP13990378 A JP 13990378A JP 13990378 A JP13990378 A JP 13990378A JP S6148207 B2 JPS6148207 B2 JP S6148207B2
Authority
JP
Japan
Prior art keywords
oxide
base metal
cathode
carbide layer
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13990378A
Other languages
Japanese (ja)
Other versions
JPS5566819A (en
Inventor
Kazuo Sunahara
Akira Misumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13990378A priority Critical patent/JPS5566819A/en
Priority to US06/091,840 priority patent/US4313854A/en
Priority to GB7938665A priority patent/GB2041637B/en
Priority to FI793550A priority patent/FI793550A/en
Priority to NL7908305A priority patent/NL7908305A/en
Priority to DE2945995A priority patent/DE2945995C2/en
Publication of JPS5566819A publication Critical patent/JPS5566819A/en
Publication of JPS6148207B2 publication Critical patent/JPS6148207B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/14Solid thermionic cathodes characterised by the material

Landscapes

  • Solid Thermionic Cathode (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電子管用酸化物陰極、特にW,Mo,
Re,Taなどの高融点金属を含むNi合金を基体金
属とする酸化物陰極に関するものである。 最近、酸化物陰極を備えた電子管において、電
源スイツチ投入後、電子放射が起るまでの時間を
短縮させるために基体金属板の板厚を薄くしてカ
ソードの熱容量を減少させたり、あるいは基体金
属に直接通電加熱するいわゆる直熱方式の陰極を
用いることが検討されている。この場合、基体金
属は、従来より大きな高温強度をもつ事が必要と
なり、従来のNiに微量の還元性元素を含む基体
金属にかわつてW,Mo,Re,Taなどの高融点金
属を含む合金が基体金属として用いられている。 ところが、このような高融点金属は、Niに比
べて酸化しやすい特性を有している。このために
高融点金属を含む合金を基体金属とした酸化物陰
極を通常の製造方法で製作すると、高融点金属が
酸化し、この高融点金属酸化物とアルカリ土類金
属酸化物あるいはアルカリ土類炭酸塩との界面間
に急激な反応が起る。 そして、この界面反応の反応速度、反応生成物
量は、従来のNiに微量の還元性元素を含む基体
金属とアルカリ土類金属酸化物(以下オキサイド
という)との反応に比べると比較にならないほど
大きい。このように基体金属とオキサイド間に多
量の界面反応が起ると、基体金属とオキサイドと
の接触状況が大幅に変化し、オキサイドが基体金
属から剥れたり、あるいはオキサイドと基体金属
との接触が不十分で陰極動作中のオキサイド層の
温度が降下するなどしてオキサイドの電子放射量
が低下し、カソードとして全く実用にならなくな
つてしまうなどの欠点を有していた。 したがつて、本発明の目的は上記の欠点を除去
し、オキサイドと基体金属間の界面反応を防止さ
せ、電子放射寿命を長期間にわたつて維持できる
ようにした電子管用酸化物陰極を提供することに
ある。 このような目的を達成するために本発明による
電子管用酸化物陰極は、基体金属表面に化学的に
安定なSi,B,Ti,Zr,Hf,V,Nb,Ta,
Mo,Wなどの炭化物の少なくとも一種類の炭化
物層を設けて製造工程中に生じるオキサイドと基
体金属間の界面反応を抑制するようにしたもので
ある。以下本発明による電子管用酸化物陰極につ
いて詳細に説明する。 まず、電子管用酸化物陰極を構成する基体金属
板は、W,Mo,Re,Taなどの高融点金属の少な
くとも一種類を2重量%以上と、必要に応じて
Zr,Mg,Siなどの還元性元素と、残りNiを含む
合金から形成される。このような合金の例は次の
通り。 Ni−W−Mg(重量組成72.4%:27.5:0.1) Ni−W−Mo−Mg(80.9:2.0:17.0:0.1) Ni−W−Re−Mg(82.9:2.0:15.0:0.1) Ni−W−Mo−Re−Mg(80.1:2.0:15.8:2.0:
0.1) Ni−W−Si(72.4:27.5:0.1) Ni−W−Mo−Si(80.9:2.0:17.0:0.1) Ni−W−Re−Si(82.9:2.0:15.0:0.1) Ni−W−Mo−Re−Si(80.1:2.0:15.8:2.0:
0.1) Ni−W−Zr(72.1:27.5:0.4) Ni−W−Mo−Zr(80.6:2.0:17.0:0.4) Ni−W−Re−Zr(82.6:2.0:15.0:0.4) Ni−W−Mo−Re−Zr(79.8:2.0:15.8:2.0:
0.4) その他還元性元素としてはAl,Ti,U,Cr,
Nb,Thなどの一種またはそれ以上を上記のZr,
Mg,Siと共に、または代わりに使用してもよ
い。 Zrの場合は、基体金属中通常5重量%以下含ま
れ、その他の還元性元素の場合は通常基体金属中
不純物量程度含まれる。 また、高融点金属の量としては2重量%以上が
必要であり、これより少量では所望の高温強度,
電気比抵抗が得られない。 このような基体金属板上にSi,B,Ti,Zr,
Hf,V,Nb,Ta,Mo,Wなどの炭化物のうち
の少なくとも一種類を被着形成させ、この上に通
常の方法でオキサイド層を被着形成して酸化物陰
極を構成したものである。第1図は本発明による
電子管用酸化物陰極の一実施例を示すもので、1
は基体金属、2はオキサイド層、3は炭化物層で
ある。 この炭化物層は、例えばC2H2,C2H4などの炭
化水素ガス雰囲気中でSi,B,Ti,Zr,Hf,
V,Nb,Ta,Mo,Wの少なくとも一種類を電子
ビーム蒸着する、いわゆる反応性蒸着法によつて
形成することができる。そしてこの炭化物層の厚
さは層が存在すれば効果はあるが、あまり薄いと
基体金属の表面に炭化物層が斑点状に形成される
こともあるので前記表面を十分にカバーできず、
基体金属とオキサイドとの界面反応を抑制する効
果が薄い。従つて、量産性を考慮すれば50Å〜
5000Å、最も望ましいのは100〜1000Åである。
また炭化物層の厚さが5000Åをこえると、基体金
属中に含まれる還元性元素によるオキサイドの環
元作用が不活発になるように前記表面を炭化物層
が完全に覆つてしまい、カソードとしての電子放
射能が不足する。従つて炭化物層の厚さは5000Å
以下の範囲、望ましくは100〜1000Åの厚さが最
も良く、この場合は化学的に安定な炭化物層が基
体金属とオキサイドとの過激な界面反応を抑制
し、かつ基体金属中の還元性元素によるオキサイ
ドの還元作用は適度に行なわれ、安定した良好な
カソードが得られる。 また、W,Mo,Re,Taなどの高融点金属を含
む基体金属は、基体金属からオキサイド層が一般
に剥れ易いという理由で、基体金属表面にNi,
Ni−Co,Ni−W,Ni−Mo,Ni−Reなどの金属粉
を被着し、その上面にオキサイドを設けることも
行なわれるが、この場合は上記基体金属上にもし
くは金属粉を覆つて基体金属上に炭化物層を形成
すればよく、この構造のカソードでは、炭化物層
が前記金属粉が基体金属表面へ流出するのを防止
し、金属粉と界面反応生成物の反応も防止して通
常発生する金属粉の変質,変形を防止してカソー
ドの電子放射寿命を長くする効果が得られる。 次に、以上説明したことを具体例を用いて説明
する。 具体例 1 第2図は0.4wt%のZrと、27.5wt%のWと、残
りNiの合金からなる基体金属の上面に下記の表
1で示したようにA,B,C,D,Eの五種類の
炭化物層を被着形成したものと、炭化物層なしの
ものFとを作り、以後通常の方法により酸化物陰
極を製作し、カラーブラウン管に実装した時の陽
極最大電流の動作時間依存性を示し、縦軸は陽極
最大電流値の初期値に対する割合,横軸は陰極の
動作時間を示したものであり、表1の種類A〜F
を第1図の特性A〜Fに対応させている。この場
合、炭化物層は5×10-4TorrのC2H2雰囲気中で
Zr、Tiなどの金属を電子ビーム蒸着させる。い
わゆる反応性蒸着法によつて被着形成させたもの
である。
The present invention relates to oxide cathodes for electron tubes, particularly W, Mo,
This relates to an oxide cathode whose base metal is a Ni alloy containing high-melting point metals such as Re and Ta. Recently, in electron tubes equipped with oxide cathodes, the thickness of the base metal plate has been reduced to reduce the heat capacity of the cathode in order to shorten the time from when the power switch is turned on until electron emission occurs. The use of a so-called direct-heating cathode, which is heated by direct current heating, is being considered. In this case, the base metal needs to have greater high-temperature strength than conventional ones, and instead of the conventional base metal containing Ni and a trace amount of reducing elements, alloys containing high-melting point metals such as W, Mo, Re, and Ta are used. Used as a base metal. However, such high melting point metals have the property of being more easily oxidized than Ni. For this reason, when an oxide cathode using an alloy containing a high melting point metal as a base metal is manufactured using a normal manufacturing method, the high melting point metal oxidizes, and the high melting point metal oxide and alkaline earth metal oxide or alkaline earth metal oxide A rapid reaction occurs between the interface with the carbonate. The reaction rate and amount of reaction products of this interfacial reaction are incomparably greater than the conventional reaction between a base metal containing a small amount of reducing element in Ni and an alkaline earth metal oxide (hereinafter referred to as oxide). . When a large amount of interfacial reaction occurs between the base metal and the oxide, the contact situation between the base metal and the oxide changes significantly, and the oxide may peel off from the base metal, or the contact between the oxide and the base metal may change. If insufficient, the temperature of the oxide layer during cathode operation would drop, resulting in a decrease in the amount of electron emission from the oxide, making it completely useless as a cathode. Therefore, an object of the present invention is to provide an oxide cathode for an electron tube that eliminates the above-mentioned drawbacks, prevents interfacial reactions between the oxide and the base metal, and maintains the electron emission life over a long period of time. There is a particular thing. In order to achieve this purpose, the oxide cathode for electron tubes according to the present invention has chemically stable Si, B, Ti, Zr, Hf, V, Nb, Ta,
A carbide layer of at least one type of carbide such as Mo or W is provided to suppress the interfacial reaction between the oxide and the base metal that occurs during the manufacturing process. The oxide cathode for electron tubes according to the present invention will be explained in detail below. First, the base metal plate constituting the oxide cathode for an electron tube contains at least 2% by weight of at least one type of high-melting point metal such as W, Mo, Re, Ta, etc., as necessary.
It is formed from an alloy containing reducing elements such as Zr, Mg, and Si, and the remainder Ni. Examples of such alloys are: Ni-W-Mg (weight composition 72.4%: 27.5: 0.1) Ni-W-Mo-Mg (80.9: 2.0: 17.0: 0.1) Ni-W-Re-Mg (82.9: 2.0: 15.0: 0.1) Ni-W −Mo−Re−Mg (80.1:2.0:15.8:2.0:
0.1) Ni-W-Si (72.4:27.5:0.1) Ni-W-Mo-Si (80.9:2.0:17.0:0.1) Ni-W-Re-Si (82.9:2.0:15.0:0.1) Ni-W- Mo−Re−Si (80.1:2.0:15.8:2.0:
0.1) Ni-W-Zr (72.1:27.5:0.4) Ni-W-Mo-Zr (80.6:2.0:17.0:0.4) Ni-W-Re-Zr (82.6:2.0:15.0:0.4) Ni-W- Mo−Re−Zr (79.8:2.0:15.8:2.0:
0.4) Other reducing elements include Al, Ti, U, Cr,
One or more of Nb, Th, etc. are added to the above Zr,
May be used together with or instead of Mg and Si. In the case of Zr, it is usually contained in the base metal in an amount of 5% by weight or less, and in the case of other reducing elements, it is usually contained in the amount of impurities in the base metal. In addition, the amount of high melting point metal needs to be 2% by weight or more, and a smaller amount will not achieve the desired high temperature strength.
Electrical resistivity cannot be obtained. Si, B, Ti, Zr,
An oxide cathode is formed by depositing at least one type of carbide such as Hf, V, Nb, Ta, Mo, W, etc., and depositing an oxide layer on top of this by a conventional method. . FIG. 1 shows an embodiment of an oxide cathode for an electron tube according to the present invention.
is a base metal, 2 is an oxide layer, and 3 is a carbide layer. This carbide layer is made of Si , B, Ti , Zr , Hf ,
It can be formed by a so-called reactive deposition method in which at least one of V, Nb, Ta, Mo, and W is deposited by electron beam. The thickness of this carbide layer is effective if it exists, but if it is too thin, the carbide layer may be formed in spots on the surface of the base metal, so the surface cannot be sufficiently covered.
It is less effective in suppressing the interfacial reaction between the base metal and the oxide. Therefore, considering mass production, 50Å~
5000 Å, most preferably 100-1000 Å.
Furthermore, when the thickness of the carbide layer exceeds 5000 Å, the carbide layer completely covers the surface so that the ring element action of the oxide by the reducing element contained in the base metal becomes inactive, and the electrons as a cathode become inactive. There is a lack of radioactivity. Therefore, the thickness of the carbide layer is 5000Å
The thickness in the following range, preferably 100 to 1000 Å, is best; in this case, the chemically stable carbide layer suppresses the radical interfacial reaction between the base metal and the oxide, and The reducing action of the oxide is carried out appropriately, and a stable and good cathode can be obtained. In addition, base metals containing high-melting point metals such as W, Mo, Re, Ta, etc. generally have Ni on the surface of the base metal because the oxide layer tends to peel off from the base metal.
It is also possible to deposit metal powder such as Ni-Co, Ni-W, Ni-Mo, Ni-Re, etc. and provide oxide on the top surface. It is only necessary to form a carbide layer on the base metal, and in a cathode with this structure, the carbide layer prevents the metal powder from flowing out to the base metal surface, and also prevents the reaction between the metal powder and the interfacial reaction product. This has the effect of prolonging the electron emission life of the cathode by preventing alteration and deformation of the generated metal powder. Next, what has been explained above will be explained using a specific example. Specific example 1 Figure 2 shows A, B, C, D, E as shown in Table 1 below on the top surface of a base metal made of an alloy of 0.4wt% Zr, 27.5wt% W, and the rest Ni. One with five types of carbide layers deposited on the other, and one with no carbide layer F were made. After that, oxide cathodes were fabricated using the usual method, and the dependence of the anode maximum current on operating time when mounted on a color cathode ray tube. The vertical axis shows the ratio of the anode maximum current value to the initial value, and the horizontal axis shows the cathode operating time. Types A to F in Table 1
corresponds to the characteristics A to F in FIG. In this case, the carbide layer is formed in a C 2 H 2 atmosphere of 5 × 10 -4 Torr.
Electron beam evaporation of metals such as Zr and Ti. It is formed by a so-called reactive vapor deposition method.

【表】 第2図から明らかなように、特性B,D,Eで
示したものは、極めて優れた特性を有し、その中
でも特にB,EはDよりさらに優れた特性を有す
る。 一方特性Cで示した炭化物層の厚さが大きなも
のは、陽極最大電流値の初期値に対する割合は劣
化が小さいが、初期値そのものが第2表に示すよ
うに不足、換言すればCのものは電子放射能が初
期においてすでに不足であり、カソードとして実
用とならなかつた。また、特性Fで示した炭化物
層の厚さが小さいものは、特性Aで示した炭化物
層が存在しないものに比べて効果はあることが認
められる。これに対し層のないものでは、動作中
の電子放射量が激しく減少する。特に特性Fは炭
化物層を形成しなかつたときの電子放射の劣化状
況を示したものであり、この場合は極めて大きな
劣化を示し、本願の有効性が明瞭に理解されるも
のである。
[Table] As is clear from FIG. 2, the properties B, D, and E have extremely excellent properties, and among these, B and E in particular have even better properties than D. On the other hand, for those with a large carbide layer thickness shown in characteristic C, the ratio of the anode maximum current value to the initial value is small, but the initial value itself is insufficient as shown in Table 2. In other words, for C. The electron radioactivity was already insufficient in the early stage, so it could not be used as a practical cathode. Moreover, it is recognized that the one in which the thickness of the carbide layer shown in characteristic F is small is more effective than the one in which there is no carbide layer shown in characteristic A. On the other hand, those without layers drastically reduce the amount of electron emission during operation. In particular, characteristic F shows the state of deterioration of electron emission when no carbide layer is formed, and in this case, the deterioration is extremely large, and the effectiveness of the present application can be clearly understood.

【表】 具体例 2 第3図は表3にG,H,I,Jに示す四種類の
基体金属に厚さ200〜600ÅのZrCの炭化物層を被
着形成したときの特性Iと、炭化物層を全く形成
しなかつたときの特性についての基体金属組成
の影響を示した特性図である。
[Table] Specific example 2 Figure 3 shows the characteristics I and carbide when a ZrC carbide layer with a thickness of 200 to 600 Å is deposited on the four types of base metals shown in Table 3 as G, H, I, and J. FIG. 3 is a characteristic diagram showing the influence of the base metal composition on the characteristics when no layer is formed.

【表】 この場合、炭化物層の作り方,カソード,カラ
ーブラウン管の作り方などは全て具体例1に準じ
た。 この第3図から明らかなように基体金属の組成
が大幅に変つても特性で示したように本願の適
当な厚さの炭化物層を有するものは使用中の電子
放射量の劣化は極めて少ない。 また特性で示したように炭化物層を有しない
カソードは基体金属の影響も大きくなり、またカ
ソード使用中の電子放射量の劣化が大きくなる。
したがつて、このように本願の炭化物層は高融点
金属を含む基体金属を用いた酸化物陰極では、基
体金属の組成が多少変動しても極めて大きな効果
が得られる。 また、上記実施例においては、炭化物層の形成
を炭化水素ガス雰囲気中での反応性蒸着法を用い
た場合について説明したが、炭化水素ガス中で金
属ターゲツトをスパツタする反応性スパツタリン
グ、あるいは炭化物ターゲツトを用いる通常のス
パツタリング、またはZrCl4,TiCl4などのハロゲ
ン化物ガスと炭化水素ガス,水素ガスとの混合ガ
スを熱した基材に供給して炭化物被膜を得る
CVD法などの他の方法で形成してもよい。 また第1図では炭化物層をオキサイド層の被着
面及びその付近にのみ設けたが、作業性を考慮す
ればもつと広範囲に設けてもよい。また、前述の
例では炭化物層は一種類のみを基体金属板表面に
被着することについて述べたが、これは組合せで
もよい。 以上説明したように、本発明による電子管用酸
化物陰極によれば、酸化物陰極の使用中における
電子放射能の劣化を防止して、長期間にわたつて
電子放射量を維持させ、電子管の品質,信頼性等
を大幅に向上させることができる極めて優れた効
果が得られる。
[Table] In this case, the method for making the carbide layer, the cathode, the color cathode ray tube, etc. were all in accordance with Example 1. As is clear from FIG. 3, even if the composition of the base metal changes significantly, as shown in the characteristics, the product having a carbide layer of an appropriate thickness according to the present invention shows extremely little deterioration in the amount of electron emission during use. Furthermore, as shown in the characteristics, a cathode without a carbide layer is greatly influenced by the base metal, and the amount of electron radiation is significantly degraded during use of the cathode.
Therefore, in the case of an oxide cathode in which the carbide layer of the present application uses a base metal containing a high-melting point metal, an extremely large effect can be obtained even if the composition of the base metal varies to some extent. Furthermore, in the above embodiments, the carbide layer was formed by reactive vapor deposition in a hydrocarbon gas atmosphere, but reactive sputtering, which sputters a metal target in a hydrocarbon gas, or a carbide target A carbide film is obtained by normal sputtering using a chloride gas, or by supplying a mixed gas of a halide gas such as ZrCl 4 or TiCl 4 and a hydrocarbon gas or hydrogen gas to a heated substrate.
It may be formed by other methods such as CVD method. Further, in FIG. 1, the carbide layer is provided only on the surface to which the oxide layer is adhered and its vicinity, but it may be provided over a wider area if workability is taken into consideration. Further, in the above example, only one type of carbide layer is deposited on the surface of the base metal plate, but a combination may be used. As explained above, the oxide cathode for electron tubes according to the present invention prevents deterioration of electron radioactivity during use of the oxide cathode, maintains the amount of electron radiation over a long period of time, and improves the quality of the electron tube. , an extremely excellent effect can be obtained that can significantly improve reliability, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電子管用酸化物陰極の一実施
例を示す側面図、第2図および第3図は本発明に
よる電子管用酸化物陰極の陽極最大電流の動作時
間依存性を示す特性図である。 1……基体金属、2……オキサイド層、3……
炭化物層。
FIG. 1 is a side view showing one embodiment of an oxide cathode for an electron tube according to the present invention, and FIGS. 2 and 3 are characteristic diagrams showing the operation time dependence of the anode maximum current of the oxide cathode for an electron tube according to the present invention. It is. 1... Base metal, 2... Oxide layer, 3...
carbide layer.

Claims (1)

【特許請求の範囲】 1 Niを主成分とし、これに少なくとも一種類
の高融点金属を2重量%以上含む合金からなる基
体金属板と、この基体金属板に被着形成された電
子放射性アルカリ土類金属酸化物層とを有する電
子管用酸化物陰極において、前記基体金属板の前
記電子放射性アルカリ土類金属酸化物を被着する
下地面にSi,B,Ti,Zr,Hf,V,Nb,Ta,
Mo,Wの炭化物のうちの少なくとも一種類の炭
化物層を被着形成してなることを特徴とする電子
管用酸化物陰極。 2 前記基体金属板はZr,Al,Mg,Si,Ti,
U,Cr,Nb,Thなどの還元性元素の少なくとも
一種類を含むことを特徴とする特許請求の範囲第
1項記載の電子管用酸化物陰極。 3 前記炭化物層の膜厚を50〜5000Åとしたこと
を特徴とする前記特許請求の範囲第1項記載の電
子管用酸化物陰極。 4 前記炭化物層の膜厚を100〜1000Åとしたこ
とを特徴とする前記特許請求の範囲第1項記載の
電子管用酸化物陰極。
[Scope of Claims] 1. A base metal plate made of an alloy containing Ni as a main component and at least 2% by weight of at least one type of high-melting point metal, and an electron-emitting alkaline earth deposited on the base metal plate. In the oxide cathode for an electron tube having a metal oxide layer, Si, B, Ti, Zr, Hf, V, Nb, Ta,
An oxide cathode for an electron tube, comprising a carbide layer of at least one of Mo and W carbides. 2 The base metal plate is made of Zr, Al, Mg, Si, Ti,
The oxide cathode for an electron tube according to claim 1, characterized in that it contains at least one type of reducing element such as U, Cr, Nb, and Th. 3. The oxide cathode for an electron tube according to claim 1, wherein the carbide layer has a thickness of 50 to 5000 Å. 4. The oxide cathode for an electron tube according to claim 1, wherein the carbide layer has a thickness of 100 to 1000 Å.
JP13990378A 1978-11-15 1978-11-15 Oxide cathode for electron tube Granted JPS5566819A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP13990378A JPS5566819A (en) 1978-11-15 1978-11-15 Oxide cathode for electron tube
US06/091,840 US4313854A (en) 1978-11-15 1979-11-06 Oxide-coated cathode for electron tube
GB7938665A GB2041637B (en) 1978-11-15 1979-11-08 Oxide-coated cathode for electron tube
FI793550A FI793550A (en) 1978-11-15 1979-11-13 KATOD MED OXIDBELAEGGNING FOER ELEKTRONROER
NL7908305A NL7908305A (en) 1978-11-15 1979-11-13 OXIDE-COATED CATHOD FOR ELECTRON TUBE.
DE2945995A DE2945995C2 (en) 1978-11-15 1979-11-14 Oxide-coated cathode for electron tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13990378A JPS5566819A (en) 1978-11-15 1978-11-15 Oxide cathode for electron tube

Publications (2)

Publication Number Publication Date
JPS5566819A JPS5566819A (en) 1980-05-20
JPS6148207B2 true JPS6148207B2 (en) 1986-10-23

Family

ID=15256300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13990378A Granted JPS5566819A (en) 1978-11-15 1978-11-15 Oxide cathode for electron tube

Country Status (6)

Country Link
US (1) US4313854A (en)
JP (1) JPS5566819A (en)
DE (1) DE2945995C2 (en)
FI (1) FI793550A (en)
GB (1) GB2041637B (en)
NL (1) NL7908305A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641636A (en) * 1979-09-12 1981-04-18 Hitachi Ltd Directly heated type oxide cathode
GB2059676B (en) * 1979-09-12 1983-07-20 Hitachi Ltd Oxide-coated cathodes
NL8100928A (en) * 1981-02-26 1982-09-16 Philips Nv OXYD CATHODE.
JPS59164156A (en) * 1983-03-09 1984-09-17 Oki Electric Ind Co Ltd Thermal head
DE3323473A1 (en) * 1983-06-29 1985-01-03 Siemens AG, 1000 Berlin und 8000 München QUICK HEATING CATHODE
DE3329106A1 (en) * 1983-08-11 1985-02-21 Siemens AG, 1000 Berlin und 8000 München GAS DISCHARGE DISPLAY DEVICE WITH A RE-ACCELERATION RANGE
US4617492A (en) * 1985-02-04 1986-10-14 General Electric Company High pressure sodium lamp having improved pressure stability
JP2607654B2 (en) * 1988-12-16 1997-05-07 株式会社東芝 Indirectly heated cathode structure and electron gun structure using the same
JP2758244B2 (en) * 1990-03-07 1998-05-28 三菱電機株式会社 Cathode for electron tube
DE4026300A1 (en) * 1990-08-20 1992-02-27 Siemens Ag Electron emitter for X=ray tube - is of material contg. rare earth element covering support layer of large flat surface withstanding vibration
DE4207220A1 (en) * 1992-03-07 1993-09-09 Philips Patentverwaltung SOLID ELEMENT FOR A THERMIONIC CATHODE
JPH0850849A (en) * 1994-05-31 1996-02-20 Nec Kansai Ltd Cathode member and electronic tube using it
JPH08222119A (en) * 1994-12-07 1996-08-30 Samsung Display Devices Co Ltd Direct heated cathode structure
KR100195167B1 (en) * 1994-12-29 1999-06-15 손욱 Cathode heated directly and the manufacturing method thereof
FR2810446A1 (en) * 2000-06-14 2001-12-21 Thomson Tubes & Displays Improved oxide coated cathode incorporating electrical conducting grains acting as conducting bridges between the metal support and the oxide layer through the interface layer formed between them
CA2663438C (en) * 2006-10-02 2013-08-06 Shoei Chemical Inc. Nickel-rhenium alloy powder and conductor paste containing the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE515833A (en) * 1951-11-29
BE525821A (en) * 1953-01-19
US3170772A (en) * 1961-01-05 1965-02-23 Tokyo Shibaura Electric Co Oxide coated cathodes for electron tubes
US3500106A (en) * 1965-09-10 1970-03-10 Bell & Howell Co Cathode
US3842309A (en) * 1970-11-12 1974-10-15 Philips Corp Method of manufacturing a storage cathode and cathode manufactured by said method
JPS4822295B1 (en) * 1970-12-04 1973-07-05
US3719856A (en) * 1971-05-19 1973-03-06 O Koppius Impregnants for dispenser cathodes
US3879830A (en) * 1971-06-30 1975-04-29 Gte Sylvania Inc Cathode for electron discharge device having highly adherent emissive coating of nickel and nickel coated carbonates
US4081713A (en) * 1976-01-28 1978-03-28 Hitachi, Ltd. Directly heated oxide cathode
GB1582837A (en) * 1976-07-10 1981-01-14 Emi Varian Ltd Electron emitter
JPS5339054A (en) * 1976-09-22 1978-04-10 Hitachi Ltd Basement metal plate material for direct heated oxide cathode
US4101800A (en) * 1977-07-06 1978-07-18 The United States Of America As Represented By The Secretary Of The Navy Controlled-porosity dispenser cathode

Also Published As

Publication number Publication date
FI793550A (en) 1980-05-16
GB2041637A (en) 1980-09-10
NL7908305A (en) 1980-05-19
GB2041637B (en) 1983-02-09
DE2945995C2 (en) 1982-03-25
JPS5566819A (en) 1980-05-20
DE2945995A1 (en) 1980-05-22
US4313854A (en) 1982-02-02

Similar Documents

Publication Publication Date Title
JPS6148207B2 (en)
EP0330355B1 (en) Cathode for electron tube
US6124666A (en) Electron tube cathode
US4215180A (en) Oxide-coated cathodes for electron tubes
EP0053867B1 (en) Thermionic electron emitters and methods of making them
US4081713A (en) Directly heated oxide cathode
US4260665A (en) Electron tube cathode and method for producing the same
JPS6023454B2 (en) electron tube cathode
KR830000680B1 (en) Oxide cathode for electron tube
US4636681A (en) Directly heated cathode
JPH05266786A (en) Cathode
JPS6216490B2 (en)
US5747921A (en) Impregnation type cathode for a cathodic ray tube
US20060012283A1 (en) Oxide cathode
KR830002601B1 (en) Oxide Cathode for Electron Tubes
KR100261454B1 (en) Cathode
JPH0624091B2 (en) Oxide cathode structure
JPS6057172B2 (en) oxide cathode
KR830000827B1 (en) Electron pipe cathode
JPS58106734A (en) Directly heated electron tube cathode
JPH1167056A (en) Cathode for electron tube
JPH0552617B2 (en)
JPH0821308B2 (en) Electron tube cathode
JPH0681198A (en) Insoluble electrode and its production
JPH09115425A (en) Cathode for electron tube