JPS60190657A - Fuel supply control device of internal-combustion engine - Google Patents

Fuel supply control device of internal-combustion engine

Info

Publication number
JPS60190657A
JPS60190657A JP59046462A JP4646284A JPS60190657A JP S60190657 A JPS60190657 A JP S60190657A JP 59046462 A JP59046462 A JP 59046462A JP 4646284 A JP4646284 A JP 4646284A JP S60190657 A JPS60190657 A JP S60190657A
Authority
JP
Japan
Prior art keywords
fuel
temperature
intake air
injection valve
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59046462A
Other languages
Japanese (ja)
Inventor
Shoji Watanabe
昭二 渡辺
Toshinari Nagai
俊成 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59046462A priority Critical patent/JPS60190657A/en
Publication of JPS60190657A publication Critical patent/JPS60190657A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/12Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating electrically
    • F02M31/125Fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To increase a quantity of intake air to an engine and improve its output performance, by equipping to the engine an intake air temperature detecting means, which detects a temperature of the intake air, and a fuel temperature regulating means which regulates a temperature of fuel. CONSTITUTION:The main unit of an eigine 1 provides in its intake passage 2 a main injection valve 4 in the vicinity of an intake valve 3. The intake passage 2 provides in its upstream side a subinjection valve 5. The intake passage 2 provides an intake air temperature sensor 6 generating analog voltage in accordance with a temperature of intake air. A fuel supply pipe 7 provides a fuel temperature sensor 8 generating analog voltage in accordance with a temperature of fuel. A control circuit 11, processing each output signal of the intake air temperature sensor 6 and the fuel temperature sensor 8, performs control or the like of a temperature controller 10. In this way, a cooling effect of the intake air can be improved in the engine and its output performance is improved because the temperature of the fuel additionally injected from the subjection valve 5 is accurately regulated.

Description

【発明の詳細な説明】 技術分野 本発明は吸入空気を冷却するために副噴射弁を付加した
内燃機関の燃料噴射時期制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to a fuel injection timing control device for an internal combustion engine which is provided with a sub-injection valve for cooling intake air.

従来技術 各気筒毎に設けられた主噴射弁の外に、吸気通路の上流
たとえばサージタンクあるいはスロットルボディ近傍に
副噴射弁を設けた内燃機関は既に知られている。この副
噴射弁の燃料噴射により吸入空気を冷却して充填効率を
向上させ、従って、出力性能を向上させることができる
。つまり、条件によっては吸気温度が低下し、所期の目
的が達成されることもあり得るが、ここで重要なのは副
噴射弁より吸入空気中に噴射された燃料粒が確実に空気
から熱を奪って霧化、気化することによって空気を冷却
し、吸入空気重量増大が得られるという点にある。この
ためには、吸気中に噴射された燃料粒が燃焼室に到達す
る迄の間に空気よりも低い温度になる条件が必要であり
、この条件が成立しない限り、空気から燃料粒への熱流
入は考えられず、吸気温度の低下も期待できない。従来
、この空気と燃料粒との温度関係は成り行きに任されて
おり、燃料配管等の構成、運転条件等によっては、吸気
温度よりも燃料温度の方が遥かに高い領域が存在し、こ
の結果、吸入空気の冷却効果が低下するという問題点が
あった。
BACKGROUND OF THE INVENTION Internal combustion engines are already known in which, in addition to a main injection valve provided for each cylinder, a sub-injection valve is provided upstream of an intake passage, for example, near a surge tank or a throttle body. The fuel injection from the sub-injector cools the intake air, improving charging efficiency, and thus improving output performance. In other words, depending on the conditions, the intake air temperature may drop and the desired purpose may be achieved, but what is important here is that the fuel particles injected into the intake air from the sub-injector reliably remove heat from the air. By atomizing and vaporizing the air, the air is cooled and the weight of the intake air can be increased. To achieve this, a condition is required in which the temperature of the fuel particles injected into the intake air becomes lower than that of the air before reaching the combustion chamber, and unless this condition is met, the heat from the air to the fuel particles is No inflow is expected, and no reduction in intake air temperature can be expected. Conventionally, the temperature relationship between the air and fuel particles has been left to its own devices, and depending on the configuration of fuel piping, operating conditions, etc., there may be regions where the fuel temperature is much higher than the intake air temperature. However, there was a problem in that the cooling effect of the intake air was reduced.

発明の目的 本発明の目的は、上述の従来形における問題点に鑑み、
運転条件等によって種々変化する吸入空気温度に応じて
副燃料噴射弁から供給さ′れる燃料温度を制御し、空気
から燃料粒への熱移動を促す条件を確実に作り出すこと
により、副噴射弁からの付加的燃料が噴射されてから燃
焼室に到達するまでの霧化、気化割合を高め、吸入空気
量の増大。
Purpose of the Invention The purpose of the present invention is to solve the problems of the conventional type described above.
By controlling the temperature of the fuel supplied from the auxiliary fuel injection valve according to the intake air temperature, which varies depending on the operating conditions, etc., and reliably creating conditions that promote heat transfer from the air to the fuel particles, the temperature of the fuel supplied from the auxiliary fuel injection valve is controlled. This increases the atomization and vaporization rate from when the additional fuel is injected until it reaches the combustion chamber, increasing the amount of intake air.

出力性能の向上を図ることにある。The purpose is to improve output performance.

発明の構成 上述の目的を達成するために本発明によれば、各気筒毎
に設けられた主噴射弁に加えて吸気通路の上流部に各気
筒共通に設けられた副噴射弁を具備する内燃機関におい
て、該機関の吸入空気温度を検出する吸入空気温度検出
手段、および該吸入空気温度に応じて前記副噴射弁に供
給される燃料の温度を調整する燃料温度調整手竣を具備
することを特徴とする内燃機関の燃料供給装置が提供さ
れる。
Structure of the Invention In order to achieve the above-mentioned object, the present invention provides an internal combustion engine which includes a main injection valve provided for each cylinder and a sub-injection valve provided in common for each cylinder at the upstream portion of the intake passage. The engine is provided with an intake air temperature detection means for detecting the intake air temperature of the engine, and a fuel temperature adjustment device for adjusting the temperature of the fuel supplied to the sub-injection valve according to the intake air temperature. A fuel supply device for an internal combustion engine is provided.

実施例 以下、図面により本発明の詳細な説明する。Example Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は副噴射弁6から噴射された燃料粒が気化するプ
ロセスを説明するための図である。副噴射弁5より噴射
された燃料粒は、8点から空気流に乗ってb点に移動し
ながら空気から熱を奪い、低沸点成分から徐々に気化し
、燃料粒は小さくなり、霧化が促進される。さらにb点
から0点でも同様の経過をたどり、d点で気化が完了し
、気体となる。つまり、燃料粒の気化完了はd点より上
流側であっても下流側であっても好ましくない。
FIG. 1 is a diagram for explaining the process in which fuel particles injected from the sub-injection valve 6 vaporize. The fuel particles injected from the sub-injection valve 5 take heat from the air while riding the air flow from point 8 to point b, and gradually vaporize from low-boiling point components, resulting in smaller fuel particles and atomization. promoted. Further, the same process occurs from point b to point 0, and vaporization is completed at point d, turning into a gas. In other words, it is not preferable for the vaporization of the fuel particles to be completed either upstream or downstream of point d.

第2図もまた燃料粒が気化するプロセスを説明するため
のグラフである。第2図では、副噴射弁5により噴射さ
れる燃料圧力、温度をPl、TIとし。
FIG. 2 is also a graph for explaining the process of vaporizing fuel particles. In FIG. 2, the pressure and temperature of the fuel injected by the sub-injection valve 5 are expressed as Pl and TI.

燃料が噴射される吸気管内の圧力、温度をP2+T2+
 蒸留性状の異なる各燃料成分の沸点(気化する点)を
示す特性を、それぞれ、A、B、O。
The pressure and temperature inside the intake pipe where fuel is injected are P2+T2+
Characteristics indicating the boiling point (vaporization point) of each fuel component with different distillation properties are A, B, and O, respectively.

Dで与えである。P、、 Tlの状態で、P2の圧力条
件下に噴射された燃料は気体となるA成分と液状のまま
のB−D成分に分かれる。このうち、B〜D成分は燃料
圧力、噴射弁形状、吸気流側の条件等によって、あるも
のは管壁と衝突し液状燃料となり、またあるものは液滴
となって、空気中に浮遊する。ここで吸入空気温度はT
2であるから、液滴となって存在している燃料は、空気
から熱を奪いながら、前述の気化の過程をたどることに
なり、吸入空気が冷却される。
D is given. In the state of P,, Tl, the fuel injected under the pressure condition of P2 is separated into an A component which becomes a gas and a B-D component which remains a liquid. Of these, some of the components B to D will collide with the pipe wall and become liquid fuel, while others will become droplets and float in the air, depending on the fuel pressure, the shape of the injection valve, the conditions on the intake air flow side, etc. . Here, the intake air temperature is T
2, the fuel present in the form of droplets follows the aforementioned vaporization process while taking heat from the air, thereby cooling the intake air.

既に述べたように、燃料粒が空気から熱を奪い、吸入空
気を冷却するための重要なことは、第2図において、T
2 ) Tlという条件が吸気管内で満たされることで
あり、T2よりも遥かに高い温度を有する燃料を副噴射
弁5を介して吸気管上流部に噴射したとしても、吸気管
内において、吸入空気から熱を奪い、燃料自身は気化し
、空気は冷却という過程をたどるとはほとんど不可能で
ある。逆に、燃料の温度T1が低過ぎると、インチ−ク
ツくルプ3に到達しても気化が完了し々いことがある。
As already mentioned, the important thing for the fuel particles to remove heat from the air and cool the intake air is to
2) The condition Tl is satisfied in the intake pipe, and even if fuel with a temperature much higher than T2 is injected into the upstream part of the intake pipe through the sub-injection valve 5, the condition Tl is satisfied in the intake pipe. It is almost impossible to follow the process of removing heat, vaporizing the fuel itself, and cooling the air. On the other hand, if the temperature T1 of the fuel is too low, vaporization may not be completed even when the fuel reaches the engine coolant 3.

つまり、差T2 Tl c > o )は適切な範囲内
にあることが好ましい。
That is, the difference T2 Tlc > o) is preferably within an appropriate range.

本発明においては、上記差T2−T1を適切な範囲にな
るように燃料の温度を調整している。
In the present invention, the temperature of the fuel is adjusted so that the difference T2-T1 is within an appropriate range.

第3図は本発明に係る内燃機関の燃料供給制御装置の第
1の実施例を示す全体概要図である。第3図において、
機関本体1の吸気通路2のインテークバルブ3の近傍に
は主噴射弁4が設けられている。この主噴射弁4は気筒
数だけ存在する。また、吸気通路2の上流側たとえばサ
ージタンクもしくはスロットルボディ近傍には副噴射弁
5が設けられている。なお、この副噴射弁5は各気筒共
通である。さらに、吸気通路2には吸気温THAに応じ
てアナログ電圧を発生する吸気温センサ6が設けられて
いる。副噴射弁5にのみ通ずる燃料供給管7には燃料の
温度T HFに応じてアナログ電圧を発生する燃料温セ
ンサ8が設けられ、主噴射弁4および副噴射弁50両方
に通ずる燃料供給管!:lVcは燃料の温度を制御する
温度コントローラ10が設けられている。
FIG. 3 is an overall schematic diagram showing a first embodiment of the fuel supply control device for an internal combustion engine according to the present invention. In Figure 3,
A main injection valve 4 is provided in the vicinity of the intake valve 3 in the intake passage 2 of the engine body 1 . There are as many main injection valves 4 as there are cylinders. Further, a sub-injection valve 5 is provided upstream of the intake passage 2, for example, near a surge tank or a throttle body. Note that this sub-injection valve 5 is common to each cylinder. Further, the intake passage 2 is provided with an intake temperature sensor 6 that generates an analog voltage according to the intake air temperature THA. A fuel temperature sensor 8 that generates an analog voltage according to the fuel temperature THF is provided in a fuel supply pipe 7 that communicates only with the sub-injection valve 5, and a fuel supply pipe that communicates with both the main injection valve 4 and the sub-injection valve 50! :lVc is provided with a temperature controller 10 that controls the temperature of the fuel.

@度コントローラ10としては、電熱等による加熱器と
、たとえばエアコンの冷気を導入して燃料を冷却する冷
却器との機能を兼ね備えているものであってもよく、そ
れぞれを単独で配設してもよい。
The degree controller 10 may have the functions of a heater using electric heat or the like and a cooler that cools the fuel by introducing cold air from an air conditioner, for example, and each may be installed independently. Good too.

制御回路11は、吸気温センサ6および燃料温センサ8
の各出力信号を処理して温度コントローラ10の制御等
を行うものであって、たとえばマイクロコンピュータに
より構成されている。なお、第3図において、12は燃
料タンク、13は燃料ポンプである。
The control circuit 11 includes an intake temperature sensor 6 and a fuel temperature sensor 8.
It processes each output signal to control the temperature controller 10, etc., and is constituted by, for example, a microcomputer. In addition, in FIG. 3, 12 is a fuel tank, and 13 is a fuel pump.

第4図の70−チャートを参照して第3図の制御回路の
動作を説明する。第4図のルーチンは所定時間もしくは
所定クランク角毎にスタートする割込みルーチン、また
はメインルーチンの一部であってもよい。始めにスター
トステップ401からステップ402に進んで吸気温セ
、ンサ6より吸気@THAデータを取込み、ステップ4
03にて燃料温センサ8よυ燃料温データTHFを取込
む。
The operation of the control circuit of FIG. 3 will be described with reference to chart 70 of FIG. 4. The routine shown in FIG. 4 may be an interrupt routine that starts at a predetermined time or every predetermined crank angle, or may be a part of the main routine. First, proceed from start step 401 to step 402 to import intake air @THA data from sensor 6 and step 4.
At step 03, the fuel temperature data THF is taken from the fuel temperature sensor 8.

次いで、ステップ404にて、これらの温度差ΔTH←
THA−THF’i演算する。ステップ405゜406
にて、温度差△THが5〜20℃の範囲にあるか否かを
判別する。
Next, in step 404, these temperature differences ΔTH←
Calculate THA-THF'i. Step 405゜406
It is determined whether the temperature difference ΔTH is in the range of 5 to 20°C.

差△THが5℃未満のときには、ステップ407にて冷
却駆動信号Soを温度コントローラ10の冷却器に送出
して燃料の温度を低下させる。差ΔTHが20℃を超え
たときには、ステップ4(18にて加熱駆動信号5Ht
一温度コントローラ10の加熱器に送出して燃料の温度
を上昇させる。温度差△THが5〜20℃の範囲であれ
ば、ステップ409に進んで、駆動信号8oおよびSH
の両方の送出を停止する。そして、このルーチンはステ
ップ410にて終了する。
When the difference ΔTH is less than 5° C., the cooling drive signal So is sent to the cooler of the temperature controller 10 in step 407 to lower the temperature of the fuel. When the difference ΔTH exceeds 20°C, the heating drive signal 5Ht is activated in step 4 (18).
The fuel is sent to the heater of the temperature controller 10 to raise the temperature of the fuel. If the temperature difference ΔTH is in the range of 5 to 20°C, the process advances to step 409 and the drive signals 8o and SH
Stop sending both. The routine then ends at step 410.

このようにして、吸気管内での電化、気化が効率的に行
なわれ、吸入空気の冷却効果が高まることによって、吸
気管上流部に副燃料噴射弁を設けた燃料供給方法が狙い
とするところの出力性能向上効果が増大することになる
。また、燃料粒の霧化、気化が期待出来る条件を作り出
して燃料噴射を行うことによって、噴射波の燃料粒の成
長、すなわち、粗大化、および管壁との衝突等による液
膜化が押さえられ、分配感化の原因となる液膜燃料の生
成をも阻止できる。
In this way, electrification and vaporization within the intake pipe are performed efficiently, and the cooling effect of the intake air is enhanced, which is the aim of the fuel supply method in which the auxiliary fuel injection valve is installed in the upstream part of the intake pipe. The effect of improving output performance will increase. In addition, by performing fuel injection under conditions in which atomization and vaporization of fuel particles can be expected, growth of fuel particles in the injection wave, that is, coarsening, and liquid film formation due to collision with pipe walls, etc., can be suppressed. It is also possible to prevent the formation of liquid film fuel, which causes distribution sensitization.

第5図は本発明に係る内燃機関の燃料供給制御装置の第
2の実施例を示す全体概要図である。第5図においては
、第3図の温度コントローラ100代りに温度コントロ
ーラ101を燃料供給管7に設けた点が異なる。、この
温度コントローラ1σは第3図の温度コントローラ10
と同様な構成をなしているが、副噴射弁5に通じる燃料
のみを温度制御している。この結果、主噴射弁4側の燃
料温度上昇を防止でき、従って、高温再始動性不良を防
止できる。つまり、燃料温度上昇によるペーパ発生を防
止できるので、過薄混合気による再始動性の悪化を防止
できる。
FIG. 5 is an overall schematic diagram showing a second embodiment of the fuel supply control device for an internal combustion engine according to the present invention. The difference in FIG. 5 is that a temperature controller 101 is provided in the fuel supply pipe 7 instead of the temperature controller 100 in FIG. , this temperature controller 1σ is the temperature controller 10 in FIG.
Although it has a similar configuration, only the temperature of the fuel communicating with the sub-injector 5 is controlled. As a result, it is possible to prevent a rise in fuel temperature on the main injection valve 4 side, and therefore, it is possible to prevent poor restartability at high temperatures. In other words, it is possible to prevent the generation of paper due to a rise in fuel temperature, so it is possible to prevent deterioration in restartability due to an overly lean mixture.

なお、第5図の制御回路10の動作もまた第4図のフロ
ーチャートにより実行される。
Note that the operation of the control circuit 10 in FIG. 5 is also executed according to the flowchart in FIG. 4.

第6図は本発明に係る内燃機関の燃料供給制御装置の第
3の実施例を示す全体概要図である。第6図においては
、加熱器10’が燃料供給管7に設けられており、これ
により、副噴射弁5側の燃料をのみ加熱し、他方、冷却
器1σ“°が燃料供給管9に設けられており、これによ
り、主、副噴射弁4゜5の両側の燃料を冷却するように
構成されている。
FIG. 6 is an overall schematic diagram showing a third embodiment of the fuel supply control device for an internal combustion engine according to the present invention. In FIG. 6, a heater 10' is provided in the fuel supply pipe 7, which heats only the fuel on the sub-injection valve 5 side, and a cooler 1σ"° is provided in the fuel supply pipe 9. As a result, the fuel on both sides of the main and auxiliary injection valves 4.5 is cooled.

これにより、第2の実施例と同様に、機関運転中は主噴
射弁4側の燃料加熱を行わないが、それに加えて、冷却
器10°IIによって主噴射弁4側の冷却が行われるの
で、高温再始動性は第2の実施例に比べて向上する。
As a result, as in the second embodiment, the fuel on the main injection valve 4 side is not heated during engine operation, but in addition, the main injection valve 4 side is cooled by the cooler 10° II. , the high temperature restartability is improved compared to the second embodiment.

なお、第6図の制御回路10の動作もまた第4図のフロ
ーチャートにより実行される。
Note that the operation of the control circuit 10 in FIG. 6 is also executed according to the flowchart in FIG. 4.

また、上述の実施例における吸気温パラメータとして、
吸気通路の壁温、エンジンルーム内の雰囲気温等の吸気
温と相関があるパラメータを用いてもよい。
In addition, as the intake temperature parameter in the above example,
Parameters that are correlated with the intake air temperature, such as the wall temperature of the intake passage and the ambient temperature in the engine room, may also be used.

発明の詳細 な説明したように本発明によれば、副噴射弁からの付加
的燃料の温度を適切に調整しているので、吸入空気の冷
却効果を向上でき、従って、出力性能を向上できる。
As described in detail, according to the present invention, since the temperature of the additional fuel from the sub-injector is appropriately adjusted, the cooling effect of the intake air can be improved, and therefore the output performance can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は副噴射弁から噴射された燃料粒の
気化プロセスを説明する図およびグラフ、第3図は本発
明に係る内燃機関の燃料供給制御装置の第1の実施例を
示す全体概要図、第4図は第3図の制御回路の勤行を説
明するフローチャート、第5図、第6図は本発明に係る
内燃機関の燃料供給制御装置の第2.第3の実施例を示
す全体概要図である。 1・・・機関本体、 2・・・吸気通路(吸気管)、3
・・・インテークバルブ、4・・・主噴射弁、5・・・
副噴射弁、 6・・・吸気温センサ、8・・・燃料温セ
ンサ、 10.1σ、1σ i oll+・・・温度コントロー
ラ、11・・・制御回路。 特許出願人 トヨタ自動車株式会社 特許出願代理人 弁理士 青 木 朗 弁理士 西 舘 和 之 弁理士 松 下 操 弁理士 山 口 昭 之 弁理士 西 山 雅 也 第1図 第′2図 圧 力 第3図 1貴 第5図 13
1 and 2 are diagrams and graphs explaining the vaporization process of fuel particles injected from the sub-injector, and FIG. 3 shows a first embodiment of the fuel supply control device for an internal combustion engine according to the present invention. 4 is a flowchart explaining the operation of the control circuit of FIG. 3, and FIGS. 5 and 6 are a second diagram of the fuel supply control device for an internal combustion engine according to the present invention. FIG. 7 is an overall schematic diagram showing a third embodiment. 1... Engine body, 2... Intake passage (intake pipe), 3
...Intake valve, 4...Main injection valve, 5...
Sub-injection valve, 6... Intake temperature sensor, 8... Fuel temperature sensor, 10.1σ, 1σ i oll+... Temperature controller, 11... Control circuit. Patent Applicant Toyota Motor Corporation Patent Application Representative Patent Attorney Akira Aoki Patent Attorney Kazuyuki Nishidate Patent Attorney Masashi Matsushita Patent Attorney Akira Yamaguchi Patent Attorney Masaya Nishiyama Figure 1 Figure '2 Pressure 3 Figure 1 Figure 5 Figure 13

Claims (1)

【特許請求の範囲】 1、各気筒毎に設けられた主噴射弁に加えて吸気通路の
上流部に各気筒共通に設けられた副噴射弁を具備する内
燃機関において、該機関の吸入空気温度を検出する吸入
空気温度検出手段、および、該吸入空気温度に応じて前
記副噴射弁に供給される燃料の温度を調整する燃料温度
調整手段を具備することを特徴とする内燃機関の燃料供
給制御装置。 2 前記燃料温度調整手段が、前記吸入空気温度と前記
燃料の温度との差が所定範囲になるように前記燃料の温
度を調整する特許請求の範囲第1項に記載の内燃機関の
燃料供給制御装置。 3 前記燃料温度調整手段が、前記主噴射弁および前記
副噴射弁の両方に通じる燃料通路に設けられた加熱/冷
却器を具備する特許請求の範囲第1項に記載の内燃機関
の燃料供給制御装置。 4 前記燃料温度調整手段が、前記副噴射弁のみに通じ
る燃料通路に設けられた加熱/冷却器を具備する特許請
求の範囲第1項に記載の内燃機関の燃料供給制御装置。 5、前記燃料温度調整手段が、前記副噴射弁のみに通じ
る燃料通路に設けられた加熱器、および、前記主噴射弁
および前記副噴射弁の両方に通じる燃料通路に設けられ
た冷却器を具備する特許請求の範囲第1項に記載の内燃
機関の燃料供給制御装置。
[Scope of Claims] 1. In an internal combustion engine equipped with a main injection valve provided for each cylinder and a sub-injection valve provided in common for each cylinder in the upstream portion of the intake passage, the intake air temperature of the engine Fuel supply control for an internal combustion engine, comprising an intake air temperature detection means for detecting the intake air temperature, and a fuel temperature adjustment means for adjusting the temperature of the fuel supplied to the sub-injection valve according to the intake air temperature. Device. 2. Fuel supply control for an internal combustion engine according to claim 1, wherein the fuel temperature adjusting means adjusts the temperature of the fuel so that the difference between the intake air temperature and the fuel temperature is within a predetermined range. Device. 3. Fuel supply control for an internal combustion engine according to claim 1, wherein the fuel temperature adjustment means includes a heating/cooling device provided in a fuel passage communicating with both the main injection valve and the sub-injection valve. Device. 4. The fuel supply control device for an internal combustion engine according to claim 1, wherein the fuel temperature adjusting means includes a heating/cooling device provided in a fuel passage communicating only with the sub-injection valve. 5. The fuel temperature adjustment means includes a heater provided in a fuel passage communicating only with the auxiliary injection valve, and a cooler provided in a fuel passage communicating with both the main injection valve and the auxiliary injection valve. A fuel supply control device for an internal combustion engine according to claim 1.
JP59046462A 1984-03-13 1984-03-13 Fuel supply control device of internal-combustion engine Pending JPS60190657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59046462A JPS60190657A (en) 1984-03-13 1984-03-13 Fuel supply control device of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59046462A JPS60190657A (en) 1984-03-13 1984-03-13 Fuel supply control device of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS60190657A true JPS60190657A (en) 1985-09-28

Family

ID=12747827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59046462A Pending JPS60190657A (en) 1984-03-13 1984-03-13 Fuel supply control device of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60190657A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2741388A1 (en) * 1995-11-22 1997-05-23 Siemens Ag METHOD FOR INJECTION OF FUEL INTO AN INTERNAL COMBUSTION ENGINE WITH TEMPERATURE COMPENSATION AND DEVICE FOR IMPLEMENTING THE METHOD

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2741388A1 (en) * 1995-11-22 1997-05-23 Siemens Ag METHOD FOR INJECTION OF FUEL INTO AN INTERNAL COMBUSTION ENGINE WITH TEMPERATURE COMPENSATION AND DEVICE FOR IMPLEMENTING THE METHOD

Similar Documents

Publication Publication Date Title
JP3111130B2 (en) Returnless fuel delivery system
JP2003239742A (en) Cooling device for internal combustion engine
EA007476B1 (en) Vaporized fuel injection system and method
JP4823799B2 (en) Control method for internal combustion engine
US5406919A (en) Fuel injection system for internal combustion engine
JPS60190657A (en) Fuel supply control device of internal-combustion engine
JP4212885B2 (en) Engine positive pressure gas fuel supply method
JP2004084615A (en) Cooling device for internal combustion engine
JP2004044484A (en) Control device of internal combustion engine
US7991540B2 (en) Vehicle speed dependant calibration trim or user-selectable calbratable trim for improved fuel economy
JPH01240741A (en) Fuel supply amount control method for internal combustion engine
JP2007056679A (en) Liquified petroleum gas fuel feeder of engine
JP2006105105A (en) Engine cooling device
JPS5974345A (en) Cylinder-number controlling apparatus for engine
JPH0771293A (en) Idle rotational speed control device for internal combustion engine
JPH04334756A (en) Fuel feeding device for internal combustion engine
JP4389695B2 (en) Fuel fractionator for internal combustion engine
JP2006299976A (en) Control device for internal combustion engine
JPH06330783A (en) Fuel supply device for engine
JPH0526049A (en) Supercharging control device for mechanical supercharger
JP2006105106A (en) Engine cooling system
JP5836315B2 (en) Fuel supply device
JPH07286538A (en) Fuel injection control device of internal combustion engine
JP2022021455A (en) EGR system
JP5040980B2 (en) Engine waste heat control device