JPH0771293A - Idle rotational speed control device for internal combustion engine - Google Patents

Idle rotational speed control device for internal combustion engine

Info

Publication number
JPH0771293A
JPH0771293A JP23880993A JP23880993A JPH0771293A JP H0771293 A JPH0771293 A JP H0771293A JP 23880993 A JP23880993 A JP 23880993A JP 23880993 A JP23880993 A JP 23880993A JP H0771293 A JPH0771293 A JP H0771293A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
bypass
fuel
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23880993A
Other languages
Japanese (ja)
Inventor
Tetsuya Tsukagoshi
哲也 塚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP23880993A priority Critical patent/JPH0771293A/en
Publication of JPH0771293A publication Critical patent/JPH0771293A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To improve engine rotational speed at the time of idle operation so as to prevent generation of engine stall by controlling a bypass control valve in prescribed opening condition when fuel whose amount is increased and corrected by an increasing and correcting coefficient after an engine is started at a high temperature is injected from a fuel injection valve after the engine is started at the high temperature. CONSTITUTION:In an internal combustion engine provided with a bypass passage 24 interposed a bypass control valve 26 which is duty-controlled so as to bypass the intake throttle valve 10 in an intake air passage 4, a cooling water temperature judging value and an intake air temperature judging value are set when the bypass control valve 26 is controlled by a control unit 40. When an internal combustion engine 2 is started, the cooling water temperature and the cooling water temperature judging value are compared with an intake air temperature and the intake air temperature judging value so as to judge whether it is high temperature starting or not. When it is judged that a fuel amount is increased and corrected by an increasing and correcting coefficient after the engine 2 is started at a high temperature, the bypass control valve 26 is controlled so as to maintain the bypass passage 24 in prescribed opening condition, and an bypass air amount is increased so as to increase idle rotational speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は内燃機関のアイドル回
転数制御装置に係り、特に内燃機関の高温始動後におけ
る回転変動を小さくし得て、エンジンストールの発生を
防止し得る内燃機関のアイドル回転数制御装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an idle speed control device for an internal combustion engine, and more particularly to an idle speed control method for an internal combustion engine which can reduce fluctuations in rotation of the internal combustion engine after a high temperature start and prevent engine stall. Number control device.

【0002】[0002]

【従来の技術】車両等に搭載される内燃機関には、アイ
ドル運転時に機関回転数が目標回転数になるように制御
するアイドル回転数制御装置を備えたものがある。アイ
ドル回転数制御装置は、内燃機関の吸気絞り弁を迂回し
て吸気通路を連通するバイパス通路を設け、このバイパ
ス通路を開閉するバイパス制御弁を設け、内燃機関のア
イドル運転時にバイパス通路を開閉して機関回転数が目
標回転数になるようにバイパス制御弁の動作をデューテ
ィ比によりフィードバック制御する。
2. Description of the Related Art Some internal combustion engines mounted on vehicles or the like are equipped with an idle speed control device for controlling the engine speed to a target speed during idle operation. The idle speed control device includes a bypass passage that bypasses the intake throttle valve of the internal combustion engine and communicates with the intake passage, a bypass control valve that opens and closes the bypass passage, and opens and closes the bypass passage during idle operation of the internal combustion engine. The operation of the bypass control valve is feedback-controlled by the duty ratio so that the engine speed becomes the target speed.

【0003】前記内燃機関のアイドル回転数制御装置と
しては、特開昭62−10433号公報や実開昭62−
200141号公報に開示されるものがある。
Examples of the idle speed control device for the internal combustion engine include Japanese Patent Laid-Open No. 62-10433 and Japanese Utility Model Laid-Open No. 62-62.
There is one disclosed in Japanese Patent Publication No. 200114.

【0004】特開昭62−10433号公報に開示され
るアイドル回転数制御装置は、内燃機関の始動時に内燃
機関の温度が所定温度以上の場合には吸入空気量を増量
し、始動後に所定時間が経過した場合、あるいは機関回
転数が所定回転数を越えた場合に、前記吸入空気量の増
量分を減量するように制御するものである。
The idle speed control device disclosed in Japanese Unexamined Patent Publication No. 62-10433 increases the intake air amount when the temperature of the internal combustion engine is equal to or higher than a predetermined temperature at the time of starting the internal combustion engine, and after a predetermined time after the start. When the engine speed has passed, or when the engine speed exceeds a predetermined speed, the intake air amount is controlled to be decreased.

【0005】実開昭62−200141号公報に開示さ
れるアイドル回転数制御装置は、内燃機関の冷却水温度
及び吸気温度に基づいてバイパス制御弁の始動後デュー
ティ比を所定時間に設定する始動後デューティ比設定手
段を設けたものである。
The idle speed control device disclosed in Japanese Utility Model Laid-Open No. Sho 62-200141 discloses a system in which the duty ratio is set to a predetermined time after the bypass control valve is started based on the cooling water temperature and the intake air temperature of the internal combustion engine. A duty ratio setting means is provided.

【0006】また、内燃機関には、吸気通路に燃料噴射
弁を設けたものがある。燃料噴射弁は、内燃機関の運転
状態に応じて基本噴射量を各種補正係数により補正した
燃料を噴射し、空燃比が目標空燃比になるように制御さ
れる。
Some internal combustion engines have a fuel injection valve in the intake passage. The fuel injection valve injects fuel in which the basic injection amount is corrected by various correction coefficients according to the operating state of the internal combustion engine, and is controlled so that the air-fuel ratio becomes the target air-fuel ratio.

【0007】[0007]

【発明が解決しようとする課題】ところで、内燃機関
は、高温・高負荷運転を行った後に駆動を停止した場合
に、機関余熱によって燃料噴射弁内に燃料蒸気を発生す
ることがある。特に、過給機を備えた内燃機関は、熱的
な条件が厳しいため、高温・高負荷運転後の停止時に、
料噴射弁内に燃料蒸気を発生し易い。
By the way, an internal combustion engine may generate fuel vapor in a fuel injection valve due to engine residual heat when the drive is stopped after high temperature and high load operation. In particular, an internal combustion engine equipped with a supercharger has severe thermal conditions, so when stopping after high temperature / high load operation,
Fuel vapor is easily generated in the fuel injection valve.

【0008】このため、内燃機関を高温・高負荷運転を
した後に駆動を停止して、十分に冷却される以前の高温
状態で内燃機関を再始動した際には、燃料噴射弁内に発
生した燃料蒸気が噴射されることにより空燃比がリーン
化して回転変動を生じ、エンジンストールを発生しやす
くなる。
Therefore, when the internal combustion engine is stopped at high temperature and under high load and then the driving is stopped, and the internal combustion engine is restarted in a high temperature state before being sufficiently cooled, it is generated in the fuel injection valve. The injection of the fuel vapor makes the air-fuel ratio lean and causes fluctuations in rotation, which easily causes engine stall.

【0009】そこで、従来は、始動時の冷却水温度や吸
気温度等の条件より燃料蒸気が発生する状況であるか否
かを判断し、図4の(b)に示す如く、内燃機関が高温
状態で始動された場合には燃料噴射弁から高温始動後増
量補正係数FHSにより増量補正した燃料を噴射し、空
燃比をリッチ側に傾けることによりエンジンストールの
発生を防止している。
Therefore, conventionally, it is determined whether or not the fuel vapor is generated based on the conditions such as the cooling water temperature and the intake air temperature at the time of starting, and as shown in FIG. When the engine is started in this state, the fuel that has been increased and corrected by the high-temperature post-startup increase correction coefficient FHS is injected from the fuel injection valve, and the air-fuel ratio is tilted to the rich side to prevent engine stall.

【0010】ところが、従来のアイドル回転制御装置
は、図4の(a)に示す如く、燃料噴射弁内に燃料蒸気
が発生している状態での高温始動後の蒸発燃料による燃
料の空噴射によって、つまり、燃料噴射弁からの燃料蒸
気の噴射によって、空燃比がリーン化した際の急激な回
転低下に対して、アイドル回転数制御の追従性が悪く、
エンジンストールを発生しやすい不都合がある。
However, in the conventional idle rotation control device, as shown in FIG. 4 (a), the idle injection of the fuel by the evaporated fuel after the high temperature start in the state where the fuel vapor is generated in the fuel injection valve is performed. That is, due to the injection of the fuel vapor from the fuel injection valve, the idle rotation speed control has a poor followability with respect to a sudden decrease in rotation when the air-fuel ratio becomes lean,
There is an inconvenience that an engine stall is likely to occur.

【0011】即ち、駆動を停止した直後の高温状態の内
燃機関は、図4(b)に示す如く、クランキングを開始
して完爆した始動直後に、燃料噴射弁から高温始動後増
量補正係数FHSにより増量補正した燃料の噴射を開始
し、空燃比をリッチ側に傾ける。この高温始動後増量補
正係数FHSは、冷却水温度によって決定される値であ
り、噴射毎に一定量づつ減少される。
That is, as shown in FIG. 4B, the internal combustion engine in the high temperature state immediately after the driving is stopped, immediately after the start of the cranking and the complete explosion, immediately after the start of the fuel injection valve, the increase correction coefficient after the high temperature start is corrected. The injection of the fuel whose amount has been corrected by FHS is started, and the air-fuel ratio is tilted to the rich side. The increase correction coefficient FHS after high temperature start is a value determined by the cooling water temperature, and is decreased by a fixed amount for each injection.

【0012】このとき、アイドル回転数制御装置は、図
4(c)示すように、内燃機関が完爆した始動直後に、
バイパス通路を一時的に全開するようにバイパス制御弁
の動作を制御する。この一時的にバイパス通路を全開す
る全開時間は、冷却水温度によって決定される。アイド
ル回転数制御装置は、全開時間が経過すると、機関回転
数が目標回転数になるように、バイパス制御弁の動作を
デューティ比によりフィードバック制御し、バイパス通
路を開閉する。
At this time, the idle speed control device, as shown in FIG. 4 (c), immediately after the start of the complete combustion of the internal combustion engine,
The operation of the bypass control valve is controlled so that the bypass passage is temporarily fully opened. The fully open time for temporarily fully opening the bypass passage is determined by the cooling water temperature. The idle speed control device feedback-controls the operation of the bypass control valve by the duty ratio so that the engine speed becomes the target speed after the full opening time has elapsed, and opens and closes the bypass passage.

【0013】しかし、従来のアイドル回転数制御装置
は、一時的な全開時間が経過すると、機関回転数が目標
回転数になるようにバイパス制御弁の動作を制御してい
るため、図4(a)に示す如く、高温始動後の蒸発燃料
による燃料の空噴射によって空燃比がリーン化し、急激
な回転低下が惹起された場合に、このような急激な回転
低下に対して図4(c)に示す如くアイドル回転数制御
の追従性が悪く、大きな回転変動を生じ、エンジンスト
ールを発生しやすい不都合がある。
However, since the conventional idle speed control device controls the operation of the bypass control valve so that the engine speed becomes the target speed after the temporary full opening time, the operation shown in FIG. As shown in FIG. 4C), when the air-fuel ratio becomes lean due to the idle injection of the fuel by the evaporated fuel after the high temperature start, and a sudden decrease in rotation is caused, FIG. As shown in the figure, there is a problem that the idle speed control has poor followability, large rotation fluctuations occur, and engine stall is likely to occur.

【0014】[0014]

【課題を解決するための手段】そこで、このような不都
合を解消するために、この発明は、内燃機関の吸気通路
に燃料噴射弁を設け、前記内燃機関の吸気絞り弁を迂回
して吸気通路を連通するバイパス通路を設け、このバイ
パス通路を開閉するバイパス制御弁を設け、前記内燃機
関の運転状態に応じ各種補正係数により補正した燃料を
噴射して空燃比が目標空燃比になるように前記燃料噴射
弁の動作を制御するとともに前記内燃機関のアイドル運
転時に前記バイパス通路を開閉して機関回転数が目標回
転数になるように前記バイパス制御弁の動作を制御する
内燃機関のアイドル回転制御装置において、前記内燃機
関の高温始動後に前記燃料噴射弁から高温始動後増量補
正係数により増量補正した燃料を噴射している場合は前
記バイパス通路を所定開放状態に維持すべく前記バイパ
ス制御弁の動作を制御する制御手段を設けたことを特徴
とする。
In order to solve such inconvenience, the present invention provides a fuel injection valve in the intake passage of an internal combustion engine and bypasses the intake throttle valve of the internal combustion engine to introduce the intake passage. A bypass control valve for opening and closing the bypass passage is provided for injecting fuel corrected by various correction coefficients according to the operating state of the internal combustion engine so that the air-fuel ratio becomes the target air-fuel ratio. An idle rotation control device for an internal combustion engine, which controls the operation of the fuel injection valve and controls the operation of the bypass control valve so that the engine speed becomes a target speed by opening and closing the bypass passage during idle operation of the internal combustion engine. In the case where the fuel whose injection amount is corrected by the increase correction coefficient after high temperature injection is injected from the fuel injection valve after the internal combustion engine is started at high temperature, the bypass passage is Characterized in that a control means for controlling the operation of the bypass control valve so as to maintain a constant open state.

【0015】[0015]

【作用】この発明の構成によれば、アイドル回転数制御
装置は、制御手段によって、内燃機関の高温始動後に、
燃料噴射弁から高温始動後増量補正係数により増量補正
した燃料を噴射している場合は、バイパス通路を所定開
放状態に維持すべくバイパス制御弁の動作を制御するこ
とにより、内燃機関の高温始動後に所定開放状態に維持
されたバイパス通路によって十分な空気量を確保し得
て、アイドル運転時の機関回転数を高めることができ
る。
According to the structure of the present invention, the idle speed control device is configured so that, after the internal combustion engine is started at high temperature,
When injecting the fuel whose amount has been increased and corrected by the increase correction coefficient after high temperature startup from the fuel injection valve, by controlling the operation of the bypass control valve to maintain the bypass passage in the predetermined open state, after the high temperature start of the internal combustion engine A sufficient amount of air can be secured by the bypass passage maintained in the predetermined open state, and the engine speed during idle operation can be increased.

【0016】[0016]

【実施例】次にこの発明の実施例を図に基づいて詳細に
説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0017】図1〜図3は、この発明の実施例を示すも
のである。図3において、2は内燃機関、4は吸気通
路、6は排気通路である。図示しない車両に搭載される
内燃機関2の吸気通路4は、上流端にエアクリーナ8を
設けるとともに下流端を燃焼室(図示せず)に連通して
いる。吸気通路4には、吸気絞り弁10を設けている。
1 to 3 show an embodiment of the present invention. In FIG. 3, 2 is an internal combustion engine, 4 is an intake passage, and 6 is an exhaust passage. The intake passage 4 of the internal combustion engine 2 mounted on a vehicle (not shown) has an air cleaner 8 at the upstream end and communicates the downstream end with a combustion chamber (not shown). An intake throttle valve 10 is provided in the intake passage 4.

【0018】前記内燃機関2には、図示しない燃焼室に
指向させて、吸気通路4に燃料噴射弁12を設けてい
る。燃料噴射弁12は、燃料通路14により燃料タンク
16に連通している。燃料タンク16内には、燃料を燃
料通路14に送給する燃料ポンプ18を設けている。燃
料通路14の途中には、吸気通路4の吸気圧により燃料
圧力を調整する燃料圧力調整弁20を設けている。燃料
圧力調整弁20は、燃料通路14の燃料圧力を所定圧力
に調整するとともに、余剰の燃料を戻り通路22により
燃料タンク16に戻す。
A fuel injection valve 12 is provided in the intake passage 4 of the internal combustion engine 2 so as to face a combustion chamber (not shown). The fuel injection valve 12 communicates with a fuel tank 16 via a fuel passage 14. A fuel pump 18 for supplying fuel to the fuel passage 14 is provided in the fuel tank 16. A fuel pressure adjusting valve 20 for adjusting the fuel pressure by the intake pressure of the intake passage 4 is provided in the middle of the fuel passage 14. The fuel pressure adjusting valve 20 adjusts the fuel pressure in the fuel passage 14 to a predetermined pressure, and returns excess fuel to the fuel tank 16 through the return passage 22.

【0019】前記吸気通路4には、吸気絞り弁10を迂
回するバイパス通路24を設けている。バイパス通路2
4は、一端側を吸気絞り弁10よりも上流側の吸気通路
4に連通するとともに、他端側を吸気絞り弁10よりも
下流側の燃焼室(図示せず)に至る吸気通路4に連通し
ている。バイパス通路24には、エンジン2の運転状態
に応じてデューティ比により制御されるバイパス制御弁
26を設けている。
The intake passage 4 is provided with a bypass passage 24 that bypasses the intake throttle valve 10. Bypass passage 2
4, one end communicates with the intake passage 4 upstream of the intake throttle valve 10, and the other end communicates with the intake passage 4 reaching a combustion chamber (not shown) downstream of the intake throttle valve 10. is doing. The bypass passage 24 is provided with a bypass control valve 26 which is controlled by the duty ratio according to the operating state of the engine 2.

【0020】前記吸気通路4には、吸気絞り弁10の開
度を検出するスロットルセンサ28と、吸気温度を検出
する吸気温度センサ30と、吸気圧力を検出する吸気圧
力センサ32と、を設けている。前記内燃機関2には、
回転角センサ34と、冷却水温度を検出する冷却水温度
センサ36と、を設けている。回転角センサ34は、デ
ィストリビュータ38に設けられている。これら各種セ
ンサ28〜36は、アイドル回転数制御装置を構成する
制御手段たる制御部40の入力側に接続されている。
The intake passage 4 is provided with a throttle sensor 28 for detecting the opening of the intake throttle valve 10, an intake temperature sensor 30 for detecting the intake temperature, and an intake pressure sensor 32 for detecting the intake pressure. There is. In the internal combustion engine 2,
A rotation angle sensor 34 and a cooling water temperature sensor 36 that detects the cooling water temperature are provided. The rotation angle sensor 34 is provided in the distributor 38. These various sensors 28 to 36 are connected to the input side of a control unit 40 which is a control means that constitutes an idle speed control device.

【0021】制御部40の入力側には、また、ダイアグ
ノーシス信号を入力すべくダイグノーシス信号部42
と、エアコン(エアコンディショナ:図示せず)のON
・OFFの信号を入力すべくエアコンスイッチ44と、
車速信号を入力すべくスピードメータ46と、イニシャ
ルセット信号を入力すべくイニシャルセット部48と、
排気通路6に設けたO2 センサ50と、CO調整用信号
を入力すべくCO調整用抵抗部52と、バッテリ54
と、が接続されている。
On the input side of the control section 40, a diagnosis signal section 42 for inputting a diagnosis signal is also input.
And the air conditioner (air conditioner: not shown) turned on
・ Air conditioner switch 44 to input the OFF signal,
A speedometer 46 for inputting a vehicle speed signal, an initial set portion 48 for inputting an initial set signal,
An O 2 sensor 50 provided in the exhaust passage 6, a CO adjustment resistor section 52 for inputting a CO adjustment signal, and a battery 54
And are connected.

【0022】また、制御部40の出力側には、燃料噴射
弁12と、燃料ポンプ18と、バイパス制御弁26と、
が接続されている。燃料ポンプ18は、ポンプリレー5
6を介して接続されている。また、この制御部40の出
力側には、点火コイル58と、モニタ60と、デューテ
ィメータ62と、が接続されている。
On the output side of the control unit 40, the fuel injection valve 12, the fuel pump 18, the bypass control valve 26,
Are connected. The fuel pump 18 is a pump relay 5
It is connected via 6. An ignition coil 58, a monitor 60, and a duty meter 62 are connected to the output side of the control unit 40.

【0023】前記制御部40は、各種センサ28〜36
から入力する信号により、燃料噴射弁12に噴射弁駆動
信号を出力し、燃料ポンプ18にポンプ駆動信号を出力
し、点火コイル58に点火指令信号を出力し、燃料噴射
弁12から適切に燃料を噴射させ、点火プラグ(図示せ
ず)に適切に飛火させる。
The control unit 40 includes various sensors 28 to 36.
The fuel injection valve 12 outputs an injection valve drive signal to the fuel injection valve 12, a pump drive signal to the fuel pump 18, an ignition command signal to the ignition coil 58, and an appropriate fuel from the fuel injection valve 12. Inject and fire a spark plug (not shown) appropriately.

【0024】この制御部40は、各種センサ28〜36
から入力する信号によって、内燃機関2の運転状態に応
じ基本噴射量を各種補正係数により補正した燃料を噴射
して空燃比が目標空燃比になるように燃料噴射弁12の
動作を制御し、燃料噴射量を調整する。また、制御部4
0は、内燃機関2のアイドル運転時にバイパス通路24
を開閉して機関回転数が目標回転数になるようにバイパ
ス制御弁26の動作をデューティ比によりフィードバッ
ク制御し、バイパス通路24のバイパス空気量を調整す
る。
The control unit 40 includes various sensors 28 to 36.
The fuel input valve 12 controls the operation of the fuel injection valve 12 so that the air-fuel ratio becomes the target air-fuel ratio by injecting fuel whose basic injection amount is corrected by various correction coefficients according to the operating state of the internal combustion engine 2 by a signal input from Adjust the injection amount. In addition, the control unit 4
0 indicates the bypass passage 24 when the internal combustion engine 2 is idle.
Is opened and closed to feedback control the operation of the bypass control valve 26 by the duty ratio so that the engine speed becomes the target speed, and the amount of bypass air in the bypass passage 24 is adjusted.

【0025】このアイドル回転数制御装置は、制御部4
0によって、内燃機関2の高温始動後に、燃料噴射弁1
2から高温始動後増量補正係数FHSにより増量補正し
た燃料を噴射している場合は、バイパス通路24を所定
開放状態に維持すべくバイパス制御弁24の動作を制御
するものである。
This idle speed control device includes a control unit 4
0 causes the fuel injection valve 1 to
When the fuel whose amount has been increased and corrected by the increase correction coefficient FHS after high temperature start is being injected from 2 on, the operation of the bypass control valve 24 is controlled so as to maintain the bypass passage 24 in the predetermined open state.

【0026】この制御部40には、冷却水温度THWの
冷却水温度判定値Aと、吸気温度THAの吸気温度判定
値Bと、を設定してある。制御部40は、内燃機関2の
始動時に、冷却水温度THW及び冷却水温度判定値Aと
吸気温度THA及び吸気温度判定値Bとを比較して高温
始動であるか否かを判断し、高温始動後で高温始動後増
量補正係数FHSにより増量補正している場合はバイパ
ス通路24を所定開放状態に維持すべくバイパス制御弁
26の動作を固定デューティ比制御し、バイパス空気量
を増大させてアイドル回転数を高める。
The control unit 40 is provided with a cooling water temperature judgment value A for the cooling water temperature THW and an intake air temperature judgment value B for the intake air temperature THA. When the internal combustion engine 2 is started, the control unit 40 compares the cooling water temperature THW and the cooling water temperature determination value A with the intake air temperature THA and the intake air temperature determination value B to determine whether or not the engine is a high temperature startup, After the startup, when the increase correction is performed by the high temperature after-start increase correction coefficient FHS, the operation of the bypass control valve 26 is fixed duty ratio controlled in order to maintain the bypass passage 24 in the predetermined open state, and the bypass air amount is increased to idle. Increase the rotation speed.

【0027】次に作用を説明する。Next, the operation will be described.

【0028】内燃機関2は、エアクリーナ8から取り入
れた空気を吸気絞り弁10により調量して供給され、燃
料噴射弁12により燃料を供給されるとともに点火プラ
グ(図示せず)により点火燃焼される。燃料供給量及び
点火時期は、制御部40によって適切に制御される。
In the internal combustion engine 2, the air taken in from the air cleaner 8 is metered and supplied by the intake throttle valve 10, the fuel is supplied by the fuel injection valve 12, and the fuel is ignited and burned by an ignition plug (not shown). . The fuel supply amount and the ignition timing are appropriately controlled by the control unit 40.

【0029】アイドル回転数制御装置は、内燃機関2の
運転時に、制御部40によって、空燃比が目標空燃比に
なるように燃料噴射弁12の動作を制御し、また、アイ
ドル運転時に機関回転数が目標回転数になるようにバイ
パス制御弁26の動作をデューティ比によりフィードバ
ック制御する。
The idle speed control device controls the operation of the fuel injection valve 12 by the control unit 40 so that the air-fuel ratio becomes the target air-fuel ratio when the internal combustion engine 2 is in operation. The feedback control of the operation of the bypass control valve 26 is performed by the duty ratio so that the value becomes the target rotation speed.

【0030】このアイドル回転数制御装置は、内燃機関
2を始動した際には、以下のようにバイパス制御弁26
を制御する。
When the internal combustion engine 2 is started, this idle speed control device operates as follows by bypass control valve 26.
To control.

【0031】制御部40は、図1に示す如く、停止して
いる内燃機関2を始動すべくイグニションスイッチ(図
示せず)をオン(ステップ100)すると、冷却水温度
センサ36の検出する冷却水温度THWが冷却水温度判
定値A以上であるか否かを判断(ステップ102)す
る。
As shown in FIG. 1, the control unit 40 turns on an ignition switch (not shown) to start the internal combustion engine 2 that is stopped (step 100), and the cooling water detected by the cooling water temperature sensor 36 is detected. It is determined whether or not the temperature THW is equal to or higher than the cooling water temperature determination value A (step 102).

【0032】冷却水温度THWが冷却水温度判定値A以
上である場合は、吸気温度センサ30の検出する吸気温
度THAが吸気温度判定値B以上であるか否かを判断
(ステップ104)する。
When the cooling water temperature THW is equal to or higher than the cooling water temperature determination value A, it is determined whether or not the intake temperature THA detected by the intake temperature sensor 30 is equal to or higher than the intake temperature determination value B (step 104).

【0033】冷却水温度THWが冷却水温度判定値A以
上であり、且つ、吸気温度THAが吸気温度判定値B以
上である場合は、内燃機関2が燃料噴射弁12内に蒸発
燃料の発生するおそれのある高温状態にある。
When the cooling water temperature THW is equal to or higher than the cooling water temperature determination value A and the intake air temperature THA is equal to or higher than the intake temperature determination value B, the internal combustion engine 2 produces evaporated fuel in the fuel injection valve 12. There is a risk of high temperature.

【0034】このような高温状態の内燃機関2を始動す
る際には、内燃機関2の始動を開始(ステップ106)
して完爆した後に、燃料噴射弁12から高温始動後増量
補正係数FHSにより増量補正した燃料(FHS:O
N)を噴射(ステップ108)し、バイパス通路24を
一時的に全開すべくバイパス制御弁26の動作を全開制
御(ステップ110)する。
When the internal combustion engine 2 in such a high temperature state is started, the internal combustion engine 2 is started (step 106).
After the complete explosion, the fuel (FHS: O
(N) is injected (step 108), and the operation of the bypass control valve 26 is fully opened (step 110) so as to temporarily fully open the bypass passage 24.

【0035】この一時的にバイパス通路24を全開する
全開時間は、冷却水温度THWによって決定される。こ
の全開時間が経過した場合は、バイパス通路24を所定
開放状態に維持すべくバイパス制御弁26の動作を固定
デューティ比制御(ステップ112)する。これによ
り、アイドル回転数制御装置は、バイパス空気量を増大
させてアイドル回転数を高め、エンジンストールの発生
を防止することができる。
The fully open time for temporarily opening the bypass passage 24 is determined by the cooling water temperature THW. When this fully open time has elapsed, the operation of the bypass control valve 26 is fixed duty ratio controlled (step 112) in order to maintain the bypass passage 24 in the predetermined open state. As a result, the idle speed control device can increase the bypass air amount to increase the idle speed and prevent engine stall.

【0036】次いで、高温始動後増量補正係数FHSが
0(ゼロ)よりも大きいか否かを判断(ステップ11
4)する。この高温始動後増量補正係数FHSは、冷却
水温度THWによって決定される値であり、噴射毎に一
定量づつ0(ゼロ)になるように減少される。前記高温
始動後増量補正係数FHSが0(ゼロ)よりも大きいか
否かの判断(ステップ114)において、高温始動後増
量補正係数FHSが0(ゼロ)よりも大きい場合は、バ
イパス通路24を所定開放状態に維持すべくバイパス制
御弁26の動作を固定デューティ比制御するステップ1
12にリターンする。
Next, it is judged whether the increase correction coefficient FHS after high temperature start is larger than 0 (zero) (step 11).
4) Do. The increase correction coefficient FHS after high-temperature start is a value determined by the cooling water temperature THW, and is decreased by a constant amount for each injection to 0 (zero). In the determination as to whether or not the high temperature after-start amount increase correction coefficient FHS is larger than 0 (zero) (step 114), if the high-temperature after-start amount increase correction coefficient FHS is larger than 0 (zero), the bypass passage 24 is set to a predetermined position. Step 1 of controlling the operation of the bypass control valve 26 with a fixed duty ratio so as to maintain the open state
Return to 12.

【0037】前記高温始動後増量補正係数FHSが0
(ゼロ)よりも大きいか否かの判断(ステップ114)
において、高温始動後増量補正係数FHSが0(ゼロ)
になった場合は、バイバス通路24を所定開放状態に維
持する固定デューティ比制御を終了し、バイパス通路2
4を開閉して機関回転数が目標回転数になるようにバイ
パス制御弁26の動作を通常のデューティ比によりフィ
ードバック制御(ステップ124)し、バイパス通路2
4のバイパス空気量を調整する。
After the high temperature start, the increase correction coefficient FHS is 0.
Judgment whether it is greater than (zero) (step 114)
At high temperature, the increase correction coefficient FHS after high temperature start is 0 (zero)
In this case, the fixed duty ratio control for maintaining the bypass passage 24 in the predetermined open state is terminated, and the bypass passage 2
4 is opened / closed to perform feedback control (step 124) of the operation of the bypass control valve 26 with a normal duty ratio so that the engine speed becomes the target speed.
Adjust the bypass air amount of 4.

【0038】一方、前記冷却水温度THWが冷却水温度
判定値A以上であるか否かの判断(ステップ102)の
判断において、冷却水温度THWが冷却水温度判定値A
未満である場合、また、冷却水温度THWが冷却水温度
判定値A以上であっても、前記吸気温度THAが吸気温
度判定値B以上であるか否かの判断(ステップ104)
において、吸気温度THAが吸気温度判定値B未満であ
る場合は、内燃機関2が高温状態になく、十分に冷却さ
れている。
On the other hand, in determining whether the cooling water temperature THW is equal to or higher than the cooling water temperature determination value A (step 102), the cooling water temperature THW is determined to be the cooling water temperature determination value A.
If the cooling water temperature THW is equal to or higher than the cooling water temperature determination value A, it is determined whether the intake air temperature THA is equal to or higher than the intake temperature determination value B (step 104).
When the intake air temperature THA is lower than the intake air temperature determination value B, the internal combustion engine 2 is not in a high temperature state and is sufficiently cooled.

【0039】このような冷却状態の内燃機関2を始動す
る際には、内燃機関2の始動を開始(ステップ116)
して完爆した後に、高温始動後増量補正係数FHSによ
る増量補正をせず(FHS:OFF)に(ステップ11
8)、通常の補正係数により補正して燃料噴射弁12か
ら燃料を噴射し、バイパス通路24を一時的に全開すべ
くバイパス制御弁26の動作を制御(ステップ120)
する。
When the internal combustion engine 2 in such a cooled state is started, the internal combustion engine 2 is started (step 116).
Then, after the complete explosion, the increase correction by the increase correction coefficient FHS after high temperature start is not performed (FHS: OFF) (step 11
8), the operation of the bypass control valve 26 is controlled so that the fuel is injected from the fuel injection valve 12 after being corrected by the normal correction coefficient, and the bypass passage 24 is temporarily fully opened (step 120).
To do.

【0040】この一時的にバイパス通路24を全開する
全開時間は、冷却水温度THWによって決定される。こ
の全開時間が経過した場合は、バイパス通路24を所定
開放状態に維持すべくバイパス制御弁26の動作を固定
デューティ比制御(ステップ122)する。この固定デ
ューティ比による制御時間は、冷却水温度THW等によ
って決定される。
The full open time for temporarily opening the bypass passage 24 is determined by the cooling water temperature THW. When this fully open time has elapsed, the operation of the bypass control valve 26 is fixed duty ratio controlled (step 122) in order to maintain the bypass passage 24 in the predetermined open state. The control time based on this fixed duty ratio is determined by the cooling water temperature THW and the like.

【0041】この固定デューティ比による制御時間が経
過した場合は、バイバス通路24を所定開放状態に維持
する固定デューティ比制御を終了し、バイパス通路24
を開閉して機関回転数が目標回転数になるようにバイパ
ス制御弁26の動作をデューティ比によりフィードバッ
ク制御(ステップ124)し、バイパス通路26のバイ
パス空気量を調整する。
When the control time with the fixed duty ratio has elapsed, the fixed duty ratio control for maintaining the bypass passage 24 in the predetermined open state is completed, and the bypass passage 24 is closed.
Is opened and closed to feedback control the operation of the bypass control valve 26 by the duty ratio so that the engine speed becomes the target speed (step 124), and the amount of bypass air in the bypass passage 26 is adjusted.

【0042】このように、このアイドル回転数制御装置
は、制御部40によって、内燃機関2の高温始動後に、
図2の(b)に示す如く、燃料噴射弁12から高温始動
後増量補正係数FHSにより増量補正した燃料を噴射し
ている場合は、図2の(c)に示す如く、バイパス通路
24を全開に近い所定開放状態に維持すべくバイパス制
御弁26の動作を固定デューティ比により固定デューテ
ィ比制御する。
As described above, in the idle speed control device, the control unit 40 controls the internal combustion engine 2 to start at a high temperature.
As shown in FIG. 2B, when the fuel injection valve 12 is injecting the fuel whose amount has been increased and corrected by the increase correction coefficient FHS after hot start, the bypass passage 24 is fully opened as shown in FIG. 2C. The operation of the bypass control valve 26 is controlled to a fixed duty ratio by a fixed duty ratio so as to maintain a predetermined open state close to

【0043】これにより、内燃機関2の高温始動後に、
全開に近い所定開放状態に維持されたバイパス通路24
によって十分な空気量を確保することができ、アイドル
運転時の機関回転数を高めることができる。
As a result, after the internal combustion engine 2 is started at high temperature,
Bypass passage 24 maintained in a predetermined open state close to full open
As a result, a sufficient amount of air can be secured, and the engine speed during idle operation can be increased.

【0044】このため、内燃機関2の高温始動後に、図
2の(a)に示す如く、蒸発燃料による燃料の空噴射に
よって空燃比がリーン化した際の、空燃比のリーン化の
影響による回転低下を小さくできる。これにより、回転
変動を小さくすることができ、エンジンストールの発生
を防止することができる。
Therefore, after the internal combustion engine 2 is started at a high temperature, as shown in FIG. 2A, when the air-fuel ratio becomes lean due to the air injection of the fuel by the evaporated fuel, the rotation due to the influence of the lean air-fuel ratio. The decrease can be reduced. This makes it possible to reduce fluctuations in rotation and prevent engine stall.

【0045】また、このアイドル回転数制御装置は、制
御部40によって、固定デューティ比制御によってバイ
パス通路24を全開に近い所定開放状態に維持している
ことにより、制御のプログラムの大きな変更を必要とせ
ず、少ないステップ数で実施し得て、小さなプログラム
の変更で実施し得て、既設の装置に容易に適用し得て、
実用上有利である。
Further, in this idle speed control device, the control unit 40 maintains the bypass passage 24 in a predetermined open state close to full open by the fixed duty ratio control, so that a large change of the control program is required. Instead, it can be implemented with a small number of steps, can be implemented with small program changes, and can be easily applied to existing equipment.
It is practically advantageous.

【0046】[0046]

【発明の効果】このように、この発明によれば、内燃機
関の高温始動後に所定開放状態に維持されたバイパス通
路によって十分な空気量を確保し得て、アイドル運転時
の機関回転数を高めることができる。このため、内燃機
関の高温始動後に、蒸発燃料による燃料の空噴射によっ
て空燃比がリーン化した際の回転低下を小さくできる。
これにより、回転変動を小さくすることができ、エンジ
ンストールの発生を防止することができる。
As described above, according to the present invention, a sufficient amount of air can be secured by the bypass passage maintained in the predetermined open state after the internal combustion engine is started at a high temperature, and the engine speed during idle operation is increased. be able to. Therefore, after the internal combustion engine is started at a high temperature, it is possible to reduce the decrease in rotation when the air-fuel ratio becomes lean due to the idle injection of the fuel with the evaporated fuel.
This makes it possible to reduce fluctuations in rotation and prevent engine stall.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示すアイドル回転数制御装
置による制御のフローチャートである。
FIG. 1 is a flow chart of control by an idle speed control device showing an embodiment of the present invention.

【図2】(a)は高温始動後における機関回転数の変化
を示す図である。(b)は高温始動後における高温始動
後増量補正係数の変化を示す図である。(c)は高温始
動後におけるデューティ比の変化を示す図である。
FIG. 2A is a diagram showing a change in engine speed after a high temperature start. (B) is a figure which shows the change of the increase correction coefficient after high temperature start after high temperature start. (C) is a figure which shows the change of the duty ratio after a high temperature start.

【図3】内燃機関のアイドル回転数制御装置の概略構成
図である。
FIG. 3 is a schematic configuration diagram of an idle speed control device for an internal combustion engine.

【図4】(a)は従来の高温始動後における機関回転数
の変化を示す図である。(b)は従来の高温始動後にお
ける高温始動後増量補正係数の変化を示す図である。
(c)は従来の高温始動後におけるデューティ比の変化
を示す図である。
FIG. 4A is a diagram showing a change in engine speed after a conventional high temperature start. (B) is a figure which shows the change of the increase correction coefficient after high temperature start after the conventional high temperature start.
(C) is a figure which shows the change of the duty ratio after the conventional high temperature start.

【符号の説明】[Explanation of symbols]

2 内燃機関 4 吸気通路 6 排気通路 10 吸気絞り弁 12 燃料噴射弁 24 バイパス通路 26 バイパス制御弁 30 吸気温度センサ 36 冷却水温度センサ 40 制御部 2 internal combustion engine 4 intake passage 6 exhaust passage 10 intake throttle valve 12 fuel injection valve 24 bypass passage 26 bypass control valve 30 intake temperature sensor 36 cooling water temperature sensor 40 control unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02D 45/00 312 Q 345 C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location F02D 45/00 312 Q 345 C

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の吸気通路に燃料噴射弁を設
け、前記内燃機関の吸気絞り弁を迂回して吸気通路を連
通するバイパス通路を設け、このバイパス通路を開閉す
るバイパス制御弁を設け、前記内燃機関の運転状態に応
じ各種補正係数により補正した燃料を噴射して空燃比が
目標空燃比になるように前記燃料噴射弁の動作を制御す
るとともに前記内燃機関のアイドル運転時に前記バイパ
ス通路を開閉して機関回転数が目標回転数になるように
前記バイパス制御弁の動作を制御する内燃機関のアイド
ル回転数制御装置において、前記内燃機関の高温始動後
に前記燃料噴射弁から高温始動後増量補正係数により増
量補正した燃料を噴射している場合は前記バイパス通路
を所定開放状態に維持すべく前記バイパス制御弁の動作
を制御する制御手段を設けたことを特徴とする内燃機関
のアイドル回転数制御装置。
1. A fuel injection valve is provided in an intake passage of an internal combustion engine, a bypass passage is provided that bypasses the intake throttle valve of the internal combustion engine and communicates with the intake passage, and a bypass control valve that opens and closes the bypass passage is provided. The operation of the fuel injection valve is controlled so that the air-fuel ratio becomes the target air-fuel ratio by injecting the fuel corrected by various correction coefficients according to the operating state of the internal combustion engine, and the bypass passage is opened during the idle operation of the internal combustion engine. In an idle speed control device for an internal combustion engine, which opens and closes to control the operation of the bypass control valve so that the engine speed becomes a target speed, an increase correction after hot start from the fuel injection valve after hot start of the internal combustion engine A control means for controlling the operation of the bypass control valve in order to maintain the bypass passage in a predetermined open state when injecting fuel whose amount is increased by a coefficient is being injected. An idle speed control device for an internal combustion engine, which is provided.
JP23880993A 1993-08-31 1993-08-31 Idle rotational speed control device for internal combustion engine Pending JPH0771293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23880993A JPH0771293A (en) 1993-08-31 1993-08-31 Idle rotational speed control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23880993A JPH0771293A (en) 1993-08-31 1993-08-31 Idle rotational speed control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0771293A true JPH0771293A (en) 1995-03-14

Family

ID=17035612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23880993A Pending JPH0771293A (en) 1993-08-31 1993-08-31 Idle rotational speed control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0771293A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060230A1 (en) * 1999-04-06 2000-10-12 Toyota Jidosha Kabushiki Kaisha Device for controlling rotational speed of internal combustion engine
US6360160B1 (en) 1999-04-06 2002-03-19 Toyota Jidosha Kabushiki Kaisha Internal combustion engine control apparatus and method
CN1081698C (en) * 1996-02-27 2002-03-27 松下电器产业株式会社 Washer
US6367446B1 (en) 1999-04-27 2002-04-09 Toyota Jidosha Kabushiki Kaisha Internal combustion engine control apparatus and method
JP2010285906A (en) * 2009-06-10 2010-12-24 Mazda Motor Corp Fuel injection control device for spark ignition type direct injection engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1081698C (en) * 1996-02-27 2002-03-27 松下电器产业株式会社 Washer
WO2000060230A1 (en) * 1999-04-06 2000-10-12 Toyota Jidosha Kabushiki Kaisha Device for controlling rotational speed of internal combustion engine
US6360160B1 (en) 1999-04-06 2002-03-19 Toyota Jidosha Kabushiki Kaisha Internal combustion engine control apparatus and method
US6742497B1 (en) 1999-04-06 2004-06-01 Toyota Jidosha Kabushiki Kaisha Device for controlling rotational speed of internal combustion engine
US6367446B1 (en) 1999-04-27 2002-04-09 Toyota Jidosha Kabushiki Kaisha Internal combustion engine control apparatus and method
JP2010285906A (en) * 2009-06-10 2010-12-24 Mazda Motor Corp Fuel injection control device for spark ignition type direct injection engine

Similar Documents

Publication Publication Date Title
JP3403728B2 (en) Air-fuel ratio control method
US4389996A (en) Method and apparatus for electronically controlling fuel injection
US6470854B1 (en) Air-fuel ratio control with improved fuel supply operation immediately after complete combustion of mixture
US4304210A (en) System and method for controlling EGR in internal combustion engine
JPH0730728B2 (en) Engine idle speed controller
US6877487B2 (en) Method, device and computer program for operating an internal combustion engine, and internal combustion engine
JPH0771293A (en) Idle rotational speed control device for internal combustion engine
JP3622273B2 (en) Control device for internal combustion engine
JPH06317228A (en) Fuel supply device for internal combustion engine
JPH01240741A (en) Fuel supply amount control method for internal combustion engine
JP2555211B2 (en) Internal combustion engine control method
JP2987675B2 (en) Intake control device for internal combustion engine
JPH0742583A (en) Idle rotation control device for internal combustion engine
JPH0771294A (en) Air-fuel ratio control device for internal combustion engine
JPH07286538A (en) Fuel injection control device of internal combustion engine
JPH07166917A (en) Acceleration time controller for internal combustion engine
JPH07166928A (en) Starting time controller
JPS61223239A (en) Starting fuel injection controller of internal-combustion engine
JPH07166930A (en) Idling time controller of internal combustion engine
JPH04191446A (en) Fuel control device of engine
JPH0742586A (en) Acceleration control device for internal combustion engine
JPH0458029A (en) Fuel used discriminating device for internal combustion engine
JPS63159636A (en) Economy control method
JPH05214995A (en) Idle rotating speed control method for internal combustion engine
JPH04232353A (en) Suction device of engine