JP4212885B2 - Engine positive pressure gas fuel supply method - Google Patents

Engine positive pressure gas fuel supply method Download PDF

Info

Publication number
JP4212885B2
JP4212885B2 JP2002371505A JP2002371505A JP4212885B2 JP 4212885 B2 JP4212885 B2 JP 4212885B2 JP 2002371505 A JP2002371505 A JP 2002371505A JP 2002371505 A JP2002371505 A JP 2002371505A JP 4212885 B2 JP4212885 B2 JP 4212885B2
Authority
JP
Japan
Prior art keywords
pressure gas
positive pressure
injection valve
drive signal
gas injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002371505A
Other languages
Japanese (ja)
Other versions
JP2004204696A (en
Inventor
真也 宮▲崎▼
博途 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikki Co Ltd
Original Assignee
Nikki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikki Co Ltd filed Critical Nikki Co Ltd
Priority to JP2002371505A priority Critical patent/JP4212885B2/en
Publication of JP2004204696A publication Critical patent/JP2004204696A/en
Application granted granted Critical
Publication of JP4212885B2 publication Critical patent/JP4212885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Description

【0001】
【発明の属する技術分野】
本発明はLPGまたはCNGを所定の正圧ガスに調整し、電子制御される噴射弁を用いてエンジンに供給する正圧ガス燃料供給方法、詳しくは既設のガソリン噴射システムを正圧ガス噴射システムに利用したものにおける正圧ガス燃料供給方法に関するものである。
【0002】
【従来の技術】
LPGを火花点火エンジンの燃料に使用することは広く知られており、レギュレータ(ベーパライザ)とミキサを用いて大気圧程度の圧力に調整した気化ガスを吸気管路に吸引させてエンジンに供給する、という従前から行なわれている周知の方式に代えて、特開平6−17709号公報などに記載されているように、所定圧力に調整した正圧ガスを吸気管路に噴射させてエンジンに供給する方式が考えられている。一方、CNGはLPGに比べて気体の状態を安定よく維持するので、所定の正圧ガスに調整し吸気通路に噴射させてエンジンに供給することが実用化されている。
【0003】
前記の正圧ガスを供給する気体燃料噴射システムをエンジンに搭載するにあたって、新規のエンジンに対しては、エンジン運転状態に応じて最適の燃料供給量を与える噴射量を設定した電子式制御装置を使用して噴射弁を制御するように最初からシステムを設計すればよい。
【0004】
しかし、ガソリン噴射システムを搭載している既存のエンジンに対しては、エンジンの運転状態に応じて最適の燃料供給量を与える噴射量がガソリン噴射システムを構成する電子式制御装置に設定されているので、ガソリン噴射量からこれと同等の混合気を与える正圧ガス噴射量を算出する、というきわめて簡単な機能をもたせた電子式制御装置を増設し、且つ正圧ガスの噴射に適した弁口径、ダイナミックレンジをもつ噴射弁を使用することにより、既設のガソリン噴射システムをそのまま利用して正圧ガス噴射システムを構築し、正圧ガス燃料使用のエンジンに改造することができる。
【0005】
【発明が解決しようとする課題】
前記のガソリン噴射システムにおけるガソリン用電子式制御装置が出力するガソリン噴射弁駆動信号は正圧ガス噴射量を算出する正圧ガス用電子式制御装置に入力され、ここで所要の正圧ガス噴射量に換算して正圧ガス噴射弁駆動信号を出力するが、ガソリン用電子式制御装置が出力するガソリン噴射弁駆動信号を受けて正圧ガス用電子式制御装置が正圧ガス噴射量を算出した結果である正圧ガス噴射弁駆動信号は、前記正圧ガス噴射量を算出したガソリン噴射弁駆動信号の次のガソリン噴射弁駆動信号の入力に同期して出力される。
【0006】
このため、ガソリン噴射弁駆動信号が出力されず燃料噴射を停止している減速状態から燃料噴射を再開する復帰時において、ガソリン噴射弁駆動信号に対応する正圧ガス噴射弁駆動信号は一回遅れで出力されることにより、復帰直後における最初の正圧ガス噴射が行なわれずエンジン運転性に悪影響を与える、という問題を生じる。
【0007】
本発明は既設のガソリン噴射システムを正圧ガス噴射システムとして利用した場合に、正圧ガス用電子式制御装置はガソリン用電子式制御装置が出力するガソリン噴射弁駆動信号に基いて算出した正圧ガス噴射弁駆動信号を一回遅れで出力するため、復帰直後の最初の正圧ガス噴射が行なわれずエンジン性能に悪影響を与える、という課題を解決するためになされたものであって、その目的とするところは燃料噴射を停止している減速状態からの復帰直後の最初の正圧ガス噴射を適確に行なってエンジン運転性を良好なものとすることにある。
【0008】
【課題を解決するための手段】
本発明はエンジン既設のガソリン噴射システムに、このシステムが具えているガソリン用電子式制御装置がエンジン運転状態に応じて出力するガソリン噴射弁駆動信号を入力して正圧ガス噴射量を算出する正圧ガス用電子式制御装置と正圧ガス噴射弁とを具えた正圧ガス噴射システムを増設し、正圧ガス用電子式制御装置は算出した正圧ガス噴射量を与える正圧ガス噴射弁駆動信号を次のガソリン噴射弁駆動信号の入力に同期して正圧ガス噴射弁に出力するエンジンの正圧ガス噴射システムがもっている前記課題を次のようにして解決した。
【0009】
即ち、燃料噴射を停止している減速状態からの燃料噴射復帰時において、復帰直後の1回目の正圧ガス噴射弁駆動信号をエンジン回転速度および吸気管圧力に基いて、或いはこれらとエンジン温度、電気的・機械的負荷のいずれかまたは両方に基いて正圧ガス用電子式制御装置で算出させ、この正圧ガス噴射弁駆動信号を正圧ガス用電子式制御装置に復帰直後に入力される最初のガソリン噴射弁駆動信号に同期して正圧ガス噴射弁に出力するものとした。
【0010】
このように、復帰直後の最初の正圧ガス噴射弁駆動信号がエンジン回転速度および吸気管圧力に基いて算出されるか、或いはこれらとエンジン温度、電気的・機械的負荷のいずれかまたは両方とに基いて算出され、二回目以降の正圧ガス噴射弁駆動信号がエンジン運転状態に応じてガソリン用電子式制御装置で算出したガソリン噴射弁駆動信号に基いていることと相俟って、簡単な演算機能をもたせた正圧ガス用電子式制御装置を使用して復帰直後のエンジン運転性を大幅に向上することができるようになる。
【0011】
【発明の実施の形態】
以下に図面を参照して本発明の実施の形態を説明する。図1は正圧ガス燃料にLPGを用いた場合の実施の形態を示す配置図であって、LPGを充填したボンベ1の液相部分から延びフィルタ3および電磁駆動の遮断弁4を有する送出管路2が圧力調整器5に接続されている。
【0012】
圧力調整器5はエンジン冷却水を通過させる冷却水室6と、送出管路2が接続された予熱室7と、正圧ガス管路14を接続した調圧室8とを有しており、冷却水室6と予熱室7とは互いに隣接してエンジン冷却水とLPGとの間で熱交換が行なわれるようになっている。調圧室8は調整ばね9を作用させたダイヤフラム10によって容積可変とされており、また予熱室7と連通させた導通路11はダイヤフラム10の変位に応じて回動するレバー12に取り付けた入口弁13によって開閉される。
【0013】
ボンベ1から送出管路2を通って予熱室7に入った液相LPGは、冷却水室6のエンジン冷却水により加熱されて気化ガスとなり、この気化ガスは調圧室8の圧力が設定圧力よりも低くなると入口弁13が導通路11を開くことによって調圧室8に流入し、設定圧力よりも高くなると入口弁13が導通路11を閉じることによって調圧室8への流入を停止する。このことにより、予熱室7で作られた気化ガスは所定圧力に調整された正圧ガスとして調圧室8に保有される。
【0014】
本発明は既存のガソリンエンジンをガスエンジンに改造する場合に適用されるものであり、ガソリン用電子式制御装置15とガソリン噴射弁17とを具えたガソリン噴射システムがエンジンに搭載されている。ガソリン用電子式制御装置15は絞り弁開度、吸入空気量、吸気管圧力、エンジン回転速度、冷却水温度、排気酸素濃度などのエンジン運転状態18に基いて算出したガソリン噴射弁駆動信号を出力し、ガソリン噴射弁17をこの駆動信号に応じた噴射時間で開閉動作させ、エンジン要求流量のガソリンを噴射してエンジンに供給するものであって、このこと自体は周知である。
【0015】
本実施の形態においては、正圧ガス用電子式制御装置21と正圧ガス噴射弁23とを具えた正圧ガス噴射システムが前記のガソリン噴射システムを残置させて増設される。この場合、ガソリン噴射弁17を撤去して正圧ガス噴射弁23につけ替えることができ、このときはガソリン用電子式制御装置15からガソリン噴射弁17に至る駆動信号線16をそのまま正圧ガス用電子式制御装置21につけ替え接続して入力信号線とする。
【0016】
しかし、図示実施の形態のようにガソリン噴射弁17を残置させてその近くの適宜個所に正圧ガス噴射弁23を設置する場合は、駆動信号線16から正圧ガス用電子式制御装置21に至る分岐線を設けて入力信号線24とする。ガソリン噴射弁17はガソリン噴射弁駆動信号により開閉動作させることなく閉弁位置に固定しておくことにより本発明を実施するうえで何の支障もない。
【0017】
ここで、ガソリン噴射弁17を正圧ガスの噴射に使用することが考えられるが、エンジン要求燃料流量に対応する容積流量はガソリンに比べて正圧ガスの方が格段に大きいので、本発明では正圧ガスの適正な噴射が可能な弁口径、ダイナミックレンジをもつ専用の正圧ガス噴射弁23を使用することとした。
【0018】
正圧ガス用電子式制御装置21はガソリン用電子式制御装置15がエンジン運転状態に応じて出力するガソリンの噴射に適したガソリン噴射弁駆動信号に基づいて正圧ガスの適正な噴射量を算出し、この算出された正圧ガス噴射量を与える正圧ガス噴射弁駆動信号を駆動信号線22により正圧ガス噴射弁23に出力する。
【0019】
この正圧ガス用電子式制御装置21にはエンジン回転速度25および吸気管圧力26が入力されるようになっており、またこれらに加えて一般には冷却水温度であるエンジン温度27、および一般には自動車における冷暖房装置やパワーステアリングなどの電気的・機械的負荷28の大きさが入力されるようになっている。 そして、この制御装置21は減速時におけるエンジンの基本的な状態をエンジン回転速度25と吸気管圧力26とによって把握し、これらに基いて検知した状態に対する適正量の正圧ガスを噴射させる正圧ガス噴射弁駆動信号を算出し、この駆動信号を減速状態からの復帰直後に1回または数回だけ正圧ガス噴射弁23に出力し、以後は正圧ガスの噴射に関与させないものとしている。
【0020】
エンジン温度27および電気的・機械的負荷28は減速時におけるエンジンの状態を更に正確に把握してより適正な正圧ガス噴射を行なわせるものであり、これらのいづれかまたは両方をエンジン回転速度25、吸気管圧力26に加味して正圧ガス噴射弁駆動信号を算出するか、或いはこれらのいずれかまたは両方を用いてエンジン回転速度25、吸気管圧力26により算出した正圧ガス噴射弁駆動信号を補正する。 尚、エンジン回転速度25および吸気管圧力26に絞り弁開度29を加えて減速時におけるエンジンの状態を把握させることができ、これらによって復帰時の減速状態を正確に知り、容易に適正量の正圧ガス噴射量を算出することができる。
【0021】
次に、図2を参照して、ガソリン用電子式制御装置15がエンジン運転状態18に応じて出力したガソリン噴射弁駆動信号T1、T2、T3、T4、T5、T6…は入力信号線24を通って正圧ガス用電子式制御装置21に入力され、この制御装置21は前記の入力信号に基きガソリンに変えてエンジンが要求する流量の正圧ガスを噴射させる正圧ガス噴射弁駆動信号A1、A2、A4、A5、A6…を算出する。
【0022】
算出された正圧ガス噴射弁駆動信号A1、A2、A4、A5、A6…は次のガソリン噴射弁駆動信号T2、T3、T5、T6…が入力されたときこれと同期して出力される。即ち、T1に基いて算出したA1は次のT2の入力に同期して出力され、以後も同様に次の入力に同期して前回の入力に基いて算出した駆動信号を出力するので、そのままではエンジンが燃料噴射を停止している減速状態から燃料噴射を復帰したとき、復帰直後の最初の正圧ガスの噴射量が行なわれず運転性に悪影響を及ぼすこととなる。
【0023】
ここで、T1、A1で示される噴射時間で定常運転を行なっていたエンジンが減速を開始すると、その初期にT2、T3、A2のように噴射時間を小さくして燃料噴射量を減少させてから燃料噴射を停止する。そして、燃料噴射復帰後はガソリン噴射弁駆動信号T4、T5、T6…に対応する正圧ガス噴射弁駆動信号A4、A5、A6…が一回遅れで出力されるので、T5の入力に同期して出力されるA4以降は復帰後の運転に対応することができる。しかし、T4の入力に同期して正圧ガス噴射弁駆動信号が出力されないので、復帰直後の最初に必要な正圧ガス噴射が行われない。
【0024】
ここで、減速開始時の最後に出力されたT3に基いて復帰直後の最初の正圧ガス噴射量を算出することも考えられるが、T3の噴射時間はきわめて短かいので、復帰直後に必要とされる正圧ガス噴射量を得ることができない。また、T1が最後の駆動信号であるように設計されているガソリン噴射システムであっても、減速開始時と復帰時とではエンジンの状態が大幅に異なることが多いので、T1に基いて適正な正圧ガス噴射量を算出することは不可能である。
【0025】
本実施の形態によると、正圧ガス用電子式制御装置21にエンジン回転速度25、吸気管圧力26、エンジン温度27および電気的・機械的負荷28が入力され、復帰時のエンジンの状態に応じた適正量、即ちエンジン要求流量の正圧ガスを噴射させる正圧ガス噴射弁駆動信号A0が算出される。そして、ガソリン用電子式制御装置15が出力する復帰直後の最初のガソリン噴射弁駆動信号T4が正圧ガス用電子式制御装置21に入力されたとき、これに同期させて前記駆動信号A0を正圧ガス噴射弁23に出力する。
【0026】
このことにより、減速状態からの燃料噴射復帰直後に要求される正圧ガスが適正に供給され、エンジン運転性を低下させることがないばかりか、減速から加速を行なう場合にもすぐれた加速性能を与えることができる。
【0027】
【発明の効果】
本発明によると、ガソリン噴射システム搭載のエンジンを正圧ガス燃料使用のエンジンに改造し、ガソリン用電子式制御装置が出力するエンジン運転状態に応じたガソリン噴射弁駆動信号を基に正圧ガス用電子式制御装置で正圧ガス噴射弁駆動信号を算出するシステムがもっている、燃料噴射を停止している減速状態からの復帰直後の最初に正圧ガス噴射が行なわれない、という不都合が解消されるとともに、最初の正圧ガス噴射量を適正量としてエンジン運転性を向上させることができるものである。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す配置図。
【図2】図1の形態における噴射タイミング図。
【符号の説明】
15 ガソリン用電子式制御装置、 18 エンジン運転状態、 21 正圧ガス用電子式制御装置、 23 正圧ガス噴射弁、 25 エンジン回転速度、26 吸気管圧力、 27 エンジン温度、 28 電気的・機械的負荷、 T1、T2、T3、T4、T5、T6 ガソリン噴射弁駆動信号 A0、A1、A2、A4、A5、A6 正圧ガス噴射弁駆動信号
[0001]
BACKGROUND OF THE INVENTION
The present invention adjusts LPG or CNG to a predetermined positive pressure gas and supplies it to an engine using an electronically controlled injection valve. More specifically, an existing gasoline injection system is changed to a positive pressure gas injection system. The present invention relates to a method for supplying a positive pressure gas fuel.
[0002]
[Prior art]
It is widely known that LPG is used as a fuel for a spark ignition engine, and vaporized gas adjusted to a pressure of about atmospheric pressure using a regulator (vaporizer) and a mixer is sucked into an intake pipe and supplied to the engine. Instead of the well-known method that has been used in the past, as described in JP-A-6-17709, positive pressure gas adjusted to a predetermined pressure is injected into the intake pipe and supplied to the engine. A method is considered. On the other hand, since CNG maintains a gas state more stably than LPG, it is put into practical use that it is adjusted to a predetermined positive pressure gas, injected into the intake passage, and supplied to the engine.
[0003]
When the above-described gaseous fuel injection system for supplying positive pressure gas is mounted on an engine, an electronic control device in which an injection amount that gives an optimum fuel supply amount is set for a new engine according to the engine operating state. The system can be designed from the start to use and control the injector.
[0004]
However, for an existing engine equipped with a gasoline injection system, an injection amount that gives an optimal fuel supply amount according to the operating state of the engine is set in an electronic control device constituting the gasoline injection system. Therefore, an electronic control unit with a very simple function of calculating the positive pressure gas injection amount that gives the same mixture as the gasoline injection amount is added, and the valve diameter suitable for positive pressure gas injection By using an injection valve having a dynamic range, a positive pressure gas injection system can be constructed by using an existing gasoline injection system as it is, and can be modified to an engine using positive pressure gas fuel.
[0005]
[Problems to be solved by the invention]
The gasoline injection valve drive signal output by the gasoline electronic control device in the gasoline injection system is input to the positive pressure gas electronic control device for calculating the positive pressure gas injection amount, where the required positive pressure gas injection amount is inputted. The positive pressure gas injection valve drive signal is output in terms of the output, but the positive pressure gas electronic control device calculates the positive pressure gas injection amount in response to the gasoline injection valve drive signal output by the gasoline electronic control device. The resultant positive pressure gas injection valve drive signal is output in synchronization with the input of the gasoline injection valve drive signal next to the gasoline injection valve drive signal for which the positive pressure gas injection amount has been calculated .
[0006]
For this reason, the positive pressure gas injection valve drive signal corresponding to the gasoline injection valve drive signal is delayed once when the fuel injection is resumed from the deceleration state in which the gasoline injection valve drive signal is not output and the fuel injection is stopped. This causes a problem that the first positive pressure gas injection immediately after the return is not performed and the engine operability is adversely affected.
[0007]
In the present invention, when an existing gasoline injection system is used as a positive pressure gas injection system, the positive pressure gas electronic control device calculates the positive pressure calculated based on the gasoline injection valve drive signal output from the gasoline electronic control device. Since the gas injection valve drive signal is output once with a delay, the first positive pressure gas injection immediately after the return is not performed and the engine performance is adversely affected. The purpose is to improve the engine operability by properly performing the first positive pressure gas injection immediately after returning from the deceleration state where the fuel injection is stopped.
[0008]
[Means for Solving the Problems]
In the present invention, a gasoline injection valve drive signal output according to an engine operating state is inputted to an existing gasoline injection system of an engine, and a positive pressure gas injection amount is calculated. A positive pressure gas injection system that includes an electronic control device for pressurized gas and a positive pressure gas injection valve is added, and the electronic control device for positive pressure gas drives the positive pressure gas injection valve that gives the calculated positive pressure gas injection amount The above-described problem of the positive pressure gas injection system of the engine that outputs the signal to the positive pressure gas injection valve in synchronization with the input of the next gasoline injection valve drive signal has been solved as follows.
[0009]
That is, at the time of fuel injection return from the deceleration state where fuel injection is stopped, the first positive pressure gas injection valve drive signal immediately after the return is based on the engine rotational speed and the intake pipe pressure, or these and the engine temperature, The positive pressure gas electronic controller calculates the positive pressure gas based on one or both of the electrical and mechanical loads, and this positive pressure gas injection valve drive signal is input to the positive pressure gas electronic controller immediately after returning. Output to the positive pressure gas injection valve in synchronism with the first gasoline injection valve drive signal.
[0010]
Thus, the first positive pressure gas injection valve drive signal immediately after the return is calculated based on the engine speed and the intake pipe pressure, or these and either or both of the engine temperature and the electrical / mechanical load. Simple, coupled with the fact that the second and subsequent positive pressure gas injection valve drive signals are based on the gasoline injection valve drive signals calculated by the gasoline electronic control unit according to the engine operating conditions. It is possible to greatly improve the engine operability immediately after the return using the electronic controller for positive pressure gas provided with a proper calculation function.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an arrangement view showing an embodiment in which LPG is used for positive pressure gas fuel, and is a delivery pipe having a filter 3 and an electromagnetically driven shut-off valve 4 extending from a liquid phase portion of a cylinder 1 filled with LPG. The path 2 is connected to the pressure regulator 5.
[0012]
The pressure regulator 5 has a cooling water chamber 6 through which engine cooling water passes, a preheating chamber 7 to which the delivery pipe line 2 is connected, and a pressure regulating chamber 8 to which a positive pressure gas pipe 14 is connected, The cooling water chamber 6 and the preheating chamber 7 are adjacent to each other and heat exchange is performed between the engine cooling water and the LPG. The pressure regulating chamber 8 is variable in volume by a diaphragm 10 on which an adjustment spring 9 is applied, and a conduction path 11 communicated with the preheating chamber 7 is an inlet attached to a lever 12 that rotates according to the displacement of the diaphragm 10. It is opened and closed by a valve 13.
[0013]
The liquid phase LPG that has entered the preheating chamber 7 from the cylinder 1 through the delivery line 2 is heated by the engine cooling water in the cooling water chamber 6 to become a vaporized gas, and this vaporized gas has the pressure in the pressure regulating chamber 8 set pressure. The inlet valve 13 flows into the pressure regulating chamber 8 by opening the conduction path 11 when the pressure is lower than the value, and the flow into the pressure regulating chamber 8 is stopped by closing the conduction path 11 when the inlet valve 13 is higher than the set pressure. . As a result, the vaporized gas produced in the preheating chamber 7 is held in the pressure regulating chamber 8 as a positive pressure gas adjusted to a predetermined pressure.
[0014]
The present invention is applied when an existing gasoline engine is modified to a gas engine, and a gasoline injection system including an electronic control device 15 for gasoline and a gasoline injection valve 17 is mounted on the engine. The gasoline electronic control unit 15 outputs a gasoline injection valve drive signal calculated based on the engine operating state 18 such as the throttle valve opening, the intake air amount, the intake pipe pressure, the engine speed, the coolant temperature, and the exhaust oxygen concentration. The gasoline injection valve 17 is opened and closed at an injection time corresponding to the drive signal, and the gasoline having the required flow rate is injected and supplied to the engine. This is well known.
[0015]
In the present embodiment, a positive pressure gas injection system including a positive pressure gas electronic control device 21 and a positive pressure gas injection valve 23 is added with the gasoline injection system remaining. In this case, the gasoline injection valve 17 can be removed and replaced with the positive pressure gas injection valve 23. At this time, the drive signal line 16 from the gasoline electronic control unit 15 to the gasoline injection valve 17 is used as it is for the positive pressure gas. It replaces and connects with the electronic control apparatus 21, and it is set as an input signal line.
[0016]
However, when the gasoline injection valve 17 is left and the positive pressure gas injection valve 23 is installed at an appropriate location near the gasoline injection valve 17 as in the illustrated embodiment, the electronic control device 21 for the positive pressure gas is connected from the drive signal line 16. A branch line extending to the input signal line 24 is provided. The gasoline injection valve 17 is fixed at the valve closing position without being opened or closed by a gasoline injection valve drive signal, and there is no problem in implementing the present invention.
[0017]
Here, it is conceivable to use the gasoline injection valve 17 for the injection of the positive pressure gas. However, since the volumetric flow rate corresponding to the engine required fuel flow rate is much larger in the positive pressure gas than in the gasoline, in the present invention. A dedicated positive pressure gas injection valve 23 having a valve diameter and a dynamic range capable of proper injection of the positive pressure gas is used.
[0018]
The positive pressure gas electronic control device 21 calculates an appropriate injection amount of the positive pressure gas based on a gasoline injection valve drive signal suitable for gasoline injection output from the gasoline electronic control device 15 according to the engine operating state. Then, a positive pressure gas injection valve drive signal giving the calculated positive pressure gas injection amount is output to the positive pressure gas injection valve 23 through the drive signal line 22.
[0019]
The engine control speed 25 and the intake pipe pressure 26 are input to the electronic controller 21 for positive pressure gas, and in addition to these, an engine temperature 27 which is generally a cooling water temperature, and generally The size of an electrical / mechanical load 28 such as a cooling / heating device or a power steering in an automobile is input. Then, the control device 21 grasps the basic state of the engine at the time of deceleration from the engine rotational speed 25 and the intake pipe pressure 26, and a positive pressure for injecting an appropriate amount of positive pressure gas for the state detected based on these. A gas injection valve drive signal is calculated, and this drive signal is output once or several times to the positive pressure gas injection valve 23 immediately after returning from the deceleration state, and thereafter is not involved in the injection of the positive pressure gas.
[0020]
The engine temperature 27 and the electrical / mechanical load 28 are used for more accurately grasping the state of the engine at the time of deceleration and performing a more appropriate positive pressure gas injection. The positive pressure gas injection valve drive signal is calculated in consideration of the intake pipe pressure 26, or the positive pressure gas injection valve drive signal calculated from the engine speed 25 and the intake pipe pressure 26 using either or both of them is calculated. to correct. The throttle valve opening 29 can be added to the engine speed 25 and the intake pipe pressure 26 so that the state of the engine at the time of deceleration can be grasped. The positive pressure gas injection amount can be calculated.
[0021]
Next, referring to FIG. 2, the gasoline injection valve drive signals T1, T2, T3, T4, T5, T6... Output by the gasoline electronic control unit 15 according to the engine operating state 18 are connected to the input signal line 24. The positive pressure gas electronic control device 21 passes through and is input to the positive pressure gas electronic control device 21. The control device 21 injects positive pressure gas at a flow rate required by the engine instead of gasoline based on the input signal. , A2, A4, A5, A6...
[0022]
The calculated positive pressure gas injection valve drive signals A1, A2, A4, A5, A6,... Are output in synchronization with the next gasoline injection valve drive signals T2, T3, T5, T6,. That is, A1 calculated based on T1 is output in synchronization with the input of the next T2, and thereafter, similarly, the drive signal calculated based on the previous input is output in synchronization with the next input. When the fuel injection is resumed from the deceleration state in which the engine stops the fuel injection, the first positive pressure gas injection amount immediately after the return is not performed and the drivability is adversely affected.
[0023]
Here, when the engine that has been in steady operation at the injection times indicated by T1 and A1 starts decelerating, the fuel injection amount is decreased by reducing the injection time and reducing the injection time at the initial stage of T2, T3, and A2. Stop fuel injection. After the fuel injection is restored, the positive pressure gas injection valve drive signals A4, A5, A6,... Corresponding to the gasoline injection valve drive signals T4, T5, T6,. The output after A4 can correspond to the operation after the return. However, since the positive pressure gas injection valve drive signal is not output in synchronization with the input of T4, the first required positive pressure gas injection is not performed immediately after the return.
[0024]
Here, it is conceivable to calculate the first positive pressure gas injection amount immediately after the return based on T3 output at the end of the deceleration start. However, since the injection time of T3 is very short, it is necessary immediately after the return. It is not possible to obtain the positive pressure gas injection amount. Even in a gasoline injection system designed so that T1 is the last drive signal, the engine state often differs greatly at the start of deceleration and at the time of return. It is impossible to calculate the positive pressure gas injection amount.
[0025]
According to the present embodiment, the engine speed 25, the intake pipe pressure 26, the engine temperature 27, and the electrical / mechanical load 28 are input to the electronic controller 21 for the positive pressure gas, depending on the state of the engine at the time of return. Then, a positive pressure gas injection valve drive signal A0 for injecting a proper amount, that is, a positive pressure gas of an engine required flow rate is calculated. Then, when the first gasoline injection valve drive signal T4 immediately after return output from the gasoline electronic control device 15 is input to the positive pressure gas electronic control device 21, the drive signal A0 is set in synchronization with this. It outputs to the pressure gas injection valve 23.
[0026]
As a result, the positive pressure gas required immediately after the return of fuel injection from the deceleration state is properly supplied, and the engine operability is not deteriorated. In addition, the acceleration performance is excellent even when accelerating from deceleration. Can be given.
[0027]
【The invention's effect】
According to the present invention, an engine equipped with a gasoline injection system is remodeled into an engine using positive pressure gas fuel, and the positive pressure gas application is based on the gasoline injection valve drive signal according to the engine operating state output by the gasoline electronic control unit. The problem that the system that calculates the positive pressure gas injection valve drive signal with the electronic control device has the problem that the positive pressure gas injection is not performed first after the return from the deceleration state where the fuel injection is stopped is solved. In addition, the engine operability can be improved by setting the initial positive pressure gas injection amount as an appropriate amount.
[Brief description of the drawings]
FIG. 1 is a layout view showing an embodiment of the present invention.
FIG. 2 is an injection timing diagram in the embodiment of FIG.
[Explanation of symbols]
15 Electronic control device for gasoline, 18 Engine operating state, 21 Electronic control device for positive pressure gas, 23 Positive pressure gas injection valve, 25 Engine rotation speed, 26 Intake pipe pressure, 27 Engine temperature, 28 Electrical and mechanical Load, T1, T2, T3, T4, T5, T6 Gasoline injection valve drive signal A0, A1, A2, A4, A5, A6 Positive pressure gas injection valve drive signal

Claims (5)

エンジン既設のガソリン噴射システムに、このシステムが具えているガソリン用電子式制御装置がエンジン運転状態に応じて出力するガソリン噴射弁駆動信号を入力して正圧ガス噴射量を算出する正圧ガス用電子式制御装置と正圧ガス噴射弁とを具えた正圧ガス噴射システムを増設し、前記正圧ガス用電子式制御装置は算出した正圧ガス噴射量を与える正圧ガス噴射弁駆動信号を、前記正圧ガス噴射量を算出したガソリン噴射弁駆動信号の次のガソリン噴射弁駆動信号の入力に同期して前記正圧ガス噴射弁に出力するエンジンの正圧ガス燃料供給方法であって、
燃料噴射を停止している減速状態からの燃料噴射復帰時において、復帰直後の1回目の正圧ガス噴射弁駆動信号をエンジン回転速度および吸気管圧力に基いて前記正圧ガス用電子式制御装置で算出させ、この正圧ガス噴射弁駆動信号を前記正圧ガス用電子式制御装置に復帰直後に入力される最初のガソリン噴射弁駆動信号に同期して前記正圧ガス噴射弁に出力する、
ことを特徴とするエンジンの正圧ガス燃料供給方法。
For the positive pressure gas that calculates the positive pressure gas injection quantity by inputting the gasoline injection valve drive signal output by the electronic control unit for gasoline output according to the engine operating state to the gasoline injection system already installed in the engine A positive pressure gas injection system comprising an electronic control device and a positive pressure gas injection valve is added, and the positive pressure gas electronic control device provides a positive pressure gas injection valve drive signal that gives the calculated positive pressure gas injection amount. A positive pressure gas fuel supply method for an engine that outputs to the positive pressure gas injection valve in synchronism with an input of a gasoline injection valve drive signal next to a gasoline injection valve drive signal that calculates the positive pressure gas injection amount ,
At the time of fuel injection return from the deceleration state in which fuel injection is stopped, the first positive pressure gas injection valve drive signal immediately after the return is based on the engine speed and the intake pipe pressure. The positive pressure gas injection valve drive signal is output to the positive pressure gas injection valve in synchronization with the first gasoline injection valve drive signal input immediately after returning to the positive pressure gas electronic control unit.
A positive pressure gas fuel supply method for an engine.
エンジン既設のガソリン噴射システムに、このシステムが具えているガソリン用電子式制御装置がエンジン運転状態に応じて出力するガソリン噴射弁駆動信号を入力して正圧ガス噴射量を算出する正圧ガス用電子式制御装置と正圧ガス噴射弁とを具えた正圧ガス噴射システムを増設し、前記正圧ガス用電子式制御装置は算出した正圧ガス噴射量を与える正圧ガス噴射弁駆動信号を、前記正圧ガス噴射量を算出したガソリン噴射弁駆動信号の次のガソリン噴射弁駆動信号の入力に同期して前記正圧ガス噴射弁に出力するエンジンの正圧ガス燃料供給方法であって、
燃料噴射を停止している減速状態からの燃料噴射復帰時において、復帰直後の1回目の正圧ガス噴射弁駆動信号をエンジン回転速度および吸気管圧力とエンジン温度とに基いて前記正圧ガス用電子式制御装置で算出させ、この正圧ガス噴射弁駆動信号を前記正圧ガス用電子式制御装置に復帰直後に入力される最初のガソリン噴射弁駆動信号に同期して前記正圧ガス噴射弁に出力する、
ことを特徴とするエンジンの正圧ガス燃料供給方法。
For the positive pressure gas that calculates the positive pressure gas injection quantity by inputting the gasoline injection valve drive signal output by the electronic control unit for gasoline output according to the engine operating state to the gasoline injection system already installed in the engine A positive pressure gas injection system comprising an electronic control device and a positive pressure gas injection valve is added, and the positive pressure gas electronic control device provides a positive pressure gas injection valve drive signal that gives the calculated positive pressure gas injection amount. A positive pressure gas fuel supply method for an engine that outputs to the positive pressure gas injection valve in synchronism with an input of a gasoline injection valve drive signal next to a gasoline injection valve drive signal that calculates the positive pressure gas injection amount ,
At the time of fuel injection return from the deceleration state in which fuel injection is stopped, the first positive pressure gas injection valve drive signal immediately after the return is used for the positive pressure gas based on the engine speed, the intake pipe pressure and the engine temperature. The positive pressure gas injection valve is calculated in synchronism with the first gasoline injection valve drive signal inputted immediately after returning to the positive pressure gas electronic control device. Output to
A positive pressure gas fuel supply method for an engine.
エンジン既設のガソリン噴射システムに、このシステムが具えているガソリン用電子式制御装置がエンジン運転状態に応じて出力するガソリン噴射弁駆動信号を入力して正圧ガス噴射量を算出する正圧ガス用電子式制御装置と正圧ガス噴射弁とを具えた正圧ガス噴射システムを増設し、前記正圧ガス用電子式制御装置は算出した正圧ガス噴射量を与える正圧ガス噴射弁駆動信号を、前記正圧ガス噴射量を算出したガソリン噴射弁駆動信号の次のガソリン噴射弁駆動信号の入力に同期して前記正圧ガス噴射弁に出力するエンジンの正圧ガス燃料供給方法であって、
燃料噴射を停止している減速状態からの燃料噴射復帰時において、復帰直後の1回目の正圧ガス噴射弁駆動信号をエンジン回転速度および吸気管圧力と電気的・機械的負荷とに基いて前記正圧ガス用電子式制御装置で算出させ、この正圧ガス噴射弁駆動信号を前記正圧ガス用電子式制御装置に復帰直後に入力される最初のガソリン噴射弁駆動信号に同期して前記正圧ガス噴射弁に出力する、
ことを特徴とするエンジンの正圧ガス燃料供給方法。
For the positive pressure gas that calculates the positive pressure gas injection amount by inputting the gasoline injection valve drive signal output by the gasoline electronic control system equipped with the engine to the existing gasoline injection system according to the engine operating state A positive pressure gas injection system comprising an electronic control device and a positive pressure gas injection valve is added, and the positive pressure gas electronic control device provides a positive pressure gas injection valve drive signal that gives the calculated positive pressure gas injection amount. A positive pressure gas fuel supply method for an engine that outputs to the positive pressure gas injection valve in synchronism with an input of a gasoline injection valve drive signal next to a gasoline injection valve drive signal that calculates the positive pressure gas injection amount ,
At the time of fuel injection return from the deceleration state where the fuel injection is stopped, the first positive pressure gas injection valve drive signal immediately after the return is determined based on the engine speed, the intake pipe pressure, and the electrical / mechanical load. The positive pressure gas electronic control unit calculates the positive pressure gas injection valve drive signal in synchronism with the first gasoline injection valve drive signal input immediately after returning to the positive pressure gas electronic control unit. Output to the pressure gas injection valve,
A positive pressure gas fuel supply method for an engine.
エンジン既設のガソリン噴射システムに、このシステムが具えているガソリン用電子式制御装置がエンジン運転状態に応じて出力するガソリン噴射弁駆動信号を入力して正圧ガス噴射量を算出する正圧ガス用電子式制御装置と正圧ガス噴射弁とを具えた正圧ガス噴射システムを増設し、前記正圧ガス用電子式制御装置は算出した正圧ガス噴射量を与える正圧ガス噴射弁駆動信号を、前記正圧ガス噴射量を算出したガソリン噴射弁駆動信号の次のガソリン噴射弁駆動信号の入力に同期して前記正圧ガス噴射弁に出力するエンジンの正圧ガス燃料供給方法であって、
燃料噴射を停止している減速状態からの燃料噴射復帰時において、復帰直後の1回目の正圧ガス噴射弁駆動信号をエンジン回転速度および吸気管圧力とエンジン温度と電気的・機械的負荷とに基いて前記正圧ガス用電子式制御装置で算出させ、この正圧ガス噴射弁駆動信号を前記正圧ガス用電子式制御装置に復帰直後に入力される最初のガソリン噴射弁駆動信号に同期して前記正圧ガス噴射弁に出力する、
ことを特徴とするエンジンの正圧ガス燃料供給方法。
For the positive pressure gas that calculates the positive pressure gas injection amount by inputting the gasoline injection valve drive signal output by the gasoline electronic control system equipped with the engine to the existing gasoline injection system according to the engine operating state A positive pressure gas injection system comprising an electronic control device and a positive pressure gas injection valve is added, and the positive pressure gas electronic control device provides a positive pressure gas injection valve drive signal that gives the calculated positive pressure gas injection amount. A positive pressure gas fuel supply method for an engine that outputs to the positive pressure gas injection valve in synchronism with an input of a gasoline injection valve drive signal next to a gasoline injection valve drive signal that calculates the positive pressure gas injection amount ,
At the time of fuel injection return from the deceleration state where fuel injection is stopped, the first positive pressure gas injection valve drive signal immediately after the return is set to the engine speed, intake pipe pressure, engine temperature, and electrical / mechanical load. Therefore, the positive pressure gas electronic control unit calculates and synchronizes this positive pressure gas injection valve drive signal with the first gasoline injection valve drive signal inputted immediately after returning to the positive pressure gas electronic control unit. Output to the positive pressure gas injection valve,
A positive pressure gas fuel supply method for an engine.
前記復帰直後の1回目の正圧ガス噴射弁駆動信号を前記エンジン回転速度および吸気管圧力に加えて絞り弁開度に基いて算出させる請求項1、2、3、4のいずれかに記載したエンジンの正圧ガス燃料供給方法。 The first positive pressure gas injection valve drive signal immediately after the return is calculated based on the throttle valve opening in addition to the engine speed and the intake pipe pressure. Engine positive pressure gas fuel supply method.
JP2002371505A 2002-12-24 2002-12-24 Engine positive pressure gas fuel supply method Expired - Fee Related JP4212885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002371505A JP4212885B2 (en) 2002-12-24 2002-12-24 Engine positive pressure gas fuel supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002371505A JP4212885B2 (en) 2002-12-24 2002-12-24 Engine positive pressure gas fuel supply method

Publications (2)

Publication Number Publication Date
JP2004204696A JP2004204696A (en) 2004-07-22
JP4212885B2 true JP4212885B2 (en) 2009-01-21

Family

ID=32810371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002371505A Expired - Fee Related JP4212885B2 (en) 2002-12-24 2002-12-24 Engine positive pressure gas fuel supply method

Country Status (1)

Country Link
JP (1) JP4212885B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4841963B2 (en) * 2006-02-02 2011-12-21 株式会社ニッキ Engine fuel supply method and fuel supply apparatus
JP4737023B2 (en) * 2006-10-04 2011-07-27 株式会社日立製作所 Hydrogen engine system
JP2007332814A (en) * 2006-06-13 2007-12-27 Nikki Co Ltd Method and device for ignition control of gasoline alternate fuel engine
JP4795876B2 (en) * 2006-07-07 2011-10-19 株式会社ニッキ Ignition control method and apparatus for gasoline alternative fuel engine
JP2009097364A (en) * 2007-10-15 2009-05-07 Nikki Co Ltd Fuel supply method for gas engine and gasoline alternative gas fuel injection control device
CN103047036A (en) * 2011-10-12 2013-04-17 上海格令汽车电子有限公司 Natural gas engine cylinder self-checking control system and natural gas engine cylinder self-checking control method
CN103485936B (en) * 2013-10-18 2015-07-22 贵州大学 Gas supplying device of gas vehicle engine

Also Published As

Publication number Publication date
JP2004204696A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
US6776142B2 (en) Apparatus and method for supplying fuel in internal combustion engine with variable valve lifter
JP4212885B2 (en) Engine positive pressure gas fuel supply method
JP5557094B2 (en) Fuel supply device for internal combustion engine
JP4114135B2 (en) Engine positive pressure gas fuel supply method
WO2002031337A1 (en) Mixer for gas fuel
JP4331581B2 (en) Engine positive pressure gas fuel supply method and apparatus
JP4348686B2 (en) Engine fuel supply method and apparatus
JPS6316161A (en) Pressure controlling method for liquefied gas fuel
JP4235879B2 (en) Engine positive pressure gas fuel supply method
JPH0643814B2 (en) Dual fuel switching control method and device
JP2719567B2 (en) Engine LPG supply device
JP2719568B2 (en) Engine LPG supply device
JP2960289B2 (en) Gas engine fuel supply control device
JP4395734B2 (en) Engine positive pressure gas fuel supply method and apparatus
JP4116315B2 (en) Engine LPG supply method
JP2008215125A (en) Fuel supply system for internal combustion engine
JP7383998B2 (en) Bi-fuel car fuel injection system
JPH0253625B2 (en)
JP2984709B2 (en) Liquefied gas fuel supply method for engine
JP2004027994A (en) Lpg supply method for engine
JPS6065261A (en) Fuel feeder for internal-combustion engine using liquidized petroleum gas
JPH0223815Y2 (en)
JPS606058A (en) Fuel feed device for liquefied petroleum gas
JPH0765546B2 (en) Liquefied gas injection method
JPH10306749A (en) Gas fuel control device for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees