JP4116315B2 - Engine LPG supply method - Google Patents

Engine LPG supply method Download PDF

Info

Publication number
JP4116315B2
JP4116315B2 JP2002107421A JP2002107421A JP4116315B2 JP 4116315 B2 JP4116315 B2 JP 4116315B2 JP 2002107421 A JP2002107421 A JP 2002107421A JP 2002107421 A JP2002107421 A JP 2002107421A JP 4116315 B2 JP4116315 B2 JP 4116315B2
Authority
JP
Japan
Prior art keywords
pressure
vaporized gas
engine
injection
injection valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002107421A
Other languages
Japanese (ja)
Other versions
JP2003301746A (en
Inventor
真一 原田
和久 真壁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikki Co Ltd
Original Assignee
Nikki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikki Co Ltd filed Critical Nikki Co Ltd
Priority to JP2002107421A priority Critical patent/JP4116315B2/en
Publication of JP2003301746A publication Critical patent/JP2003301746A/en
Application granted granted Critical
Publication of JP4116315B2 publication Critical patent/JP4116315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Description

【0001】
【発明の属する技術分野】
本発明はLPG(液化石油ガス)を所定正圧の気化ガスに調整して気筒別に噴射させることによりエンジンに供給する方法、殊に低負荷域で要求流量の気化ガスを適正に供給することができる方法に関するものである。
【0002】
【従来の技術】
LPGを火花点火機関の燃料に使用することは広く知られており、レギュレータ(ベーパライザ)とミキサとを用いて気化ガスを吸気管路に吸引させる、という従前から行なわれている周知の方式に代えて、実開昭59−43659号公報などに記載されているように液体のまま吸気管路に噴射させる方式、および特開平6−17709号公報などに記載されているように所定正圧の気化ガスに調整して吸気管路に噴射させる方式が検討されている。
【0003】
LPGをボンベ内の飽和蒸気圧を利用し或いはポンプで加圧して液体のまま噴射させる方式は、液体のLPGが温度の影響を受けやすく容易に気化するという不安定な性質をもっていることから、現在では所定正圧の気化ガスに調整して噴射させる方式が検討の主流となっている。
【0004】
【発明が解決しようとする課題】
一般に、気体燃料を噴射弁により流量制御して吸気管路に噴射しエンジンに供給する場合、噴射弁に送入される気体燃料の圧力が臨界圧力以上であると、噴射弁の出口である噴射ノズルにおける流速は音速であり、流量は噴射ノズル入口側における気体燃料の状態、即ち圧力および温度のみで定まる。
【0005】
従って、気体の状態を高圧で安定して維持するCNG(圧縮天然ガス)は、臨界圧力以上の圧力に調整して吸気管路の負圧の影響を受けることなく噴射弁の制御に従った流量で噴射させ、エンジン要求流量を適確に供給することができ、そのためにCNGをエンジンの燃料に使用することが一部で実用化されている。
【0006】
しかしながら、LPGは高圧で液体となり、安定した気体の状態を維持するのはかなり低い圧力範囲であり、この圧力範囲は臨界圧力よりも低い。このように、正圧であっても臨界圧力よりも低い圧力の気体燃料を噴射弁により噴射すると、噴射ノズル出口側である吸気管路の負圧の影響を受け、流量が変化してしまう。即ち、アイドリング時のように吸入負圧が高い運転域では流量が増加し、全負荷時のように吸入負圧が低い運転域では流量が減少し、エンジン要求流量と相反する流量の気体燃料が供給される、という不都合を生じる。殊にアイドリング時の過剰燃料は混合気過濃によるエンジン停止を招くこととなる。
【0007】
その対策として、噴射弁のダイナミックレンジを拡大して大幅な流量変化に対処させることが考えられるが、そのためには一気筒当り複数個の噴射弁を必要とし、装置を著しく複雑・高価なものにする、という問題が発生し実用に不適切である。別の対策として、一旦減圧気化させて得た気化ガスをポンプで臨界圧力以上に加圧して噴射弁に送入することが考えられるが、このような圧力にすると液化しやすい不安定な状態となるので、同じく実用に不適切である。
【0008】
本発明はLPGの気化ガスを気体の状態が安定よく維持される圧力範囲内で噴射方式によりエンジン要求流量に対応して適正に供給できる実用化容易なシステムがなかった、という前記課題を解決しようとするものであって、一気筒当り一個の噴射弁を用いてエンジン要求流量の気化ガスを殊に低負荷域においても適正に供給することができ、従って容易に実用に供することができるシステムを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は所定正圧に調整されたLPGの気化ガスを噴射弁により噴射してエンジンに供給するにあたり、気化ガスは臨界圧力よりも低い圧力で噴射弁に送入し、噴射弁は気筒毎に各一個を吸気マニホルドに設置してそれぞれの出口側の負圧変化に従って個別の時期に気化ガスを噴射すること;気化ガス噴射時期は対応する気筒の排気行程およびそれに続く吸気行程の範囲内に設定し、そして低負荷域においては噴射弁出口側の負圧が最も低くなる排気行程の終期に設定して噴射すること、としたことをもって前記課題を解決させるものとした。
【0010】
このように各気筒の入口に各一個の噴射弁を設置して排気行程とそれに続く吸気行程の範囲内で設定した時期にそれぞれ噴射を行なうものとし、臨界圧力よりも低い圧力に調整され気体の状態を安定よく維持する気化ガスを噴射弁に送入するものとした本発明によると、気化ガス圧力と噴射弁出口側負圧との圧力差が比較的小さいために、噴射弁の限られたダイナミックレンジ内でエンジン運転状態に応じた最適の流量とする時期を選んで噴射させることにより、エンジン要求流量の気化ガスを正確に供給することができる。殊に、低負荷域で圧力差が最小となる時期に噴射させるものとしたことにより、アイドリング時などに過剰燃料を供給することがなくなり、安定した低速運転を行なうことができるものである。
【0011】
また、前記に加えて高負荷域で圧力差が最大となる時期に噴射させるものとしたことにより、全負荷運転時などに要求される燃料を不足なく供給することが可能となる。
【0012】
ここで、気化ガス噴射時期を部分負荷域において対応する気筒の排気行程の後期およびそれに続く吸気工程の初期の範囲内に設定すると、圧力差が小さく且つ噴射弁出口側負圧の変化が比較的小さい領域で噴射することとなるので、噴射時間をエンジン運転状態に応じて制御する、という簡単な制御手段で要求流量の燃料を供給することが可能となる。加えて、低負荷域の気化ガス噴射時期もこの範囲内であるので、部分負荷域と低負荷域との間の移行が運転性を損うことなく円滑に行なわれる、という利点がある。
【0013】
また、気化ガス噴射時期を部分負荷域において対応する気筒の排気行程の後期およびそれに続く吸気行程の初期の範囲内に設定した場合、部分負荷域から高負荷域に移行するときの噴射時期を吸気行程の終期に向かって負荷の増加に伴い移動させると、これらの間の移行が運転性を損うことなく円滑に行なわれる、という利点が得られる。
【0014】
更に、気化ガス噴射時期における噴射弁出口側負圧の平均値の変化量に応じて噴射弁制御信号の基本パルス幅を補正すると、要求流量の燃料を正確に供給することが可能になる、という利点が得られる。
【0015】
【発明の実施の形態】
以下に図面を参照して本発明の実施の形態を説明する。図1はLPG供給システムをの配置図であって、LPGを充填した耐圧容器からなる燃料タンク1の液相部分から延びる送出管路2が圧力調整器6に接続され、圧力調整器6から延びる気化ガス管路15が燃料ギャラリ16に接続されている。送出管路2は手動の開閉弁3,フィルタ4および電磁駆動の遮断弁5を有している。また、燃料ギャラリ16からはエンジン21の各気筒22に対応して吸気マニホルド23の枝管にそれぞれ設置した噴射弁17が分岐している。
【0016】
圧力調整器6はエンジン冷却水を通過させる冷却水室7と、送出管路2が接続された予熱室8と、気化ガス管路15を接続した圧力調整室9とを有しており、冷却水室7と予熱室8とは互いに隣接してエンジン冷却水とLPGとの熱交換部を形成している。圧力調整室9は調整ばね10を作用させたダイヤフラム11によって容積可変であり、また予熱室8と連通させた導通路12はダイヤフラム11の変位に応じて回動するレバー13に取り付けた入口弁14によって開閉される。
【0017】
燃料タンク1から送出管路2を通って予熱室8に入った液相のLPGは、冷却水室7のエンジン冷却水により加熱されて気化ガスとなる。この気化ガスは圧力調整室9が設定圧力よりも低い圧力になると入口弁14が導通路12を開くことによって圧力調整室9に流入し、設定圧力よりも高い圧力になると入口弁14が導通路12を閉じることによって圧力調整室9への流入を停止する。このことにより、所定正圧に調整された気化ガスが気化ガス管路15,燃料ギャラリ16を経て噴射弁17に送られることとなる。
【0018】
本実施の形態では、圧力調整器6は気化ガスを気体の状態が安定よく維持され且つ噴射に必要とされる圧力、例えば30KPa程度に調整するものであり、この圧力は標準的なLPGの臨界圧力である約200KPaに比べてかなり低い。
【0019】
次に、4サイクル多気筒エンジンは周知のように吸気・圧縮・膨張・排気の各行程を1サイクルとしており、一つの気筒の行程とその入口である吸気マニホルド23の枝管に発生する負圧の変動状況とは図2に示す関係にある。
【0020】
ここで、各噴射弁17を全気筒同期噴射または複数気筒ずつグループ噴射させた場合、噴射弁出口側である吸気マニホルド23の枝管毎に負圧値が異なるために各噴射弁17から臨界圧力よりも低い圧力で噴射される気化ガスの流量に大幅なばらつきを生じ、所要の同一流量となるように枝管毎に一個ずつとした噴射弁17のそれぞれを制御することは実質的に不可能である。そのために、本発明では全気筒独立噴射方式を採用し、且つ基本的には図2(A)に示すように排気行程とそれに続く吸気行程の範囲S内で設定した時期に気化ガスの噴射を行なわせるようにした。
【0021】
前記の範囲Sは、吸気マニホルド23の枝管の負圧が比較的低い排気行程から最も高くなる吸気行程終了までを含んでおり、この範囲S内において噴射弁17の限られたダイナミックレンジ内でエンジン運転状態に応じた最適の流量とする時期を選んで噴射させることにより、エンジン要求流量の気化ガスをエンジン全運転域に亘って正確に供給することができる。
【0022】
次に、エンジン21の低負荷域においては、吸気マニホルド23の枝管に発生する負圧は部分負荷域や高負荷域に比べて高いので、図2(B)に符号Bで示したように排気行程の終期、即ち上死点に到達して吸気行程に移行する直前の負圧が最も低くなる時期に噴射させるものとした。気化ガス圧力と噴射弁17出口側負圧との圧力差は前記の時期Bに最も小さくなるので、噴射時間を噴射弁17の限られたダイナミックレンジ内で制御することにより適正量の気化ガスを噴射させ、殊にアイドリング時に過剰燃料を供給する、という心配を解消することができる。
【0023】
また、エンジン21の高負荷域においては、吸気マニホルド23の枝管に発生する負圧は低負荷域に比べて低いので、図2(C)に符号Cで示したように吸気行程の終期、即ち下死点に到達して圧縮行程に移行する直前の負圧が最も高くなる時期に噴射させるものとした。気化ガス圧力と噴射弁17出口側負圧との圧力差は前記の時期Cに最も大きくなるので、噴射時間を噴射弁17の限られたダイナミックレンジ内で制御することにより適正量の気化ガスを噴射させ、殊に全負荷時に要求される燃料を不足なく供給することが可能である。
【0024】
更に、気化ガス噴射時期は基本的に図2(A)に示した範囲Sの中で設定するが、本実施の形態では部分負荷域において図2(A)に符号Aで示したように排気行程の後半である後期およびそれに続く吸気行程の初期の範囲内で噴射させることとした。この範囲Aは気化ガス圧力と噴射弁17出口側負圧との圧力差および負圧の変化が比較的小さい領域であり、噴射時間をエンジン21の運転状態に応じて制御するという簡単な制御手段で要求流量の燃料を供給することが可能である。加えて、低負荷域の気化ガス噴射時期Bはこの範囲Aに含まれているので、部分負荷域と低負荷域との間の移行が円滑に行なわれ、エンジン21の運転性を損なわない、という利点がある。
【0025】
尚、前記の範囲Aで部分負荷域における気化ガス噴射を行なうものとした場合、高負荷域に移行するときは気化ガス噴射時期を吸気行程の終期に向かって負荷の増加に伴い順次移動させて範囲Cに至らせるものとすると、燃料供給時期の急な変更によるエンジン21の不調を招くことなく全負荷運転に移行させることができる。
【0026】
更にまた、本実施の形態においては吸気マニホルド23の各枝管に負圧センサ26を設置し、噴射弁17が気化ガスを噴射しているときに負圧センサ26が検出した噴射弁17出口側負圧の絶対値を電子式制御装置25に記憶させてその平均値を計算させることを繰り返し行なわせ、この平均値が前回に求めた平均値から変化したときその変化量に応じて電子式制御装置25から噴射弁17に送る制御信号の基本パルス幅を補正させるものとした。例えば、負圧が低くなる方に変化したときは負圧絶対値の平均値が大きくなるので、基本パルス幅を大きくして燃料流量を増加させる方向の補正を行ない、噴射弁17の入口側と出口側の圧力差の減少による燃料流量の低下を補正する。
【0027】
尚また、本実施の形態ではエンジン21から圧力調整器6の冷却水室7にエンジン冷却水を送入する管路に温度センサ27を設け、この温度センサ27が検出した温度に基いて電子式制御装置25で噴射弁17に送入する気化ガスの温度を判断させるものとしている。噴射弁17出口の噴射ノズルを通過する気化ガスの流量は、先に述べたように噴射ノズル入口側の圧力および温度と出口側の圧力とに依存するので、温度センサ27が検出した値に基づいて噴射時期或いは噴射時間を補正することにより、所定流量の気化ガスを噴射させることができる。エンジン21の暖機完了後はエンジン冷却水温度はほぼ一定であるので、気化ガス流量は圧力差で定まるが、末暖機状態では暖機の進行に伴って温度が変化するので、温度に基づく補正は有用である。
【0028】
【発明の効果】
以上のように、本発明によると気体の状態を安定して維持するように低い正圧に調整したLPGの気化ガスの所定量を、吸入負圧の変化を利用して噴射弁の限られたダイナミックレンジで噴射させることができ、一気筒当り一個の噴射弁を用いてエンジン要求流量の気化ガスを殊に低負荷域においても適正に供給することが可能である。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す配置図。
【図2】吸入負圧と気化ガス噴射時期との関係を説明する図。
【符号の説明】
1 燃料タンク,6 圧力調整器,17 噴射弁,21 エンジン,22 気筒,23 吸気マニホルド,25 電子式制御装置,26 圧力センサ,
[0001]
BACKGROUND OF THE INVENTION
The present invention is a method of supplying LPG (liquefied petroleum gas) to an engine by adjusting the vaporized gas to a predetermined positive pressure and injecting it into each cylinder, and in particular, appropriately supplying the required vaporized gas at a low load range. It relates to a method that can be performed.
[0002]
[Prior art]
The use of LPG as a fuel for a spark ignition engine is widely known, and it replaces the conventionally known method of sucking vaporized gas into an intake pipe using a regulator (vaporizer) and a mixer. As described in Japanese Utility Model Laid-Open No. 59-43659, the liquid is injected into the intake pipe as it is, and as described in Japanese Patent Laid-Open No. 6-17709, vaporization at a predetermined positive pressure is performed. A method of adjusting to gas and injecting it into the intake pipe is being studied.
[0003]
The method of injecting the LPG using the saturated vapor pressure in the cylinder or pressurizing with the pump as the liquid has an unstable property that the liquid LPG is easily affected by the temperature and easily vaporizes. Then, a method of adjusting and injecting the vaporized gas to a predetermined positive pressure is the mainstream of investigation.
[0004]
[Problems to be solved by the invention]
In general, when gaseous fuel is flow-controlled by an injection valve and injected into an intake pipe and supplied to an engine, if the pressure of the gaseous fuel fed into the injection valve is equal to or higher than a critical pressure, the injection at the outlet of the injection valve The flow velocity at the nozzle is the speed of sound, and the flow rate is determined only by the state of gaseous fuel on the injection nozzle inlet side, that is, pressure and temperature.
[0005]
Therefore, CNG (compressed natural gas) that maintains the gas state stably at a high pressure is adjusted to a pressure higher than the critical pressure, and the flow rate according to the control of the injection valve without being affected by the negative pressure of the intake pipe. In order to supply the required engine flow rate accurately, the use of CNG as engine fuel has been partly put into practical use.
[0006]
However, LPG becomes liquid at high pressure, and it is in a fairly low pressure range that maintains a stable gaseous state, which is below the critical pressure. As described above, when gaseous fuel having a pressure lower than the critical pressure is injected by the injection valve even if the pressure is positive, the flow rate changes due to the negative pressure of the intake pipe on the injection nozzle outlet side. In other words, the flow rate increases in the operating range where the suction negative pressure is high, such as when idling, and the flow rate decreases in the operating range where the suction negative pressure is low, such as at full load. The disadvantage of being supplied arises. In particular, excessive fuel during idling will cause the engine to stop due to the rich mixture.
[0007]
As a countermeasure, it is conceivable to expand the dynamic range of the injection valve to cope with a large change in flow rate. To that end, multiple injection valves per cylinder are required, making the device extremely complicated and expensive. Is unsuitable for practical use. As another countermeasure, it is conceivable that the vaporized gas obtained by once vaporizing under reduced pressure is pressurized to a critical pressure or higher by a pump and sent to the injection valve. It is also inappropriate for practical use.
[0008]
The present invention will solve the above-mentioned problem that there is no system that can easily supply LPG vaporized gas in a pressure range in which the state of gas is stably maintained by an injection method in accordance with the engine required flow rate. A system that can properly supply the vaporized gas at the required flow rate of the engine using one injection valve per cylinder, particularly in a low load range, and can be easily put to practical use. The purpose is to provide.
[0009]
[Means for Solving the Problems]
In the present invention, when the LPG vaporized gas adjusted to a predetermined positive pressure is injected by the injection valve and supplied to the engine, the vaporized gas is sent to the injection valve at a pressure lower than the critical pressure. Each one is installed in the intake manifold and vaporized gas is injected at individual timing according to the negative pressure change at each outlet side; the vaporized gas injection timing is set within the range of the exhaust stroke of the corresponding cylinder and the subsequent intake stroke In the low load range, the above problem is solved by setting the injection at the end of the exhaust stroke in which the negative pressure on the injection valve outlet side is the lowest.
[0010]
In this way, one injection valve is installed at the inlet of each cylinder, and injection is performed at the timing set within the range of the exhaust stroke and the subsequent intake stroke, and the gas is adjusted to a pressure lower than the critical pressure. According to the present invention in which vaporized gas that stably maintains the state is sent to the injection valve, the pressure difference between the vaporized gas pressure and the negative pressure on the injection valve outlet side is relatively small. By selecting and injecting the optimum flow rate according to the engine operating state within the dynamic range, it is possible to accurately supply the vaporized gas at the required flow rate of the engine. In particular, the injection is performed at a time when the pressure difference becomes minimum in the low load region, so that it is possible to perform stable low speed operation without supplying excess fuel during idling.
[0011]
Further, in addition to the above, the fuel is injected at the time when the pressure difference becomes maximum in the high load region, so that it is possible to supply the fuel required at the time of full load operation without any shortage.
[0012]
Here, when the vaporized gas injection timing is set within the latter stage of the exhaust stroke of the corresponding cylinder in the partial load region and the initial range of the subsequent intake stroke, the pressure difference is small and the change in the negative pressure on the injection valve outlet side is relatively small. Since the injection is performed in a small region, it is possible to supply the fuel at the required flow rate with a simple control means that controls the injection time according to the engine operating state. In addition, since the vaporized gas injection timing in the low load region is also within this range, there is an advantage that the transition between the partial load region and the low load region can be performed smoothly without impairing the drivability.
[0013]
In addition, when the vaporized gas injection timing is set within the late stage of the exhaust stroke of the corresponding cylinder in the partial load range and the initial range of the subsequent intake stroke, the injection timing when shifting from the partial load range to the high load range is set as the intake timing. When moving with increasing load toward the end of the stroke, there is an advantage that the transition between them is smoothly performed without impairing drivability.
[0014]
Furthermore, if the basic pulse width of the injection valve control signal is corrected in accordance with the amount of change in the average value of the injection valve outlet negative pressure at the vaporized gas injection timing, it becomes possible to accurately supply fuel at the required flow rate. Benefits are gained.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a layout diagram of an LPG supply system, and a delivery line 2 extending from a liquid phase portion of a fuel tank 1 composed of a pressure vessel filled with LPG is connected to a pressure regulator 6 and extends from the pressure regulator 6. A vaporized gas line 15 is connected to the fuel gallery 16. The delivery line 2 has a manual on-off valve 3, a filter 4, and an electromagnetically driven shut-off valve 5. Further, from the fuel gallery 16, the injection valves 17 installed in the branch pipes of the intake manifold 23 are branched corresponding to the cylinders 22 of the engine 21.
[0016]
The pressure regulator 6 includes a cooling water chamber 7 through which engine cooling water passes, a preheating chamber 8 to which the delivery pipe 2 is connected, and a pressure regulation chamber 9 to which the vaporized gas pipe 15 is connected. The water chamber 7 and the preheating chamber 8 are adjacent to each other to form a heat exchange portion between the engine cooling water and the LPG. The pressure adjusting chamber 9 is variable in volume by a diaphragm 11 on which an adjusting spring 10 is applied, and a conduction path 12 communicated with the preheating chamber 8 is an inlet valve 14 attached to a lever 13 that rotates according to the displacement of the diaphragm 11. Is opened and closed by.
[0017]
The liquid phase LPG that has entered the preheating chamber 8 from the fuel tank 1 through the delivery line 2 is heated by the engine cooling water in the cooling water chamber 7 to become vaporized gas. The vaporized gas flows into the pressure regulating chamber 9 by opening the conduction path 12 when the pressure regulation chamber 9 is lower than the set pressure, and when the pressure becomes higher than the set pressure, the inlet valve 14 is connected to the conduction path. By closing 12, the flow into the pressure regulation chamber 9 is stopped. Thus, the vaporized gas adjusted to a predetermined positive pressure is sent to the injection valve 17 through the vaporized gas line 15 and the fuel gallery 16.
[0018]
In the present embodiment, the pressure regulator 6 adjusts the vaporized gas to a pressure that is stably maintained and is required for injection, for example, about 30 KPa, and this pressure is the criticality of standard LPG. This is considerably lower than the pressure of about 200 KPa.
[0019]
Next, as is well known, a four-cycle multi-cylinder engine has each stroke of intake, compression, expansion, and exhaust as one cycle, and the negative pressure generated in the branch pipe of the intake manifold 23 that is the stroke of one cylinder and its inlet. The fluctuation state is in the relationship shown in FIG.
[0020]
Here, when each injection valve 17 is all-cylinder synchronous injection or group injection of a plurality of cylinders, the negative pressure value differs for each branch pipe of the intake manifold 23 on the injection valve outlet side. Therefore, it is practically impossible to control each of the injection valves 17 for each branch pipe so that the flow rate of the vaporized gas injected at a lower pressure is greatly varied and the required flow rate is the same. It is. For this purpose, the present invention adopts an all-cylinder independent injection method, and basically injects the vaporized gas at a timing set within the range S of the exhaust stroke and the subsequent intake stroke as shown in FIG. I was allowed to do it.
[0021]
The range S includes from the exhaust stroke where the negative pressure of the branch pipe of the intake manifold 23 is relatively low to the end of the intake stroke where the negative pressure is the highest, and within the limited dynamic range of the injection valve 17 within this range S. By selecting and injecting the optimum flow rate according to the engine operating state, it is possible to accurately supply the vaporized gas at the required engine flow rate over the entire engine operating range.
[0022]
Next, in the low load region of the engine 21, the negative pressure generated in the branch pipe of the intake manifold 23 is higher than that in the partial load region and the high load region, so that as indicated by the symbol B in FIG. The fuel is injected at the end of the exhaust stroke, that is, when the negative pressure immediately before reaching the top dead center and shifting to the intake stroke is lowest. Since the pressure difference between the vaporized gas pressure and the negative pressure on the outlet side of the injection valve 17 becomes the smallest at the above-mentioned time B, an appropriate amount of vaporized gas is controlled by controlling the injection time within the limited dynamic range of the injection valve 17. The worry of injecting and supplying excess fuel, especially during idling, can be eliminated.
[0023]
Further, since the negative pressure generated in the branch pipe of the intake manifold 23 is lower in the high load region of the engine 21 than in the low load region, the end of the intake stroke as shown by reference C in FIG. In other words, the fuel is injected at the time when the negative pressure becomes the highest immediately before reaching the bottom dead center and shifting to the compression stroke. Since the pressure difference between the vaporized gas pressure and the negative pressure on the outlet side of the injection valve 17 becomes the largest at the above time C, an appropriate amount of vaporized gas is controlled by controlling the injection time within the limited dynamic range of the injection valve 17. It is possible to inject fuel, and in particular to supply the fuel required at full load.
[0024]
Further, the vaporized gas injection timing is basically set within the range S shown in FIG. 2A. In this embodiment, the exhaust gas is exhausted as indicated by symbol A in FIG. It was decided to inject within the latter half of the stroke and the initial range of the subsequent intake stroke. This range A is a region in which the pressure difference between the vaporized gas pressure and the negative pressure on the outlet side of the injection valve 17 and the change in the negative pressure are relatively small, and simple control means for controlling the injection time according to the operating state of the engine 21. It is possible to supply fuel at the required flow rate. In addition, since the vaporized gas injection timing B in the low load range is included in this range A, the transition between the partial load range and the low load range is performed smoothly, and the operability of the engine 21 is not impaired. There is an advantage.
[0025]
When the vaporized gas injection in the partial load region is performed in the range A, the vaporized gas injection timing is sequentially moved as the load increases toward the end of the intake stroke when shifting to the high load region. Assuming that the range C is reached, it is possible to shift to full load operation without causing malfunction of the engine 21 due to a sudden change in fuel supply timing.
[0026]
Furthermore, in this embodiment, a negative pressure sensor 26 is installed in each branch pipe of the intake manifold 23, and the outlet side of the injection valve 17 detected by the negative pressure sensor 26 when the injection valve 17 is injecting vaporized gas. The absolute value of the negative pressure is stored in the electronic control device 25 and the average value is repeatedly calculated. When the average value changes from the previously obtained average value, the electronic control is performed according to the change amount. The basic pulse width of the control signal sent from the device 25 to the injection valve 17 is corrected. For example, when the negative pressure is changed to a lower value, the average value of the negative pressure absolute value is increased. Therefore, the basic pulse width is increased to correct the direction of increasing the fuel flow rate, and the inlet side of the injection valve 17 is corrected. Correct the decrease in fuel flow rate due to the decrease in the pressure difference on the outlet side.
[0027]
In the present embodiment, a temperature sensor 27 is provided in a pipe line for sending engine cooling water from the engine 21 to the cooling water chamber 7 of the pressure regulator 6, and the electronic type is based on the temperature detected by the temperature sensor 27. The temperature of the vaporized gas sent to the injection valve 17 is determined by the control device 25. Since the flow rate of the vaporized gas passing through the injection nozzle at the outlet of the injection valve 17 depends on the pressure and temperature on the injection nozzle inlet side and the pressure on the outlet side as described above, it is based on the value detected by the temperature sensor 27. By correcting the injection timing or the injection time, the vaporized gas at a predetermined flow rate can be injected. Since the engine coolant temperature is almost constant after the engine 21 is warmed up, the vaporized gas flow rate is determined by the pressure difference. However, in the end warm-up state, the temperature changes as the warm-up progresses, and therefore, based on the temperature. Correction is useful.
[0028]
【The invention's effect】
As described above, according to the present invention, the predetermined amount of the LPG vaporized gas adjusted to a low positive pressure so as to stably maintain the gas state is limited to the injection valve by utilizing the change in the suction negative pressure. The fuel can be injected in a dynamic range, and it is possible to appropriately supply the vaporized gas at the required flow rate of the engine even in a low load region by using one injection valve per cylinder.
[Brief description of the drawings]
FIG. 1 is a layout view showing an embodiment of the present invention.
FIG. 2 is a diagram for explaining the relationship between suction negative pressure and vaporized gas injection timing.
[Explanation of symbols]
1 fuel tank, 6 pressure regulator, 17 injection valve, 21 engine, 22 cylinders, 23 intake manifold, 25 electronic control unit, 26 pressure sensor,

Claims (2)

所定正圧に調整されたLPGの気化ガスを噴射弁より噴射してエンジンに供給する方法であって、気化ガスは臨界圧力よりも低い圧力で噴射弁に送入し、噴射弁は気筒毎に各一個を吸気マニホルドに設置してそれぞれの出口側の負圧変化に従って個別の時期に気化ガスを噴射すること、前記の気化ガス噴射時期は対応する気筒の排気行程およびそれに続く吸気行程の範囲内に設定し、そして低負荷域においては噴射弁出口側の負圧が最も低くなる排気行程の終期に設定して噴射すること、に加えて、高負域においては噴射弁出口側の負圧が最も高くなる吸気行程の終期に設定して噴射すること、を特徴とするエンジンのLPG供給方法。A method of injecting LPG vaporized gas adjusted to a predetermined positive pressure from an injection valve and supplying the vaporized gas to the engine at a pressure lower than the critical pressure. Each one is installed in the intake manifold, and the vaporized gas is injected at an individual timing according to the negative pressure change on each outlet side. The vaporized gas injection timing is within the range of the exhaust stroke of the corresponding cylinder and the subsequent intake stroke. set, and that in the low load region for injecting set at the end of the exhaust stroke the negative pressure of the injection valve outlet becomes the lowest, the addition, the negative pressure of the injection valve outlet side in the high load region An LPG supply method for an engine, characterized in that the injection is set at the end of the intake stroke at which the intake becomes the highest. 前記気化ガス噴射時期は部分負荷域において対応する気筒の排気行程の終期およびそれに続く吸気行程の初期の範囲内に設定し、それより高負荷域に移行するとき噴射時期を吸気行程の終期に向かって負荷の増加に伴い移動させる請求項1に記載したエンジンのLPG供給方法。  The vaporized gas injection timing is set to the end of the exhaust stroke of the corresponding cylinder in the partial load region and the initial range of the subsequent intake stroke, and when shifting to a higher load region, the injection timing is set toward the end of the intake stroke. The LPG supply method for an engine according to claim 1, wherein the engine is moved as the load increases.
JP2002107421A 2002-04-10 2002-04-10 Engine LPG supply method Expired - Fee Related JP4116315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002107421A JP4116315B2 (en) 2002-04-10 2002-04-10 Engine LPG supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002107421A JP4116315B2 (en) 2002-04-10 2002-04-10 Engine LPG supply method

Publications (2)

Publication Number Publication Date
JP2003301746A JP2003301746A (en) 2003-10-24
JP4116315B2 true JP4116315B2 (en) 2008-07-09

Family

ID=29391443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002107421A Expired - Fee Related JP4116315B2 (en) 2002-04-10 2002-04-10 Engine LPG supply method

Country Status (1)

Country Link
JP (1) JP4116315B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9322347B2 (en) * 2013-07-17 2016-04-26 Ford Global Technologies, Llc Method and system for increasing vacuum generation by an engine

Also Published As

Publication number Publication date
JP2003301746A (en) 2003-10-24

Similar Documents

Publication Publication Date Title
AU2010202193B2 (en) Method and apparatus for controlling liquid fuel delivery during transition between modes in a multimode engine
US9885310B2 (en) System and methods for fuel pressure control
US9273638B2 (en) Variable pressure gaseous fuel regulator
CN102192032A (en) Cold-start fuel control system
US5575266A (en) Method of operating gaseous fueled engine
WO2013180830A1 (en) Method and apparatus for sequential control of air intake components of a gas-fueled compression ignition engine
JP4116315B2 (en) Engine LPG supply method
JP5557094B2 (en) Fuel supply device for internal combustion engine
JP4212885B2 (en) Engine positive pressure gas fuel supply method
JP2002188519A (en) Gas fuel supply device for internal combustion engine
JP2008231938A (en) Fuel supply system for internal combustion engine
JPS6316161A (en) Pressure controlling method for liquefied gas fuel
JP2003239785A (en) Lpg supply device of engine
JP4114135B2 (en) Engine positive pressure gas fuel supply method
JP2570658B2 (en) Hydrogen / liquefied natural gas engine
JP3924987B2 (en) Internal combustion engine control device
JP2015129470A (en) Internal combustion engine controller
JP2004162655A (en) Liquid fuel supply system for engine
JP4395734B2 (en) Engine positive pressure gas fuel supply method and apparatus
JP4378666B2 (en) Engine liquefied gas supply device
JP2004027994A (en) Lpg supply method for engine
JP2008215125A (en) Fuel supply system for internal combustion engine
JP2984709B2 (en) Liquefied gas fuel supply method for engine
JP4235879B2 (en) Engine positive pressure gas fuel supply method
JP2004324509A (en) Fuel injection control method and ignition timing control method for lpg fuel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees