JPS60190636A - Fuel injection timing control device in internal- combustion engine - Google Patents

Fuel injection timing control device in internal- combustion engine

Info

Publication number
JPS60190636A
JPS60190636A JP4646184A JP4646184A JPS60190636A JP S60190636 A JPS60190636 A JP S60190636A JP 4646184 A JP4646184 A JP 4646184A JP 4646184 A JP4646184 A JP 4646184A JP S60190636 A JPS60190636 A JP S60190636A
Authority
JP
Japan
Prior art keywords
time
fuel injection
intake
injection
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4646184A
Other languages
Japanese (ja)
Inventor
Toshinari Nagai
俊成 永井
Shoji Watanabe
昭二 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP4646184A priority Critical patent/JPS60190636A/en
Publication of JPS60190636A publication Critical patent/JPS60190636A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To reduce the amount of fuel stuck to the inner wall of an intake-air passage, by providing a fuel injection time computing means for computing the time of the fuel injection for an auxiliary injection valve and a fuel injection timing setting means for setting the time of fuel injection at a time when the flow rate of intake-air is high. CONSTITUTION:There is provided an auxiliary fuel injection valve in the upstream section of an intake-air passage in addition to main fuel injection valves for engine cylinders. A fuel injection time computing means computes the tine of fuel injection for the auxiliary fuel injection valve in accordance with the operating parameters of the engine. A fuel injection timing setting means sets the time of fuel injection at a time when the flow rate of intake-air in the vicinity of the jet port of the auxiliary fuel injection valve is fast. With this arrangement it is possible to aim at atomizing fuel so that the amount of fuel stuck to the inner wall of the intake-air passage may be reduced.

Description

【発明の詳細な説明】 技術分野 本発明は吸入空気を冷却するために副噴射弁を付加した
内燃機関の溶料噴射時期制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to a solvent injection timing control device for an internal combustion engine which is provided with a sub-injection valve for cooling intake air.

従来技術 各気筒毎に設けられた主噴射弁の外に、吸気通路の上流
たとえばサージタンクあるいけスロットルボディ近傍に
副噴射弁を設けた内燃機関は既に知られている。この副
噴射弁の燃料噴射により吸大空気を冷却して充填効*を
向上させ、従って。
BACKGROUND OF THE INVENTION Internal combustion engines are already known in which, in addition to a main injection valve provided for each cylinder, a sub-injection valve is provided upstream of an intake passage, for example, in a surge tank or near a throttle body. The fuel injection from this sub-injector cools the intake air and improves the filling efficiency.

出力性能を向上させることができる。つまり、第1図に
示すように、吸入空気の醜聞TH^が低くなると、吸入
空気量08(質−t)は大食〈なり。
Output performance can be improved. In other words, as shown in Fig. 1, when the scandal TH^ of the intake air becomes low, the intake air amount 08 (quality - t) becomes gluttony.

従って、1旧カトルクTi も向上する。ちなみに、→ 吸気幅T HAを50 C% 0 ℃まで低下させると
Therefore, the 1 old Katorku Ti also improves. By the way, → If the intake width T HA is lowered to 50 C% 0 ℃.

吸入空気量Gaも出力トルクT’l も50−20/2
73+50+9蟹向上する。
Both intake air amount Ga and output torque T'l are 50-20/2
Improve by 73+50+9 crabs.

第2図I−1空燃比Δ/F対出力トルク’l’H#J特
性を示す。第2図に示すように、空燃比A/Fに対して
計1カトルクTiはあるところで(al:出力空燃比と
呼ぶ)ピークとなり、このピークよりリッチでもリーン
でも出力トルクT 、は低くなる。
Figure 2 I-1 shows air-fuel ratio Δ/F vs. output torque 'l'H#J characteristics. As shown in FIG. 2, the total torque Ti for the air-fuel ratio A/F reaches a peak at a certain point (referred to as al: output air-fuel ratio), and the output torque T becomes lower than this peak whether rich or lean.

また、吸気幅が低くなると、第1図で説明したように出
力トルクT、)よ高くなる。たとえば吸気幅が’l’1
(AHから’f’ HA Lまで低くなると、出力空燃
比での1゛iはI)1から b2まで向上しΔT1 分
だけアップする。しかし、分配が悪化すると、た七えは
仮に4気筒機関で平均空燃比は出力空燃比a1((合わ
せたが、この場合に、2気筒の空燃比A/Fがa2に、
聾り2気筒の空燃比A//Fがa5になり1分配がΔA
/F’だけ悪化したとすると。
Further, as the intake width becomes lower, the output torque T, ) becomes higher as explained in FIG. 1. For example, the intake width is 'l'1
(When the output air-fuel ratio decreases from AH to 'f' HA L, 1'i at the output air-fuel ratio improves from 1 to b2, increasing by ΔT1. However, if the distribution deteriorates, Tanae will assume that in a 4-cylinder engine, the average air-fuel ratio is the output air-fuel ratio a1 ((combined), but in this case, the air-fuel ratio A/F of the 2 cylinders becomes a2,
The air-fuel ratio A//F of the deaf 2 cylinder is a5 and the 1 distribution is ΔA
Suppose that only /F' worsens.

その時のトルクは空燃比A/Fがa2に対するトルクと
 33に対するトルクを平均したトルク l)5しか出
なくなる。結局、吸気幅THAを低下させて出力性能向
上をΔT1 分だけねらっても1分配が悪化すると Δ
T2分だけしか向上しない。さらに分配が悪化すればb
lより出力トルクTiが低くなり、かえって副噴射弁か
ら燃料を噴射させない方が出力トルクIll 、は高く
なる場合がおる。
The torque at that time is the average of the torque for air-fuel ratio A2 and the torque for 33 (l) Only 5 will be produced. In the end, even if you aim to improve output performance by ΔT1 by lowering the intake width THA, if the distribution deteriorates by 1, Δ
It only improves by T2. If the distribution deteriorates further, b
In some cases, the output torque Ti becomes lower than l, and the output torque Ill becomes higher if fuel is not injected from the sub-injector.

以−ヒの様に分配が悪化すると、いくら副噴射弁の燃料
噴射により吸入空気を冷却して吸入空気量Gaが増えて
も出力トルクTiは充分向上しないという問題点があっ
た。
When the distribution deteriorates as shown in Fig. 3, there is a problem that the output torque Ti cannot be sufficiently improved even if the intake air amount Ga is increased by cooling the intake air by fuel injection from the sub-injector.

発明の目的 発明の目的は、土述の従来形における問題点に鑑み、副
噴射弁噴口部付近の吸気流速ができるだけ早い時に燃料
を噴射して空気摩擦により微粒化を計ることにより、噴
射燃料を微粒化し吸入空気と共に吸入するようにし、従
って、付着燃料低減により分配を改善することにある。
Purpose of the Invention The purpose of the invention is to inject fuel when the intake flow velocity near the nozzle of the sub-injector is as high as possible and to atomize the injected fuel by air friction, in view of the problems with the conventional type described by Dojo. The purpose is to atomize the fuel so that it is inhaled together with the intake air, thus improving distribution by reducing fuel adhesion.

発明の構成 土述の目的を達成するための本発明の構成は第3図に示
される。すなわち、各気筒毎に設けられた主噴射弁に加
えて吸気通路の上流部に各気筒共通に設けられた副噴射
弁を具備する内燃機関において、燃$4 pig射時開
時間演算手段関の運転状態パラメータに応じて副噴射弁
の炉別噴射時間を演算し、燃#4噴射時期設定手段(I
′J:燃料噴射時間を副噴射弁の噴口部近傍での吸気流
速が早い時期に設定するものである。
Structure of the Invention The structure of the present invention for achieving the stated objectives is shown in FIG. That is, in an internal combustion engine equipped with a main injection valve provided for each cylinder and a sub-injection valve provided in common for each cylinder in the upstream portion of the intake passage, the opening time calculation means for fuel injection The fuel #4 injection timing setting means (I
'J: The fuel injection time is set at a time when the intake air flow velocity near the injection port of the sub-injector is early.

実栴例 以下1図面により本発明の詳細な説明する。Actual example The present invention will be explained in detail below with reference to one drawing.

始めに、第4図(A)、第4図(B)、第5図を用いて
本発明の詳細な説明する。
First, the present invention will be explained in detail using FIG. 4(A), FIG. 4(B), and FIG. 5.

第4図(A)、第4図(P、)は、それぞれ吸気流速が
早い場合と遅い場合の燃料粒の挙動を示している。第4
19(A)に示すように、吸気流速が大の場合、空気摩
擦による微粒化が活発に行なわれ、この結果、噴射時に
与えられfC,運動エネルギーは。
FIG. 4(A) and FIG. 4(P,) show the behavior of fuel particles when the intake flow rate is fast and slow, respectively. Fourth
As shown in Figure 19(A), when the intake flow rate is high, atomization due to air friction is actively carried out, and as a result, fC, the kinetic energy given during injection, increases.

−粒当りで考えると徐々に小さくなり、下方向の力(こ
れを貫徹カニF、と呼ぶ)は9気に押される力(Fxと
呼ぶ〕に対して徐々に小さくなる。
- When considered per grain, it gradually becomes smaller, and the downward force (this is called the penetration crab F) gradually becomes smaller compared to the force that is pushed by the nine ki (called Fx).

そして、燃料粒の飛行方向(つ壕りFxとF、の合力方
向)は徐々に吸気の流わの方向に近づき。
Then, the flight direction of the fuel particles (the direction of the resultant force of the trenches Fx and F) gradually approaches the direction of the intake air flow.

燃料は吸気と共に吸入されるようになる。一方、第4図
CB)に示すように、吸気流速が小の場合。
Fuel is drawn in together with the intake air. On the other hand, as shown in FIG. 4 CB), when the intake flow rate is small.

空気摩擦による微粒化が促進されず、Fxに対しFyが
大きいため飛行距離が短かく、この結果。
As a result, atomization due to air friction is not promoted and the flight distance is short because Fy is larger than Fx.

燃料粒は吸気管壁釦付着してしまう。このような理由に
より、より吸気流速が大の時噴射した方が。
Fuel particles will stick to the intake pipe wall button. For these reasons, it is better to inject when the intake flow velocity is higher.

第5図に示すごとく、炉別の付着は少くなり、従って、
分配はよくなる。
As shown in Figure 5, the amount of adhesion in each furnace is reduced, and therefore,
distribution will be better.

次に、第6図を参照して副噴射弁から噴射されfc燃判
が霧化して惨焼室に吸入されるまでの時間(燃料到達時
間〕忙つぃて説明する。つまり、副噴射弁から噴射され
た燃料のうち霧化した燃料は吸入空気とともに混合気と
なり燃焼室に吸入されるが、噴射されてから吸入される
まで、ある時間がかかる。これを燃料到達時間と呼ぶ。
Next, with reference to FIG. 6, we will briefly explain the time required for the FC fuel injected from the sub-injector to atomize and be inhaled into the combustion chamber (fuel arrival time). The atomized fuel that is injected from the engine forms a mixture with the intake air and is inhaled into the combustion chamber, but it takes a certain amount of time from the time it is injected until it is inhaled.This is called the fuel arrival time.

この燃刺到達時間1(け ”f= 4/V ただし5、t=副噴射弁からインテー クバルブまでの距離 ■=吸気流速 で与えらり、る。より現実的にQ;1、■は一定ではな
く、クランク角θB)の関数なので ただし1、tinJ=副噴射弁副噴射弁噴射開始時 上I41りな 1(であり、従ツ’c、tfけtinj
により異なる。つまり、’ injがバルブの開き始め
あるいは閉じる直曲付近の吸気流速Vが小さいところで
11(は大きくなり、バルブの最大リフト付近の吸73
を流速■が大きいところでは1(は小をくなる。第6図
においては横軸はクランク角(CΔ〕および時間、縦軸
は吸気速度V、噴射信号Sを示し、数字1.3,4.2
は、それぞれ、1番気筒の吸気行岬、3番気筒の吸気行
棉、4番の吸気行稈、2番の吸気行程を示す。このとき
、インテークバルブが閉じV=Oとなる時’ ”end
 とし された燃料及び吸入空気(図中、斜線部分)は。
This fuel sting arrival time 1 (ke" f = 4/V, where 5, t = distance from sub-injection valve to intake valve ■ = given by intake flow velocity, ru. More realistically, Q; 1 and ■ are constant It is not a function of the crank angle θB), so it is 1, tinJ = sub-injector sub-injector At the start of injection
It depends. In other words, 'inj becomes 11 (11) when the intake flow velocity V is small near the straight curve where the valve begins to open or closes, and becomes 73 when the valve begins to open or closes.
When the flow velocity ■ is large, 1 ( becomes small. In Fig. 6, the horizontal axis shows the crank angle (CΔ) and time, and the vertical axis shows the intake speed V and injection signal S, and the numbers 1, 3, and 4 .2
represent the intake line cape of the first cylinder, the intake line of the third cylinder, the intake line culm of the fourth cylinder, and the intake stroke of the second cylinder, respectively. At this time, when the intake valve closes and V=O, ' ``end
The fuel and intake air (shaded area in the figure) are as follows.

そのねらった気筒に吸入されず次の吸気行程で、あるい
は次の気筒に吸入される。従って、燃#4噴射は時11
15 tend −tf差でに終了しないと要求した空
燃比に制御できないことになる。このように。
Instead of being inhaled into the targeted cylinder, it is inhaled during the next intake stroke or into the next cylinder. Therefore, fuel #4 injection is at 11
If the process does not end with a difference of 15 tend -tf, the air-fuel ratio cannot be controlled to the requested air-fuel ratio. in this way.

単純に吸気流速が高い時に噴射するということだけでな
く、燃料到達時間についても考曜する必要がある。
In addition to simply injecting when the intake flow rate is high, it is also necessary to consider the time it takes for the fuel to arrive.

第7図は本発明に係る内燃機関の燃料噴射時期制御装置
の一実施例?示す全体概要図である。第7図において、
機関本体1の吸気通路2のインテークバルブ3の近傍に
は主噴射弁4が設けられている。この主噴射弁4は気筒
数だけ存在する。また、吸気通路2の上流側、たとえば
サージタンク5には副噴射弁6が設けられている。なお
、この副噴射弁6は各気筒共通である。さらに、吸気通
路2に(i吸気圧に応じてアナログ電圧を発生する吸気
圧センサ7が設けられている。ディストリビーータ8に
d、その軸がクランク角に換算して720’CΔ、3(
]’″CΔ 回転する毎に自動位置信号を発生するクラ
ンク角LWセンサ9,10が設ケラれている。
FIG. 7 is an embodiment of the fuel injection timing control device for an internal combustion engine according to the present invention. FIG. In Figure 7,
A main injection valve 4 is provided in the vicinity of the intake valve 3 in the intake passage 2 of the engine body 1 . There are as many main injection valves 4 as there are cylinders. Further, a sub-injection valve 6 is provided on the upstream side of the intake passage 2, for example, in the surge tank 5. Note that this sub-injection valve 6 is common to each cylinder. Furthermore, the intake passage 2 is provided with an intake pressure sensor 7 that generates an analog voltage according to the intake pressure (i).
]'''CΔ Crank angle LW sensors 9 and 10 are installed to generate an automatic position signal every time the engine rotates.

制御回路17け、吸気圧センサ7、クランク角度センサ
9,10の各信号を用いて主、副噴射弁4、乙の制御等
を行うものであって、たとえばマイクロコンビーータに
より溝成すれている。
The control circuit 17 uses signals from the intake pressure sensor 7 and crank angle sensors 9 and 10 to control the main and sub-injection valves 4 and B. There is.

第8図の70−ブーヤートを参照して第7図のIt!制
御回路の動1’Eを説明する。始めに、吸気流速Vは、
V = aθ2+1)θ+c 、、−(1)ただし、a
 = ka、Q2+ka2Q 十に35・、−(2)I
)”” b+Q2+kb2Q +kb3 ・・・(3)
c = kc、Q、’ −4−kC2Q −1−kc5
−・・(4)θけり2ンク角(”CA) で近似できるものとする。なお、定数kall ka2
’・・・・・・は吸気管長、径等により定まるものであ
り、具体的には実験的にめられる。第8図のステップ8
011d所定り2ンク角、fr:、とえば1’80’C
Δ毎にスタートし、ステップ802にて図示しない他の
ルーチンで計算され制御回路11内の[4A Llに格
納されている吸気壕データ相当のQを読出す。
It! of FIG. 7 with reference to 70-Booyat of FIG. The operation 1'E of the control circuit will be explained. First, the intake flow velocity V is
V = aθ2+1)θ+c ,, -(1) However, a
= ka, Q2 + ka2Q 10 to 35・, -(2)I
)”” b+Q2+kb2Q +kb3...(3)
c = kc, Q,' -4-kC2Q -1-kc5
-...(4) Assume that it can be approximated by θ 2 ink angle ("CA). In addition, the constant kall ka2
'... is determined by the intake pipe length, diameter, etc., and can be determined experimentally. Step 8 in Figure 8
011d predetermined 2 ink angle, fr:, for example 1'80'C
The process starts every Δ, and in step 802, Q corresponding to the intake groove data calculated by another routine (not shown) and stored in [4A Ll in the control circuit 11 is read out.

次に、ステ、ブ803にて、上式(2) 、 (3) 
、 r4)を用いてa、l)、Cを演算する。ステップ
804で難、流速Vの積分値をクリアして初期設定して
おく。
Next, in step 803, the above formulas (2) and (3)
, r4) to calculate a, l), and C. In step 804, the integral value of the flow velocity V is cleared and initialized.

ステ、プ805〜8]1は噴射終期θCをめるためのも
のである。ステップ805では、θをθend 、Δθ
 とする。ここで、θ。。d1第9図(A)、第9図(
1’))に示すごとく流速Vが0となるクランク角であ
って、バルブタイミング等により定まるものである。ス
テ、プ806で幻1.(1)式を用いて流速■を演算し
、ステップ807では。
Steps 805 to 8]1 are for setting the injection end stage θC. In step 805, θ is set to θend, Δθ
shall be. Here, θ. . d1 Figure 9 (A), Figure 9 (
As shown in 1')), this is the crank angle at which the flow velocity V becomes 0, and is determined by the valve timing and the like. Stage, Phantom 1 at 806. In step 807, the flow velocity ■ is calculated using equation (1).

Δ84− V XΔθ とし、さらに、ステップ808
にて、流速Vの積分値Sをめる。そして、ステップ80
9にて、積分値Sを副噴射弁6からインテ−クバルプ3
までの距mtと比較するっこの結果、s<1であれば、
ステップ810にてθからΔθだけ減算してステップ8
06〜B[]?fe繰返す。
Δ84−V XΔθ, and further, step 808
Calculate the integral value S of the flow velocity V. And step 80
At step 9, the integral value S is transferred from the sub-injection valve 6 to the intake valve 3.
As a result of comparing the distance mt to , if s<1, then
At step 810, Δθ is subtracted from θ, and step 8
06~B[]? fe repeat.

S>tとなれば、ステップ811にで噴射終期θCが定
まる。
If S>t, the injection end θC is determined in step 811.

次いで、ステップ812にて噴射始期θ。を。Next, in step 812, the injection start time θ is determined. of.

θ。←θ0−τ′ /ζだし、τ午1図示しない他のルーチンによって演算
された副噴射弁6の要求噴射時間τをクランク角に換算
した値である。
θ. ←θ0−τ′/ζ, where τ1 is a value obtained by converting the required injection time τ of the sub-injection valve 6 calculated by another routine (not shown) into a crank angle.

ただし、 T180はi80’cA回転に要する時間、
によって演算できる。なお、ステップ811にてめら〜
hたクランク角θ は第6図の時間 tend−1(に
相当する。
However, T180 is the time required for i80'cA rotation,
It can be calculated by In addition, at step 811,
The crank angle θ corresponding to h corresponds to time tend-1 (in FIG. 6).

次に、ステップ813〜817は、上述のステップ81
1,812にてめらhた噴射終期θ。
Next, steps 813 to 817 are performed in step 81 described above.
The end of injection θ was stopped at 1,812.

および始期θ。をより吸気流速Vの早い領域に設定する
ためのものである。つまり、ステ、ブ813でl・丈、
噴射終期θ。での吸気流速V1をめ、ステ、プ814で
は、11f射始期θ。での吸気流速■2をめ、ステップ
815にて両者を比較する。つまり、第9図(A)の状
態か第9図(T3)の状態であるかを判別する。第9図
(A)の状態、すなわち■1≧■2 であれば、噴射時
期をこれ以上進めても吸気流速Vの早い領域が少なくな
る。従って、この場合、何も行わずにフローは直接ステ
ップ818に進む。また、第9図CB)の状態、すなわ
ちVl〈■2であれば、噴射時期を進めることにより吸
気流速Vの早い領域が大きくなる。従って・ステップ!
316,817にて噴射終期θ。、および噴射始期θ。
and onset θ. This is to set V to a region where the intake flow velocity V is faster. In other words, Ste, Bu 813, L length,
End of injection θ. Based on the intake flow velocity V1 at step 814, 11f injection start period θ. In step 815, the two are compared. That is, it is determined whether the state is in FIG. 9(A) or in the state in FIG. 9(T3). In the state shown in FIG. 9A, that is, ■1≧■2, even if the injection timing is advanced further, the region where the intake flow velocity V is high will decrease. Therefore, in this case, flow proceeds directly to step 818 without doing anything. Further, in the state shown in FIG. 9 CB), that is, Vl<2, the region where the intake flow velocity V is high becomes larger by advancing the injection timing. Follow/Step!
Injection end θ at 316,817. , and injection start time θ.

を同−看Δθだけ進めてステップ813〜815を繰返
す。この結果、■1≧v2となると、つまり、この場合
、Vl とv2がほぼ等しくなると、フローはステップ
815からステップ818へ進む。この結果、第9図(
I3〕に訃いて、噴射終期θ。はθ。′に進み、噴射始
期θ0は00′に進んだことになる。
is advanced by Δθ and steps 813 to 815 are repeated. As a result, if ■1≧v2, that is, in this case, Vl and v2 are approximately equal, the flow proceeds from step 815 to step 818. As a result, Figure 9 (
I3] and the end of injection θ. is θ. This means that the injection start time θ0 has progressed to 00'.

ステップ81Bでは、上述のごとく投書された噴射終期
θ。、噴射始期θ0を回転速房データを用いて時間”C
o ’Oに換%L、ステップ819にて時間t。、to
を副11.]射弁6の駆動用の2つのタイマカウンタに
それぞれセットし、ステップ820にてこのルーテンは
終了する。
In step 81B, the end of injection θ posted as described above. , the injection start point θ0 is determined by the time “C” using the rotational speed data.
%L in terms of o'O, and time t in step 819. , to
Vice 11. ] The two timer counters for driving the injection valve 6 are set, and the routine ends at step 820.

このように、吸気流速が高い領域で霧化、気化した燻利
けすべてねらった気筒に吸入されるので。
In this way, all the atomized and vaporized smoke in the area where the intake flow rate is high is inhaled into the targeted cylinder.

過τ度の@刺制御性が改善はれドラビリ、エミッタ、ン
が改善ジれることVこなる。
Improved controllability of over-tightness. Improved drivability, emitter, and vibration.

発明の詳細 な説明したように本発明によれば、副噴射弁の噴射時期
を上述のごとく設定するので、@気流速が出来るだけ甚
いところで噴射でき、従って。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, as described above, the injection timing of the sub-injector is set as described above, so that injection can be performed at a location where the air flow velocity is as high as possible.

燻刺の微粒什か計られ、吸気管内壁付着fP利が減少で
き、この結果、分配が改善されることになり。
The amount of fine smoke particles can be measured, reducing the fP rate adhering to the inner wall of the intake pipe, resulting in improved distribution.

e、気冷却効果が分配悪化のため相殺されることはなく
なる。
e, the air cooling effect is no longer offset by poor distribution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は吸気温対出力トルク、吸気量特性を示すグラフ
、第2図は空燃比対出力トルク特性を示すグラフ、第3
図は本発明の構成を示すブロック図、 l1lIE 4
11 (A) 、 第4rglJ(B、) ハMIJl
f射弁近傍の燃料粒の挙動を説明するための図、第5図
は吸気流速対燃料付着率特性を示すグラフ、弔6図は燃
料到達時間?11−説明するためのタイミング図、 F
Jj 717Jは本発明に係る内燃機関の燃#4噴射時
期制御装置の一実施例を示す全体ブロック図、第8図は
第7図の制御回路の動作を説、明するためのフローチャ
ート、第9図(A)、第9図(B)は第8雫のフローチ
ャートを補足説明するためのタイミング図である。 1・・・機関本体 4・・・主噴射弁 6・・・副噴射弁 t、、、 tc’・・・噴射路Itす ”O* to’・・・噴射始期 以下余白 第1図 THA(’C) 第2図 ((53図 第4図(A) 第5図 第4図(B) 第6図 第9図 (A) tO’Ctend (B) 10tOLCLC[end
Figure 1 is a graph showing the intake air temperature vs. output torque and intake air amount characteristics, Figure 2 is a graph showing the air-fuel ratio vs. output torque characteristics, and Figure 3 is a graph showing the air-fuel ratio vs. output torque characteristics.
The figure is a block diagram showing the configuration of the present invention.
11 (A), 4th rglJ (B,) Ha MIJl
Figure 5 is a graph to explain the behavior of fuel particles near the f-injector, Figure 5 is a graph showing the intake flow velocity vs. fuel deposition rate characteristics, and Figure 6 is the fuel arrival time? 11-Timing diagram to illustrate, F
Jj 717J is an overall block diagram showing an embodiment of the fuel #4 injection timing control device for an internal combustion engine according to the present invention, FIG. 8 is a flowchart for explaining the operation of the control circuit in FIG. 7, and FIG. FIG. 9(A) and FIG. 9(B) are timing charts for supplementary explanation of the flowchart of the eighth drop. 1...Engine body 4...Main injection valve 6...Sub-injection valve t,,, tc'...Injection path It'O 'C) Figure 2 ((53 Figure 4 (A) Figure 5 Figure 4 (B) Figure 6 Figure 9 (A) tO'Ctend (B) 10tOLCLC[end

Claims (1)

【特許請求の範囲】 1、各気筒毎に設けられた主噴射弁に加えて吸気通路の
上惰部に前記各気筒共通に設けられた副噴射弁を具備す
る内燃機関において、該機関の運転状態パラメータに応
じて前記副噴射弁の燃料噴射時間を演算する燃料噴射時
間演算手段、および前記燃料噴射時間を前記副噴射弁の
噴口部近傍での吸気流速が早い時期に設定する燃料噴射
時期設定手段を具備することを%徴とする内燃機関の燃
ネ・1噴射時1υ]制御装置。 2、前記燻利噴射時期設定手段が、前記燃料噴射時期(
τ)の終期(【6)を前記機関の各気筒の吸気行程終T
時刻”end)から前記副噴射弁から吸気弁序での・燃
料到達時間Ctf)だけ手前の時刻(te+1d−1(
)に設定する噴射終期設定手段、前記憚訓Ill引時間
(1)の始期(1o)を前記設定された終期全もとに設
定する嘲4噂噴射始期設定手段。 前記副噴射弁の噴口部近傍における前記終期(tc)で
の吸気流速(■、)と前記始期(1o)での吸気流速(
v2)とを比較する吸気流速比較手段4および、前記始
期(1o)での吸気流速(v2)が前記終期(1o)で
の吸気流速【vl】より大きいときに前記始期および前
記終期を同一時間だけ進めて該進められた始期(1oり
での吸気流速を該進められた終期(t、’)での吸気流
速にほぼ等しくさせる噴射時期調整手段を具備する特許
請求の範囲第1項に記載の内燃機関の燃料噴射時期制御
装置。
[Scope of Claims] 1. In an internal combustion engine equipped with a main injection valve provided for each cylinder and a sub-injection valve provided commonly in the upper part of the intake passage, the operation of the engine is controlled. a fuel injection time calculation means for calculating a fuel injection time of the sub-injection valve according to a state parameter; and a fuel injection timing setting for setting the fuel injection time to a time when the intake flow velocity near the injection port of the sub-injection valve is early. 1 υ per injection] control device for an internal combustion engine which is characterized by having a means. 2. The smoker injection timing setting means sets the fuel injection timing (
τ) ([6) is the end of the intake stroke T of each cylinder of the engine.
From the sub-injector to the intake valve sequence, the time (te+1d-1(
), and an injection start time setting means for setting the start time (1o) of the disclaimer time (1) to the set end time. The intake flow velocity (■,) at the final stage (tc) near the nozzle port of the sub-injector and the intake flow velocity at the beginning stage (1o) (
v2), and when the intake flow rate (v2) at the start period (1o) is greater than the intake flow rate [vl] at the end period (1o), the start period and the end period are set at the same time. Claim 1, further comprising an injection timing adjusting means that advances the injection timing by an amount of 1° to make the intake flow rate at the advanced start period (1o) approximately equal to the intake flow speed at the advanced end period (t,'). Fuel injection timing control device for internal combustion engines.
JP4646184A 1984-03-13 1984-03-13 Fuel injection timing control device in internal- combustion engine Pending JPS60190636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4646184A JPS60190636A (en) 1984-03-13 1984-03-13 Fuel injection timing control device in internal- combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4646184A JPS60190636A (en) 1984-03-13 1984-03-13 Fuel injection timing control device in internal- combustion engine

Publications (1)

Publication Number Publication Date
JPS60190636A true JPS60190636A (en) 1985-09-28

Family

ID=12747801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4646184A Pending JPS60190636A (en) 1984-03-13 1984-03-13 Fuel injection timing control device in internal- combustion engine

Country Status (1)

Country Link
JP (1) JPS60190636A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033941A (en) * 1989-05-31 1991-01-10 Mazda Motor Corp Fuel injection device of engine
US5954231A (en) * 1997-06-10 1999-09-21 Owens-Illinois Closure Inc. Hinged closure for a dual chamber dispensing package

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033941A (en) * 1989-05-31 1991-01-10 Mazda Motor Corp Fuel injection device of engine
US5954231A (en) * 1997-06-10 1999-09-21 Owens-Illinois Closure Inc. Hinged closure for a dual chamber dispensing package

Similar Documents

Publication Publication Date Title
JP2002242716A5 (en)
JP2848491B2 (en) Fuel injection control device
CN102996272B (en) Apparatus for and method of controlling fuel injection of internal combustion engine
JPH0232466B2 (en)
JPH0559270B2 (en)
JPH076395B2 (en) Internal combustion engine intake system
CN102016274B (en) Direct injection spark ignition internal combustion engine, and fuel injection control method therefor
JPS60190636A (en) Fuel injection timing control device in internal- combustion engine
JP4316719B2 (en) In-cylinder injection control device
JP3985419B2 (en) Control device for internal combustion engine
JPS6361737A (en) Fuel control device
JPH0121180Y2 (en)
JPH11351012A (en) Direct cylinder injection type spark ignition engine
JPH10339219A (en) Spark ignition engine of direct injection
JPH10331682A (en) Combustion stabilizing device of direct injection type spark ignition engine
JPH11101146A (en) Cylinder injection type engine
JPH02188646A (en) Supply of engine fuel
JPS60195352A (en) Fuel supply control device in internal-combustion engine
JPH0526285Y2 (en)
JPH0121179Y2 (en)
JP3969156B2 (en) Fuel injection control device for internal combustion engine
JPH11201010A (en) Ignition timing control device for internal combustion engine
JPH0216057Y2 (en)
JPS6291619A (en) Air-fuel supply control method for internal combustion engine
JPS5815643Y2 (en) Diesel engine auxiliary fuel supply system