JPH02188646A - Supply of engine fuel - Google Patents

Supply of engine fuel

Info

Publication number
JPH02188646A
JPH02188646A JP729989A JP729989A JPH02188646A JP H02188646 A JPH02188646 A JP H02188646A JP 729989 A JP729989 A JP 729989A JP 729989 A JP729989 A JP 729989A JP H02188646 A JPH02188646 A JP H02188646A
Authority
JP
Japan
Prior art keywords
air flow
flow velocity
fuel
valve
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP729989A
Other languages
Japanese (ja)
Inventor
Hiroshi Kuroiwa
弘 黒岩
Hiroshi Iwano
浩 岩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nissan Motor Co Ltd
Original Assignee
Hitachi Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nissan Motor Co Ltd filed Critical Hitachi Ltd
Priority to JP729989A priority Critical patent/JPH02188646A/en
Publication of JPH02188646A publication Critical patent/JPH02188646A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To obtain a good air-fuel-mixed state over a wide operation range in an independent, cylinder-to-cylinder injection system, in which fuel is injected in a synchronized manner with a suction stroke, by sending the injected fuel onto a combustion chamber side, taking advantage of an air flow-velocity at which no wall surface slagging is formed. CONSTITUTION:In controlling a fuel injection valve 7, which is arranged at a suction port, based on output signals from an engine speed sensor 8, a crank angle sensor 9, a cooling water temperature sensor 10, and an inlet sensor 11, a range of the air flow velocity, that is lower than a critical air flow velocity Vpc, in which no wall surface slagging takes place to an inlet pipe of an injected fuel passage, is obtained first from sine-wave-resembled air flow velocity characteristics in the vicinity of the inlet valve in the range from valve-opening to valve-closing of the inlet valve in each cylinder. Next, a valve-opening position of a fuel injection valve 7 is decided, based on an air feeding valve opening position corresponding to the air flow velocity lower than Vpc. When the range of the air flow velocity lower than Vpc varies because of a change in the engine speed, the starting time of the valve opening of the fuel injection valve 7 is varied, according to the variation of the range.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はエンジンの燃料供給方法に係り、特に各気筒ご
とに燃料を噴射する気筒別独立噴射方式の電子制御燃料
噴射システムに好適な燃料供給に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a fuel supply method for an engine, and in particular to a fuel supply method suitable for an electronically controlled fuel injection system of a cylinder independent injection method in which fuel is injected for each cylinder. Regarding.

〔従来の技術〕[Conventional technology]

気筒別独立噴射方式の燃料供給方法は、従来は各気筒同
時に燃料を噴射する同時噴射制御が採用されていたが、
最近では、これに代って各気筒ごとに燃料噴射時期を制
御するシーケンシャル噴射制御に移行しつつある。この
シーケンシャル制御は、同時噴射よりも正確な燃料量を
無駄なく噴射する利点があるものと評価されている。こ
のシーケンシャル制御を採用する場合、加減速時等の制
御応答性の面からは、吸気行程時に燃料噴射することが
理想であるが、従来は燃料微粒化ひいては良好な混合気
形成の見地から、その噴射時期を、例えば雑誌「内燃機
関J (VO1,25,NQ321゜L986.8)の
第39頁〜第46頁に記載されるように、主に該当する
気筒の吸気行程より前、換言すれば排気行程の中で設定
していた。すなわち、従来は、燃料噴射弁からの噴射燃
料の微粒化が不十分であることを考慮し、吸気行程前に
燃料を噴射することで、噴射燃料を吸気ボート近傍のマ
ニホルド壁面にいったん付着させ、壁温によりその一部
を蒸発させ、更にその後、吸気弁が開きだした時の弁部
の高速空気流により微粒化の促進を図っていた。
Previously, the fuel supply method of the cylinder-specific independent injection method used simultaneous injection control in which fuel was injected into each cylinder at the same time.
Recently, instead of this, there has been a shift to sequential injection control in which fuel injection timing is controlled for each cylinder. This sequential control is evaluated as having the advantage of injecting a more accurate amount of fuel without waste than simultaneous injection. When adopting this sequential control, it is ideal to inject fuel during the intake stroke from the viewpoint of control responsiveness during acceleration and deceleration, but conventionally, from the standpoint of fuel atomization and better mixture formation, For example, as described in the magazine "Internal Combustion Engine J (VO1, 25, NQ321°L986.8), pages 39 to 46, the injection timing is set mainly before the intake stroke of the relevant cylinder, in other words. In other words, conventionally, taking into consideration that the atomization of the injected fuel from the fuel injection valve was insufficient, the injected fuel was set during the intake stroke by injecting the fuel before the intake stroke. Once it was attached to the manifold wall near the boat, a portion of it was evaporated due to wall temperature, and then atomization was promoted by the high-speed airflow from the valve when the intake valve began to open.

しかし、最近では燃料噴射弁での微粒化技術が向上し、
吸気行程時に燃料噴射を開始しても、はぼ良好な混合気
形成が形成されるようになってきたため、各気筒の吸気
行程中に燃料噴射を行う方式が実用化されつつある。
However, recently, atomization technology in fuel injection valves has improved,
Even if fuel injection is started during the intake stroke, a fairly good air-fuel mixture can now be formed, so a system in which fuel is injected during the intake stroke of each cylinder is being put into practical use.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

但し、この吸気行程時に燃料噴射を行う方式には次のよ
うな改善すべき点があった。以下、その解決すべき課題
を第7図、第8図に基づき説明する。
However, this method of injecting fuel during the intake stroke had the following points to be improved. Below, the problem to be solved will be explained based on FIGS. 7 and 8.

第7図は絞り弁2が小開度で低速回転域の時の燃料噴射
状態を表わす。エンジン(気筒)1に吸い込まれる空気
は、絞り弁2でその量が調節され、吸気路3を通って、
吸気弁4が開いたとき導びかれる。この吸気行程時に燃
料噴射弁5から噴射される燃料は、吸気弁4のかさ部中
心付近を目標として噴出される。そして、第7図の如く
絞り弁2が小開度(低速回転域)の場合には、吸気路3
の空気流速が小さく、噴射燃料は、空気流の影響をあま
り受けず良好な噴射動作がなされる。
FIG. 7 shows the fuel injection state when the throttle valve 2 has a small opening and is in a low speed rotation range. The amount of air sucked into the engine (cylinder) 1 is adjusted by a throttle valve 2, and passes through an intake path 3.
It is guided when the intake valve 4 opens. The fuel injected from the fuel injection valve 5 during this intake stroke is aimed at the vicinity of the center of the bulk of the intake valve 4. As shown in FIG. 7, when the throttle valve 2 has a small opening (low speed rotation range), the intake path
The air flow velocity is small, and the injected fuel is not affected much by the air flow, resulting in good injection operation.

しかし、第8図のように絞り弁2が中、大開度の中、高
速回転域になると、吸気路3の空気流速が大きくなり、
噴射燃料は空気流によって押し曲げられ、吸気路3の壁
面に図示の如く衝突し、多くの燃料が壁面に付着して液
状となって気筒(燃焼室)1内に流入される現象が生じ
る。このような現象は、気筒1内の混合気濃度が不均一
となり良好な燃焼の妨げとなる原因となるものであった
However, as shown in Fig. 8, when the throttle valve 2 is in the middle or large opening or in the high speed rotation range, the air flow velocity in the intake passage 3 becomes large.
The injected fuel is pushed and bent by the air flow and collides with the wall of the intake passage 3 as shown in the figure, causing a phenomenon in which much of the fuel adheres to the wall and flows into the cylinder (combustion chamber) 1 in a liquid state. Such a phenomenon causes the mixture concentration in the cylinder 1 to become non-uniform, which hinders good combustion.

本発明は以上の点に鑑みてなされたものであり、その目
的とするところは、燃料の制御応答性に優れた吸気行程
時の燃料噴射制御を採用しつつ、この方式で従来課題と
されていた混合気形成を広い運転範囲で良好に行い得る
燃料供給方法を提供することにある。
The present invention has been made in view of the above points, and its purpose is to employ fuel injection control during the intake stroke that has excellent fuel control responsiveness, while solving the conventional problems with this method. It is an object of the present invention to provide a fuel supply method that can satisfactorily form a mixture over a wide operating range.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成するために次のように構成する
In order to achieve the above object, the present invention is configured as follows.

先ず、第1の発明は方法的なもので、 吸気行程に同期して各気筒に燃料を噴射する気筒別独立
噴射方式の燃料供給方法において、各気筒における吸気
弁の開弁開始から閉弁に至るまでの吸気弁近傍の正弦波
的空気流速特性から、噴射燃料の吸気路壁面付着が生じ
ない限界空気流速VPC以下の空気流速域を予め見出し
、この限界空気流速VPC以下の空気流速域に対応する
吸気弁開弁位置を基準に燃料噴射弁の開弁開始時期を設
定し、且つエンジン回転数の変化により限界空気流速V
PC以下の空気流速域が変化すると、これに対応させて
、燃料噴射弁の開弁開始時期を変化させて燃料噴射制御
を行う方法とした。
First, the first invention relates to a method, and in a fuel supply method using a cylinder independent injection method in which fuel is injected into each cylinder in synchronization with the intake stroke, the intake valve in each cylinder is controlled from the start of opening to the closing of the intake valve. Based on the sinusoidal air flow velocity characteristics near the intake valves, we found in advance the air flow velocity range below the critical air flow velocity VPC in which the injected fuel does not adhere to the intake passage wall, and responded to the air flow velocity range below this critical air flow velocity VPC. The opening timing of the fuel injection valve is set based on the intake valve opening position, and the critical air flow velocity V is set based on the change in engine speed.
When the air flow velocity range below the PC changes, the fuel injection control is performed by changing the valve opening timing of the fuel injection valve in response to the change.

第2の発明は、第1の発明と同様に、各気筒における吸
気弁の開弁開始から閉弁(開弁終了)に至るまでの吸気
弁近傍の正弦波的空気流速特性から、噴射燃料の吸気路
壁面付着が生じない限界空気流速VPC以下の空気流速
域を予め見出すが、その後は次のようにして吸気行程時
の燃料噴射時期を定める点に独自の特徴がある。
Similar to the first invention, the second invention is based on the sinusoidal air flow velocity characteristic near the intake valve from the start of opening to the end of opening of the intake valve in each cylinder. The unique feature is that an air flow velocity range below the critical air flow velocity VPC in which no adhesion to the intake passage wall occurs is found in advance, and then the fuel injection timing during the intake stroke is determined as follows.

すなわち、本発明では、前記限界空気流速VPC以下の
空気流速域のうち、前記正弦波的空気流速特性の後半に
係る空気流速域の吸気弁開位置を基準に燃料噴射弁の開
弁終了時期を決定し、この決定の燃料噴射弁の開弁終了
時期に、エンジン状態から予め決定された燃料噴射弁の
開弁時間を加えることで、自ずと燃料噴射弁の開弁開始
時期を決定して、燃料噴射制御を行う方法とした。
That is, in the present invention, the valve opening end timing of the fuel injection valve is determined based on the intake valve open position in the air flow velocity region related to the latter half of the sinusoidal air flow velocity characteristic in the air flow velocity region below the critical air flow velocity VPC. By adding the fuel injection valve opening time predetermined from the engine condition to the determined fuel injection valve opening end timing, the fuel injection valve opening start timing is automatically determined, and the fuel injection valve opening timing is automatically determined. This method was used to control injection.

〔作用〕[Effect]

本発明の詳細な説明に先立ち、先ず、各発明の内容の理
解を容易にするため、エンジンの吸気弁開動作時(各気
筒の吸気弁の開弁開始から閉弁に至るまで)の吸気弁近
傍(吸気ポート付近)に生じる正弦波的な空気流量特性
V p ’ を第1図により説明する。
Prior to a detailed explanation of the present invention, first, in order to facilitate understanding of the content of each invention, we will first explain how the intake valve of the engine operates during the intake valve opening operation (from the start of opening to the closing of the intake valve of each cylinder). The sinusoidal air flow rate characteristic V p ' occurring in the vicinity (near the intake port) will be explained with reference to FIG.

第1図は、吸気弁開動作期間中の空気流速特性Vp’ 
を示すもので、横軸の吸気弁開動作期間の吸気弁位置を
クランク角度θCにより表わしている。Ns、Nx、N
sは各エンジン回転数で、エンジン回転数は、N i 
< N z < N aとしである*Vp’特性は、エ
ンジンのクランク角度Ocに対し、吸気弁が図示の期間
間となると、吸気弁の連続的な開度変化に伴って、吸気
弁近傍(吸気ポート部)の空気流速Vpが正弦波的に変
化する。この空気流速特性V p ’のうち、VPCの
位置が噴射燃料を偏向させて吸気路壁面に付着させる限
界空気流速である。空気流速特性は正弦波的なので、V
PC以下の空気流速域も吸気弁開動作(空気流速特性)
の前半と後半に生じる。
Figure 1 shows the air flow velocity characteristic Vp' during the intake valve opening period.
, where the horizontal axis represents the intake valve position during the intake valve opening operation period by the crank angle θC. Ns, Nx, N
s is each engine rotation speed, and the engine rotation speed is N i
< N z < Na The *Vp' characteristic is such that when the intake valve is open for the period shown in the figure, with respect to the engine crank angle Oc, the intake valve vicinity ( The air flow velocity Vp at the intake port section changes sinusoidally. In this air flow velocity characteristic V p ', the position of VPC is the critical air flow velocity that deflects the injected fuel and causes it to adhere to the wall surface of the intake passage. Since the air velocity characteristics are sinusoidal, V
Intake valve opens even in air flow velocity range below PC (air flow velocity characteristics)
Occurs in the first and second half of

空気流速特性V p ’は、エンジン回転数が大きくな
る程、すなわち、ピストンの下降速度が速くなる程大き
くなる。従って、仮に、1)C1のクランク角度で常に
燃料噴射を開始したとすると、エンジン回転数をN1→
N2→N8と増大させていった場合には、空気流速Vp
はVpn→Vpx→Vpδと増大していき、その結果、
Nt、Nsの回転域では、壁面付着を生じさせない限界
流速VPCを超えてしまい、壁面付着現象が生じる。な
お、エンジン回転数が大きくなる程、VPC以下の空気
流速域は、前半、後半共に狭まる。
The air flow velocity characteristic V p ' increases as the engine speed increases, that is, as the downward speed of the piston increases. Therefore, if 1) fuel injection is always started at a crank angle of C1, the engine speed will be changed from N1 to
When increasing from N2 to N8, the air flow velocity Vp
increases as Vpn → Vpx → Vpδ, and as a result,
In the rotation range of Nt and Ns, the critical flow velocity VPC that does not cause wall adhesion is exceeded, and wall adhesion phenomenon occurs. Note that as the engine speed increases, the air flow velocity region below VPC becomes narrower in both the first half and the second half.

そして、この壁面付着の不具合をなくすためには、本発
明の第1.第2の発明の如く方法を用いれば可能となる
In order to eliminate this problem of wall adhesion, the first aspect of the present invention. This becomes possible if a method like the second invention is used.

すなわち、第1の発明では、正弦波的空気流速特性Vp
’から、前述の限界流速VPC以下の空気流速を予め見
出し、このVPCに対応する吸気弁開位置(クランク角
度)を基準に燃料噴射弁の開弁(噴射)開始時期を設定
することで、壁面付着の生じない空気流速に乗せて噴射
燃料を該当の気筒(吸気行程中の気筒)に送ることがで
きる。そして、この限界空気流速Vp以下の空気流速域
は、第1図からも明らかなようにエンジン回転数により
変化するが1本発明では、エンジン回転数の変化でVP
C以下の空気流速域が変化すると、これに対応させて燃
料噴射弁の開弁開始時期も変化させるので、エンジン回
転数が変化しても、常に限界空気流速VPC以下の吸気
弁開位置に同期させて燃料噴射の開始を行うよう制御で
きる。具体的には、例えば第1図のようにエンジン回転
数がN1.Nx。
That is, in the first invention, the sinusoidal air flow velocity characteristic Vp
', the air flow velocity below the above-mentioned critical flow velocity VPC is found in advance, and the fuel injection valve opening (injection) start timing is set based on the intake valve opening position (crank angle) corresponding to this VPC. The injected fuel can be sent to the relevant cylinder (the cylinder during the intake stroke) at an air flow velocity that does not cause adhesion. As is clear from FIG. 1, the air flow velocity region below this critical air flow velocity Vp changes depending on the engine speed.
When the air flow velocity range below C changes, the opening timing of the fuel injection valve changes accordingly, so even if the engine speed changes, the intake valve open position is always synchronized to the critical air flow velocity below VPC. control to start fuel injection. Specifically, for example, as shown in FIG. 1, when the engine speed is N1. Nx.

N3のどの領域にある場合でも、常に空気流速Vpz 
(Vpt< VPC)の時に燃料を噴射させようとする
場合には、Ntの回転数ではクランク角度0c工で、N
2の回転数ではOcxで、NaではOcsで噴射開始を
行うように設定する。
No matter where in the N3 region, the air flow velocity Vpz is always
If you want to inject fuel when (Vpt<VPC), at a rotation speed of Nt, with a crank angle of 0c,
The injection is set to start at Ocx at rotation speed 2, and at Ocs at rotation speed Na.

なお、燃料噴射弁の開弁時間(噴射時間)は、一般にエ
ンジンの運転条件(例えば吸入空気量等)で定められる
ので、前述のように噴射弁の開弁開始時期が決定されれ
ば、これに開弁時間を加えることで、自ずと燃料噴射弁
の開弁終了時期が定まる。この開弁終了時期は、燃料噴
射弁の開弁時間が長くなると、限界空気流速Vpa以上
の空気流速域にわたり、VPC以上の空気流速域でも継
続して燃料噴射される場合がでてくるので、その場合は
、燃料噴射弁の開弁開始時期を早め、最終的には吸気弁
が開き始めるクランク角度まで早めればよい。
Note that the opening time (injection time) of the fuel injector is generally determined by the engine operating conditions (for example, intake air amount, etc.), so once the timing to start opening the injector is determined as described above, this By adding the valve opening time to , the timing at which the fuel injection valve ends to open is automatically determined. This valve opening end timing is determined because as the opening time of the fuel injection valve becomes longer, fuel may be injected continuously over the air flow velocity range above the critical air flow velocity Vpa, and even in the air flow velocity range above VPC. In that case, the opening timing of the fuel injection valve may be advanced to the crank angle at which the intake valve finally begins to open.

なお、燃料噴射弁の開弁時間の一部が多少VPC以上の
空気流速域にかかった場合でも、燃料の壁面付着量が少
なければ蒸発や空気流速に基づき剥灘されるのでさ程問
題はない。
Furthermore, even if part of the opening time of the fuel injector is in the air flow velocity range slightly higher than VPC, it is not a big problem because if the amount of fuel adhering to the wall is small, it will be peeled off based on evaporation and air flow velocity. .

また、第1図の例では、燃料噴射弁の開弁開始時期の決
定を空気流速特性(吸気弁動作) Vp’の前半に係る
位置で決定しているが、空気流速特性Vp’の後半に係
る位置のVPC以下の流域で決定してもよい。
In addition, in the example shown in Fig. 1, the opening timing of the fuel injection valve is determined at a position related to the first half of the air flow rate characteristic (intake valve operation) Vp', but when It may be determined in the basin below the VPC of the position.

次に第2の発明を第4図に基づき説明する。Next, the second invention will be explained based on FIG.

第2の発明では、限界空気流速VPC以下の空気流速域
のうち、空気流速特性Vp’の後半に係る空気流速域の
吸気弁開位置を基準に燃料噴射弁の開弁終了時期oce
が決定される。そして、この決定の開弁終了時期θc8
に、エンジン状態から予め決定された燃料噴射弁の開弁
時間Tiが加って、自ずと燃料噴射弁の開弁開始時期O
cnが決定される。
In the second invention, the valve opening end timing occe of the fuel injection valve is determined based on the intake valve open position in the air flow velocity region related to the latter half of the air flow velocity characteristic Vp' in the air flow velocity region below the critical air flow velocity VPC.
is determined. Then, the valve opening end timing θc8 of this determination
In addition, the opening time Ti of the fuel injector, which is predetermined from the engine condition, is added, and the opening start timing O of the fuel injector is automatically determined.
cn is determined.

このような燃料供給法においても、噴射弁の開弁終了時
期oceを吸気弁が閉じる直前のクランク角度Oceの
所に設定しておけば、噴射弁開弁開始時期OCnもエン
ジン回転数Nl、Nz、Nsを問わず限界空気流速VP
C以下の空気流速域に置くことができる。
Even in this fuel supply method, if the injector opening end timing OC is set at the crank angle Oce just before the intake valve closes, the injector opening start timing OCn can also be adjusted to the engine rotational speed Nl, Nz. , the critical air velocity VP regardless of Ns
It can be placed in the air flow velocity range below C.

この第2の発明も、噴射燃料を限界空気流速VPC以下
の気流に乗せるので、噴射燃料の壁面付着をほぼ完全に
防止でき、更に、この方法によれば、特に、軽負荷時の
ように開弁時間が短かくて済む場合に、次のような利点
がある。
Also in this second invention, since the injected fuel is placed in an airflow having a velocity lower than the critical air flow velocity VPC, it is possible to almost completely prevent the injected fuel from adhering to the wall surface. There are the following advantages when the valve time is short.

すなわち、仮に軽負荷時に空気流量特性(吸気弁開動作
)の前半で燃料を噴射させると、軽負荷時のような噴射
時間が短かく且つ、吸気行程の時間が長い場合には、第
3図(a)に示すように混合気濃度は燃焼室の下方が濃
く、上方が薄くなる、いわゆる逆層状を呈する。そのた
め、点火プラグ周辺の混合気濃度が薄くなり、着火性が
低下するといった不具合が生じ易い、これに対し1本発
明の如く吸気行程の後半に噴射弁の開弁開始時期を決定
すれば、噴射時間が遅まることで第3図(b)に示すよ
うに若人時に燃焼室上方(点火プラグ周辺)の混合気濃
度を濃くでき、着火性、燃焼性を大幅に向上させる利点
を有する。
In other words, if fuel is injected in the first half of the air flow rate characteristic (intake valve opening operation) during light load, if the injection time is short and the intake stroke time is long, as shown in Figure 3. As shown in (a), the mixture concentration exhibits a so-called reverse stratification, in which the concentration is higher at the bottom of the combustion chamber and thinner at the top. As a result, problems such as the mixture concentration around the ignition plug becoming thinner and ignitability are likely to occur.1.To solve this problem, if the opening timing of the injection valve is determined in the latter half of the intake stroke as in the present invention, the injection By delaying the time, the mixture concentration above the combustion chamber (around the spark plug) can be enriched when the engine is young, as shown in FIG. 3(b), which has the advantage of greatly improving ignitability and combustibility.

なお、噴射弁の開弁終了時期OCeを吸気弁の閉じる直
前より余裕をもった所に設定すると、第4図に示すよう
に噴射弁開弁開始時期がOCn’の所になる。この場合
には、例えばエンジン回転数N2の場合は、図示ΔOc
の間は限界流速VPCを超えることになり、その間、噴
射燃料の壁面付着が生じるが、その割合は少ない。一方
、エンジン回転数N3の回転域では、壁面付着の比率が
多くなるが、このような高速回転域では、壁面付着が生
じても空気流速が大きいので燃料が壁面からはく雛し、
再微粒化するので問題はそれほどない6尚、吸気行程時
の燃料噴射弁の開弁開始時期をエンジン回転数に対応さ
せて変化させる制御手段を設けてもよい。そして、この
制御手段に前述の第1或いは第2の発明を実行するため
の噴射弁開弁開始時期のデータをエンジン回転数域に合
せて設定しておけば、前述の第1.第2発明の各作用を
行うことが可能となる。
Note that if the injection valve opening end timing OCe is set to a position with some margin from just before the intake valve closes, the injection valve opening start timing will be at OCn' as shown in FIG. In this case, for example, in the case of engine rotation speed N2, the indicated value ΔOc
During this period, the critical flow velocity VPC is exceeded, and during this period, the injected fuel adheres to the wall surface, but the proportion thereof is small. On the other hand, in the engine rotation speed range N3, the ratio of wall adhesion increases, but in such a high speed rotation range, even if wall adhesion occurs, the air flow velocity is high, so the fuel is stripped from the wall.
Since the particles are re-atomized, there is not much of a problem.6 Furthermore, a control means may be provided to change the opening timing of the fuel injection valve during the intake stroke in accordance with the engine speed. If the data of the injection valve opening start timing for carrying out the above-mentioned first or second invention is set in this control means in accordance with the engine speed range, the above-mentioned first or second invention. It becomes possible to perform each action of the second invention.

〔実施例〕〔Example〕

本発明の一実施例を第2図に基づき説明する。 An embodiment of the present invention will be described based on FIG.

第2図は、本実施例の燃料噴射制御系統のシステム概要
図である。
FIG. 2 is a system schematic diagram of the fuel injection control system of this embodiment.

第2図における7は、気筒別独立噴射方式の燃料噴射弁
(InJ)で、図では各気筒の燃料噴射弁を1つのブロ
ックで図示しである。この燃料噴射弁7の取付構造は、
例えば第7図、第8図に示した燃料噴射弁5と同様で、
吸気ポート噴射方式(或いはマニホルド噴射方式)が採
用される。
Reference numeral 7 in FIG. 2 denotes a fuel injection valve (InJ) of an independent injection method for each cylinder, and in the figure, the fuel injection valves for each cylinder are shown as one block. The mounting structure of this fuel injection valve 7 is as follows:
For example, similar to the fuel injection valve 5 shown in FIGS. 7 and 8,
An intake port injection method (or manifold injection method) is adopted.

燃料噴射弁7を制御するコントローラ6は、マイクロコ
ンピュータ(?gt算手段)を内蔵し、エンジン回転数
センサ8の検出値N、クランク角度センサ9からの検出
値Oc、エンジン冷却水温センサ10からの検出値Tw
、吸気センサ11からの検出値Qaが入力される。コン
トローラ6では、これらの検出信号により、燃料噴射弁
7の開弁開始時期、開弁時間を演算或いはマツプ検索よ
り求め、これを実行するための駆動信号を燃料噴射弁7
に出力する。具体的には、吸入空気iQa、エンジン冷
却水温Tw等から噴射弁7の開弁時間Tiを決定し、エ
ンジン回転数等から噴射弁7の開弁開始時期を決定する
。この噴射弁7の開弁開始時期は、該当の気筒の吸気行
程時で、しかも発明の〔作用〕の項でも第1図に基づき
詳述したように、吸気弁開動作時の正弦波的な空気流速
特性V p ’のうちで、吸気路壁面に噴射燃料がほと
んど付着しない空気流速域(限界空気流速VPC以下)
の吸気弁開位置を基準に設定される8例えば、第1図の
如く、空気流速特性Vp’の前半、換言すれば吸気弁開
動作(吸気行程)の前半で、エンジン回転数N1の場合
には吸気弁開位置(クランク角度)Oct、Nzの場合
にはθc2、N8の場合にはOCRの位置を噴射弁7の
開弁開始時期とする。
The controller 6 that controls the fuel injection valve 7 has a built-in microcomputer (?gt calculating means), and has a built-in microcomputer (?gt calculation means), and detects the detected value N of the engine rotation speed sensor 8, the detected value Oc from the crank angle sensor 9, and the detected value Oc from the engine coolant temperature sensor 10. Detected value Tw
, the detected value Qa from the intake sensor 11 is input. Based on these detection signals, the controller 6 calculates the valve opening start timing and valve opening time of the fuel injection valve 7 by calculation or map search, and sends a drive signal for executing this to the fuel injection valve 7.
Output to. Specifically, the valve opening time Ti of the injection valve 7 is determined from the intake air iQa, the engine cooling water temperature Tw, etc., and the timing to start opening the injection valve 7 is determined from the engine rotation speed and the like. The opening timing of the injection valve 7 is during the intake stroke of the relevant cylinder, and as described in detail in the [Function] section of the invention based on FIG. Among the air flow velocity characteristics V p ', the air flow velocity region (below the critical air flow velocity VPC) in which the injected fuel hardly adheres to the intake passage wall surface
For example, as shown in Fig. 1, in the first half of the air flow velocity characteristic Vp', in other words, in the first half of the intake valve opening operation (intake stroke), when the engine speed is N1. is the intake valve open position (crank angle) Oct, in the case of Nz, θc2, and in the case of N8, the position of OCR is the timing to start opening of the injection valve 7.

しかして、このような構成よりなれば、9エンジンの運
転中には、コントローラ6がエンジン回転数Nに基づき
、演算或いは予め定めたマツプの検索により噴射弁の開
弁開始時期を決定し、この噴射弁の開弁開始時期に対応
するクランク角度が検出されると、コントローラ6から
該当(吸気行程)の噴射弁7に開弁指令が出力され、燃
料噴射が実行され、予め決定された時間だけ燃料噴射が
なされる。
With such a configuration, when the engine 9 is in operation, the controller 6 determines the opening timing of the injection valve based on the engine speed N by calculation or by searching a predetermined map. When the crank angle corresponding to the opening start timing of the injection valve is detected, a valve opening command is output from the controller 6 to the injection valve 7 of the corresponding (intake stroke), and fuel injection is executed for a predetermined period of time. Fuel injection is performed.

そして、このような燃料噴射方式によれば、吸気行程時
に燃料噴射がなされても、エンジン回転数域の広範にわ
たりほとんどの噴射燃料が壁面付着の生じない空気流速
に乗って気筒に送られるので、常に広い運転範囲にわた
って混合気の形成を良好にできる。
According to such a fuel injection method, even if fuel is injected during the intake stroke, most of the injected fuel is sent to the cylinders over a wide engine speed range at an air velocity that does not cause wall adhesion. The air-fuel mixture can always be formed well over a wide operating range.

なお、第5図は、マツプ検索法の一例を示したもので、
エンジン回転数NとQa/N(Qaは吸入空気量)でQ
cnのマツプを作ることで、容易に噴射弁開始時期制御
を行い得る。第6図は開弁時間Tiの決定法であり、第
5図とほぼ同様に行い得る。
Furthermore, Figure 5 shows an example of the map search method.
Q with engine speed N and Qa/N (Qa is intake air amount)
By creating a cn map, injection valve start timing control can be easily performed. FIG. 6 shows a method for determining the valve opening time Ti, which can be performed in substantially the same manner as in FIG. 5.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、吸気行程に同期して燃料
を噴射する気筒別独立噴射方式において。
As described above, according to the present invention, in the cylinder-by-cylinder independent injection system in which fuel is injected in synchronization with the intake stroke.

その噴射燃料を壁面付着が生じない空気流速に乗せてエ
ンジン燃焼室(気筒)側に送るようにしたので、エンジ
ン運転の広範囲にわたって混合気形成状態を良好なもの
とし、燃焼の促進、安定性を図り、ひいては、エンジン
出力の向上、排気のクリーン化、燃費低減を図り得る。
The injected fuel is sent to the engine combustion chamber (cylinder) side at an air velocity that does not cause wall adhesion, so the mixture formation is good over a wide range of engine operation, promoting combustion and stability. In turn, it is possible to improve engine output, make exhaust cleaner, and reduce fuel consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は吸気行程時の空気流速特性と本発明の噴射弁の
開弁開始時期の設定例を表わす説明図、第2図は本発明
の一実施例たるシステム概要図、第3図は吸気行程時の
エンジン燃焼室内の混合気濃度の分布状態を表わす説明
図、第4図は本発明の他の一例である噴射弁の開弁開始
時期の設定例を示す説明図、第5図は上記実施例におけ
る噴射弁開弁開始時期Ocn のマツプ検索法を示す説
明図、第6図は上記実施例の噴射弁開弁時間Tiのマツ
プ検索法を示す説明図、第7図及び第8図は従来の噴射
弁からの燃料噴射の挙動状態を示す説明図である。 1・・・気筒、3・・・吸気路、4・・・吸気弁、5,
7・・・燃料噴射弁、6・・・コントローラ(燃料噴射
開始時期及び噴射時間演算手段)、8・・・エンジン回
転数センサ、9・・・クランク角度センサ、11・・・
吸気センサ、Vp’・・・空気流速特性、VPC・・・
限界空気流速、Och* Ocx+ Ocs+・・・O
cn ・・・噴射弁開弁開始時期。
Fig. 1 is an explanatory diagram showing an example of setting the air flow velocity characteristics during the intake stroke and the opening timing of the injection valve of the present invention, Fig. 2 is a system overview diagram as an embodiment of the present invention, and Fig. 3 is an illustration of the air flow rate characteristic during the intake stroke. An explanatory diagram showing the distribution state of the air-fuel mixture concentration in the engine combustion chamber during a stroke, FIG. 4 is an explanatory diagram showing an example of setting the opening start timing of the injection valve, which is another example of the present invention, and FIG. 5 is an explanatory diagram showing the above-mentioned example. An explanatory diagram showing a map search method for the injection valve opening start time Ocn in the embodiment, FIG. 6 is an explanatory diagram showing a map search method for the injection valve opening time Ti in the above embodiment, and FIGS. 7 and 8 are It is an explanatory view showing the behavioral state of fuel injection from a conventional injection valve. 1...Cylinder, 3...Intake path, 4...Intake valve, 5,
7...Fuel injection valve, 6...Controller (fuel injection start timing and injection time calculation means), 8...Engine speed sensor, 9...Crank angle sensor, 11...
Intake sensor, Vp'...air flow rate characteristics, VPC...
Critical air flow velocity, Och* Ocx+ Ocs+...O
cn...Injection valve opening start timing.

Claims (1)

【特許請求の範囲】 1、吸気行程に同期して各気筒に燃料を噴射する気筒別
独立噴射方式の燃料供給方法において、各気筒における
吸気弁の開弁開始から閉弁に至るまでの吸気弁近傍の正
弦波的空気流速特性から、噴射燃料の吸気路壁面付着が
生じない限界空気流速V_P_C以下の空気流速域を予
め見出し、この限界空気流速V_P_C以下の空気流速
域に対応する吸気弁開位置を基準に燃料噴射弁の開弁開
始時期を設定し、且つエンジン回転数の変化により限界
空気流速V_P_C以下の空気流速域が変化すると、こ
れに対応させて、燃料噴射弁の開弁開始時期を変化させ
て燃料噴射制御を行うことを特徴とするエンジンの燃料
供給方法。 2、吸気行程に同期して各気筒に燃料を噴射する気筒別
独立噴射方式の燃料供給方法において、各気筒における
吸気弁の開弁開始から閉弁に至るまでの吸気弁近傍の正
弦波的空気流速特性から、噴射燃料の吸気路壁面付着が
生じない限界空気流速V_P_C以下の空気流速域を予
め見出し、この限界空気流速V_P_C以下の空気流速
域のうち、前記正弦波的空気流速特性の後半に係る空気
流速域の吸気弁開位置を基準に燃料噴射弁の開弁終了時
期を決定し、この決定の燃料噴射弁の開弁終了時期に、
エンジン状態から予め決定された燃料噴射弁の開弁時間
を加えることで、自ずと燃料噴射弁の開弁開始時期を決
定して、燃料噴射制御を行うことを特徴とするエンジン
の燃料供給方法。
[Claims] 1. In a fuel supply method using a cylinder independent injection method in which fuel is injected into each cylinder in synchronization with the intake stroke, the intake valve in each cylinder from the start of opening to the closing of the intake valve. From the nearby sinusoidal air flow velocity characteristics, an air flow velocity range below the critical air flow velocity V_P_C in which the injected fuel does not adhere to the intake passage wall is found in advance, and the intake valve opening position corresponding to the air flow velocity range below this critical air flow velocity V_P_C is determined. The valve opening start timing of the fuel injector is set based on this, and when the air flow velocity range below the critical air flow velocity V_P_C changes due to a change in engine speed, the fuel injection valve opening start timing is set based on this. A fuel supply method for an engine characterized by controlling fuel injection by changing the fuel injection. 2. In a fuel supply method using a cylinder independent injection method in which fuel is injected into each cylinder in synchronization with the intake stroke, a sinusoidal air wave near the intake valve in each cylinder from the start of opening to the closing of the intake valve. From the flow velocity characteristics, an air flow velocity range below the critical air flow velocity V_P_C in which the injected fuel does not adhere to the intake passage wall is found in advance, and within this air flow velocity range below the critical air velocity V_P_C, the second half of the sinusoidal air flow velocity characteristic is Determine the opening end timing of the fuel injector based on the intake valve open position in the relevant air flow velocity range, and at the determined opening end timing of the fuel injector,
A method for supplying fuel to an engine, characterized in that the opening timing of the fuel injector is automatically determined by adding a predetermined opening time of the fuel injector based on the engine state, and fuel injection control is performed.
JP729989A 1989-01-13 1989-01-13 Supply of engine fuel Pending JPH02188646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP729989A JPH02188646A (en) 1989-01-13 1989-01-13 Supply of engine fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP729989A JPH02188646A (en) 1989-01-13 1989-01-13 Supply of engine fuel

Publications (1)

Publication Number Publication Date
JPH02188646A true JPH02188646A (en) 1990-07-24

Family

ID=11662148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP729989A Pending JPH02188646A (en) 1989-01-13 1989-01-13 Supply of engine fuel

Country Status (1)

Country Link
JP (1) JPH02188646A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6062201A (en) * 1997-05-13 2000-05-16 Denso Corporation Fuel injection control for internal combustion engine
US6085729A (en) * 1997-12-10 2000-07-11 Denso Corporation Fuel injection control for engines responsive to fuel injection timing
JP2014114718A (en) * 2012-12-07 2014-06-26 Hitachi Automotive Systems Ltd Fuel injection control device of internal combustion engine
JP2015059456A (en) * 2013-09-18 2015-03-30 日立オートモティブシステムズ株式会社 Control device for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6062201A (en) * 1997-05-13 2000-05-16 Denso Corporation Fuel injection control for internal combustion engine
US6085729A (en) * 1997-12-10 2000-07-11 Denso Corporation Fuel injection control for engines responsive to fuel injection timing
JP2014114718A (en) * 2012-12-07 2014-06-26 Hitachi Automotive Systems Ltd Fuel injection control device of internal combustion engine
JP2015059456A (en) * 2013-09-18 2015-03-30 日立オートモティブシステムズ株式会社 Control device for internal combustion engine

Similar Documents

Publication Publication Date Title
US4811231A (en) Apparatus for controlling fuel injection and swirl motion of air in internal combustion engine
JP2577210B2 (en) Electronically controlled fuel injection device for internal combustion engine
US5101785A (en) Control device for an internal combustion engine
JPH0517390B2 (en)
JPH02188646A (en) Supply of engine fuel
JPS62210229A (en) Mixed fuel injection method
JPS6217332A (en) Fuel-injection control device for internal-combustion engine
JP3985419B2 (en) Control device for internal combustion engine
JP3959784B2 (en) Combustion stabilization system for direct injection spark ignition engine
JPS60230554A (en) Knocking suppressor for engine
JPH0526286Y2 (en)
JPS63117149A (en) Fuel injection controller for internal combustion engine
JPH0238047Y2 (en)
JPH0121180Y2 (en)
JPH0526285Y2 (en)
JP3189733B2 (en) Control device for in-cylinder injection spark ignition internal combustion engine
JPS6011652A (en) Engine fuel injection device
JPH03121227A (en) Fuel supply device for internal combustion engine
JPH0121179Y2 (en)
JPH08240119A (en) Control device for direct injection type internal combustion engine
JP2580645B2 (en) Ignition timing control device
JP2550941B2 (en) Fuel supply control method during acceleration of an internal combustion engine
JPH0137582B2 (en)
JPH0526284Y2 (en)
JPH02215944A (en) Fuel controller for engine