JPH0121179Y2 - - Google Patents

Info

Publication number
JPH0121179Y2
JPH0121179Y2 JP1983189571U JP18957183U JPH0121179Y2 JP H0121179 Y2 JPH0121179 Y2 JP H0121179Y2 JP 1983189571 U JP1983189571 U JP 1983189571U JP 18957183 U JP18957183 U JP 18957183U JP H0121179 Y2 JPH0121179 Y2 JP H0121179Y2
Authority
JP
Japan
Prior art keywords
intake
fuel
fuel injection
valve
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983189571U
Other languages
Japanese (ja)
Other versions
JPS6097373U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18957183U priority Critical patent/JPS6097373U/en
Publication of JPS6097373U publication Critical patent/JPS6097373U/en
Application granted granted Critical
Publication of JPH0121179Y2 publication Critical patent/JPH0121179Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、エンジンの燃料噴射装置に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a fuel injection device for an engine.

〔従来技術〕[Prior art]

従来、特開昭56−148636号公報に示されるよう
に、高エンジン出力をあまり必要としない部分負
荷領域等においては吸気行程のほぼ後半に燃料を
噴射して点火プラグが位置する燃焼室の上層部分
に混合気を、下層部分に空気をそれぞれ成層さ
せ、その状態で燃焼を行なうようにしたものがあ
る。この方式の燃料噴射装置では、上層の混合気
は点火プラグによりこれを着火し得る空燃比にす
ればよく、一方下層は空気のみ又は、非常に希薄
な混合気であるため、全体としての空燃比は非常
にリーンとなつて燃費を大幅に改善でき、又
NOx,CO等の未燃焼成分を低減できるという利
点を有する。さらには燃焼室内の混合気層の領域
が点火プラグに近い狭い領域に集中して、エンド
ガスゾーンが空気又は非常に薄い混合気で占めら
れることから、混合気の異常燃焼が発生しにく
く、ノツキングの発生が少ないという利点をも有
するものである。
Conventionally, as shown in Japanese Unexamined Patent Application Publication No. 56-148636, in partial load regions where high engine output is not required, fuel is injected almost in the latter half of the intake stroke in the upper layer of the combustion chamber where the spark plug is located. There is one that stratifies the air-fuel mixture in the upper part and stratifies the air in the lower part, and performs combustion in this state. In this type of fuel injection device, the air-fuel mixture in the upper layer only needs to be brought to an air-fuel ratio that can be ignited by a spark plug, while the air-fuel mixture in the lower layer is only air or has a very lean mixture, so the air-fuel ratio as a whole is becomes extremely lean and can greatly improve fuel efficiency, and
This has the advantage of reducing unburned components such as NOx and CO. Furthermore, the mixture layer in the combustion chamber is concentrated in a narrow area near the spark plug, and the end gas zone is occupied by air or a very thin mixture, making it difficult for abnormal combustion of the mixture to occur and causing knocking. It also has the advantage of less occurrence of.

しかしながらこの方式の従来の燃料噴射装置で
は、燃料の噴射状態については何ら考慮されてお
らず、そのため燃焼室内の混合気の空燃比分布に
ばらつきが生じ、点火プラグ回りの混合気がリー
ンとなつて失火が発生したり、あるいは燃料噴射
弁の噴霧角度が広い場合には噴射燃料の一部が吸
気通路内壁に付着しこれが次の吸気行程に吸入さ
れて成層化燃焼がくずれたりする等の問題があ
る。
However, with conventional fuel injection systems using this method, no consideration is given to the fuel injection state, and as a result, the air-fuel ratio distribution of the air-fuel mixture in the combustion chamber varies, causing the air-fuel mixture around the spark plug to become lean. If a misfire occurs or the spray angle of the fuel injector is wide, some of the injected fuel may adhere to the inner wall of the intake passage and be sucked into the next intake stroke, causing problems such as disrupting stratified combustion. be.

そしてこのような問題を解消する方法として
は、開弁状態の吸気弁と吸気ポート開口との間隙
から燃料を直接燃焼室内に噴射供給することが考
えられる。この方法では、燃料の一部が吸気通路
内壁に付着して成層化燃焼がくずれるという問題
は解消できるものであるが、依然として空燃比分
布のばらつきに起因する失火発生の問題が残り、
しかも今度は噴霧がピストン上面やシリンダ内壁
面に付着して燃焼しにくくなり、排気ガス中の未
燃焼成分が増大して、エミツシヨンが悪化すると
いう問題が生じる。
One possible way to solve this problem is to directly inject fuel into the combustion chamber through the gap between the open intake valve and the intake port opening. Although this method can solve the problem of some of the fuel adhering to the inner wall of the intake passage and disrupting stratified combustion, there still remains the problem of misfires occurring due to variations in the air-fuel ratio distribution.
Moreover, the problem arises that the spray adheres to the top surface of the piston and the inner wall surface of the cylinder, making it difficult to burn, increasing the amount of unburned components in the exhaust gas, and deteriorating the emissions.

〔考案の目的〕[Purpose of invention]

この考案は、かかる従来の問題点に鑑み、失火
の発生を防止できるとともに、燃料が吸気通路内
壁、あるいはピストン上面やシリンダ内壁面に付
着するのを防止できるエンジンの燃料噴射装置を
提供せんとするものである。
In view of these conventional problems, this invention aims to provide a fuel injection device for an engine that can prevent misfires from occurring and also prevent fuel from adhering to the inner wall of the intake passage, the upper surface of the piston, or the inner wall surface of the cylinder. It is something.

〔考案の構成〕[Structure of the idea]

そこでこの考案は、各気筒の吸気通路に設けた
燃料噴射弁から対応する気筒の吸気行程後半に同
期して該吸気行程内に燃料を噴射するようにした
エンジンの燃料噴射装置において、各燃料噴射弁
の噴霧を開弁状態の吸気弁の傘部背面に当てて点
火プラグ回りに集めるようにしたものである。
Therefore, this invention was developed to provide a fuel injection system for an engine in which fuel is injected from a fuel injection valve provided in the intake passage of each cylinder during the intake stroke of the corresponding cylinder in synchronization with the second half of the intake stroke of the corresponding cylinder. The valve spray is applied to the back of the umbrella of the open intake valve and collected around the spark plug.

〔実施例〕〔Example〕

以下、本考案の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図ないし第3図は本考案の一実施例による
エンジンの燃料噴射装置を示す。図において、1
は第1〜第4の4つの気筒(但し、図中には1つ
の気筒のみがしめされている)を有するエンジン
で、該エンジン1のシリンダヘツド1aには燃焼
室17に開口して吸、排気ポート1b,1cが設
けられ、上記吸気ポート1bはスワールポートに
形成されており、又上記両ポート1b,1cには
それを開閉する吸、排気2a,3aが配設されて
いる。また上記エンジン1の各気筒には吸、排気
管2,3が接続され、上記吸気管2の集合部には
スロツトル弁4a,4bが配設され、さらに上記
エンジン1のシリンダヘツド1aには点火プラグ
18が設けられている。
1 to 3 show a fuel injection device for an engine according to an embodiment of the present invention. In the figure, 1
1 is an engine having four cylinders, first to fourth (however, only one cylinder is shown in the figure), and the cylinder head 1a of the engine 1 has a combustion chamber 17 opening thereto for intake; Exhaust ports 1b and 1c are provided, the intake port 1b is formed as a swirl port, and both ports 1b and 1c are provided with intake and exhaust ports 2a and 3a for opening and closing them. In addition, intake and exhaust pipes 2 and 3 are connected to each cylinder of the engine 1, throttle valves 4a and 4b are provided at the meeting point of the intake pipe 2, and the cylinder head 1a of the engine 1 is provided with an ignition valve. A plug 18 is provided.

また上記各吸気管2には吸気ポート1bに近接
して燃料噴射弁6が配設され、該各燃料噴射弁6
はレギユレータを介して燃料タンク(図示せず)
に接続されており、上記燃料噴射弁6には上記レ
ギユレータを介して吸気管圧力との差圧が常に一
定となるような燃圧が供給されるようになつてい
る。そして上記燃料噴射弁6の取付位置及び噴霧
角度は、その噴霧Fが開弁状態の吸気弁2aの傘
部背面に当たつて点火プラグ18回りに集まるよ
うな位置及び角度に設定されている。
Further, each intake pipe 2 is provided with a fuel injection valve 6 adjacent to the intake port 1b.
is connected to the fuel tank (not shown) through the regulator.
The fuel injection valve 6 is connected to the fuel injection valve 6 through the regulator so that fuel pressure is supplied to the fuel injection valve 6 so that the pressure difference between the intake pipe pressure and the intake pipe pressure is always constant. The mounting position and spray angle of the fuel injection valve 6 are set such that the spray F hits the back surface of the umbrella portion of the intake valve 2a in the open state and collects around the spark plug 18.

また図中、8は吸気管2のスロツトル下流の圧
力を検出する圧力センサ、9はエンジン1の冷却
水温度を検出する水温センサ、10はデイストリ
ビユータの回転角からエンジンのクランク角と第
1気筒のピストン上死点TDCとを検出するクラ
ンク角センサ、11はイグニツシヨンスイツチ、
12はスタータモータ、13はインタフエース1
4、CPU15及びメモリ16からなる燃料噴射
制御回路であり、上記メモリ16内には第4図に
フローチヤートで示すCPU15の演算処理のプ
ログラム等が格納されている。そして上記CPU
15は、エンジンの始動時は所定量の燃料が噴射
されるように始動噴射パルスを燃料噴射弁6に加
え、一方エンジンの始動後はエンジンの運転状態
に応じて実際燃料噴射量を求め、該実際燃料噴射
量に応じた燃料噴射パルスをその終期がほぼ吸気
弁全閉時期の所定の噴射終了クランク角位置とな
るように燃料噴射弁6に加え、これにより吸気行
程のほぼ後半に燃料を噴射供給するという燃料噴
射制御を行なうようになつている。ここで吸気行
程のほぼ後半とは吸気弁のバルブリフト量(第6
図参照)がほぼ最大となるクランク角位置付近か
ら吸気弁全閉までの期間をいう。なお7は排気系
に設けられた触媒である。
In the figure, 8 is a pressure sensor that detects the pressure downstream of the throttle in the intake pipe 2, 9 is a water temperature sensor that detects the cooling water temperature of the engine 1, and 10 is a sensor that detects the crank angle of the engine from the rotation angle of the distributor. A crank angle sensor detects the piston top dead center TDC of the cylinder, 11 is an ignition switch,
12 is the starter motor, 13 is the interface 1
4. This is a fuel injection control circuit consisting of a CPU 15 and a memory 16. The memory 16 stores programs for arithmetic processing of the CPU 15 as shown in the flowchart of FIG. And the above CPU
15 applies a starting injection pulse to the fuel injection valve 6 so that a predetermined amount of fuel is injected when starting the engine, and after starting the engine, calculates the actual fuel injection amount according to the operating state of the engine and A fuel injection pulse corresponding to the actual fuel injection amount is applied to the fuel injection valve 6 so that its final phase is approximately at a predetermined injection end crank angle position at the intake valve fully closed timing, thereby injecting fuel almost at the latter half of the intake stroke. Fuel injection control is performed to supply fuel. Here, almost the second half of the intake stroke refers to the valve lift amount of the intake valve (the sixth
This is the period from around the crank angle position where the intake valve (see figure) is almost at its maximum until the intake valve is fully closed. Note that 7 is a catalyst provided in the exhaust system.

次にCPU15の演算処理動作を第4図〜第6
図を用いてより詳細に説明する。ここで第5図は
吸気弁の開閉時期と燃料噴射タイミングとの関係
を、第6図は吸気弁のバルブリフト量と吸気弁の
全閉時期との関係を示す。なお図中、θvoは吸気
弁の開弁タイミングを示す。
Next, the calculation processing operation of the CPU 15 is shown in Figures 4 to 6.
This will be explained in more detail using figures. Here, FIG. 5 shows the relationship between the opening/closing timing of the intake valve and the fuel injection timing, and FIG. 6 shows the relationship between the valve lift amount of the intake valve and the fully closing timing of the intake valve. In the figure, θvo indicates the opening timing of the intake valve.

エンジンが作動すると、CPU15は、クラン
ク角センサ10、圧力センサ8及び水温センサ9
の各信号を読み込んでその各値をレジスタT,
B,W1に記憶するとともに(ステツプ20〜2
2)、イグニツシヨンスイツチ11からのスター
タ信号を読み込んでそれをレジスタSに記憶し
(ステツプ23)、次にレジスタSの記憶内容から
エンジンの始動時か否かを判定する(ステツプ2
4)。そしてエンジンの始動時にはCPU15はス
テツプ24においてYESと判定してステツプ2
5に進み、そこでレジスタIに所定の始動噴射量
βを記憶し、レジスタIの値に基いて始動噴射パ
ルスを作成してそれを第1気筒のTDC信号に応
じて判別した気筒の燃料噴射弁6に加え(ステツ
プ26)、ステツプ20に戻り、上述の処理を繰
り返す。なおエンジンの始動時において、予め設
定した始動噴射パルスを発生するようにしている
のは、この始動時には吸入空気量に基いて燃料噴
射量を算出することができないからである。
When the engine operates, the CPU 15 controls the crank angle sensor 10, the pressure sensor 8, and the water temperature sensor 9.
Read each signal and store each value in register T,
B, W 1 (steps 20 to 2)
2) Read the starter signal from the ignition switch 11 and store it in the register S (step 23), and then judge from the contents of the register S whether or not it is time to start the engine (step 2).
4). When the engine is started, the CPU 15 determines YES in step 24 and proceeds to step 2.
5, where a predetermined starting injection amount β is stored in register I, a starting injection pulse is created based on the value of register I, and the fuel injection valve of the cylinder is determined according to the TDC signal of the first cylinder. 6 (step 26), the process returns to step 20 and the above-described process is repeated. The reason why a preset starting injection pulse is generated when starting the engine is because the fuel injection amount cannot be calculated based on the intake air amount at this starting time.

そしてエンジンが始動すると、CPU15は上
記ステツプ24においてNOと判定してステツプ
27に進み、そこでレジスタT内のクランク角を
用いてエンジン回転数を演算してそれをレジスタ
Rに記憶し、次にレジスタR,B内のエンジン回
転数と吸気負圧とでもつて基本燃料噴射量を演算
してそれをレジスタIに記憶する(ステツプ2
8)。次にCPU15は、レジスタW1内のエンジ
ン冷却水温を設定値W、例えば60℃と比較して冷
却水温が設定値W以下であれば、両者の差(W−
W1)と補正係数C1とを乗算し、これを温度補正
量としてレジスタI内の基本燃料噴射量に加算し
て実際燃料噴射量を求め、その値I+C1(W−
W1)をレジスタIに記憶し(ステツプ29)、該
レジスタI内の実際燃料噴射量から噴射角θ(第
5図参照)を決定してそれをレジスタθに記憶し
(ステツプ30)、さらに吸気弁全閉時期θvc(第
5図参照)と所定の噴射終了時期補正量Δθとで
もつて噴射終了時期θic(第5図参照)を決定する
(ステツプ31)。ここで吸気弁の全閉時期θvcは
基準となるエンジン回転数、例えば最大トルクと
なる3000rpmにおいて吸気の吹き返しが発生しな
いクランク角位置に設定すればよく、その1例を
示すと、第6図の吸気弁のバルブリフト特性図に
おいて、吸気行程終期のランプ部分Aの初期のク
ランク角位置となる。
When the engine starts, the CPU 15 makes a negative determination in step 24 and proceeds to step 27, where the engine speed is calculated using the crank angle in register T and stored in register R. The basic fuel injection amount is calculated using the engine speed and intake negative pressure in R and B, and it is stored in register I (step 2).
8). Next, the CPU 15 compares the engine coolant temperature in the register W1 with a set value W, for example 60°C, and if the coolant temperature is below the set value W, the difference between the two (W-
W 1 ) is multiplied by the correction coefficient C 1 and added as a temperature correction amount to the basic fuel injection amount in register I to obtain the actual fuel injection amount, and the value I+C 1 (W−
W 1 ) is stored in register I (step 29), the injection angle θ (see FIG. 5) is determined from the actual fuel injection amount in register I, and it is stored in register θ (step 30). The injection end timing θic (see FIG. 5) is determined based on the intake valve fully closed timing θvc (see FIG. 5) and a predetermined injection end timing correction amount Δθ (step 31). Here, the full closing timing θvc of the intake valve may be set at a crank angle position at which intake air does not blow back at the reference engine speed, for example, 3000 rpm, which is the maximum torque. In the valve lift characteristic diagram of the intake valve, this is the initial crank angle position of ramp portion A at the end of the intake stroke.

このようにして噴射終了時期θicが決定される
と、CPU15はこの噴射終了時期θicに基いてレ
ジスタθ内の実際噴射量θに応じた噴射開始時期
θio(第5図参照)を決定し(ステツプ32)、噴
射開始時期θioになるまでステツプ33に待機し、
噴射開始時期θioになると、ステツプ34で燃料
噴射弁6に“1”信号を加え、該弁6を駆動し続
ける間ステツプ35に待機し、噴射終了時期θic
になると“1”信号の出力を停止し(ステツプ3
6)、このようにして燃料噴射パルスを加えた後、
上記ステツプ20に戻る。このようにエンジンの
始動後は、所定の噴射終了時期に基いてエンジン
の運転状態に応じた噴射開始時期を決定し、この
噴射開始時期から噴射終了時期の間燃料噴射パル
スを加えるという制御が行なわれることとなる。
When the injection end time θic is determined in this way, the CPU 15 determines the injection start time θio (see FIG. 5) according to the actual injection amount θ in the register θ based on the injection end time θic (step 1). 32), wait in step 33 until injection start time θio,
When the injection start time θio is reached, a "1" signal is applied to the fuel injection valve 6 in step 34, and the system waits in step 35 while continuing to drive the valve 6, and the injection end time θic is reached.
When the signal becomes 1, the output of the “1” signal is stopped (step 3).
6), After applying the fuel injection pulse in this way,
Return to step 20 above. In this way, after the engine is started, control is performed to determine the injection start timing according to the engine operating condition based on the predetermined injection end timing, and to apply fuel injection pulses from this injection start time to the injection end time. It will be.

以上のような本実施例の装置では、燃料噴射弁
の噴霧を吸気行程後半に開弁状態の吸気弁の傘部
背面に当てて燃焼室内に供給するようにしたの
で、燃料の一部が吸気通路内壁に付着することは
なく、成層化燃焼がくずれることはない。また燃
料が直接ピストン上面やシリンダ内壁面に付着す
ることがないので、エミツシヨンが悪化すること
もない。さらには燃料が吸気弁の熱によつて気化
霧化されることとなり、これにより着火性及び燃
焼性を改善できるものである。またさらには吸気
弁の傘部背面に当てた噴霧を点火プラグ回りに集
めるようにしたので、点火プラグ回りの混合気を
リツチにでき、しかも上述のように吸気弁の熱に
よつて燃料が良好に気化霧化されていることか
ら、失火の発生を確実に防止できる。
In the device of this embodiment as described above, the spray from the fuel injection valve is supplied into the combustion chamber by hitting the back of the umbrella of the open intake valve in the latter half of the intake stroke, so that part of the fuel is absorbed into the intake air. It does not adhere to the inner wall of the passage, and stratified combustion will not be disrupted. Furthermore, since the fuel does not directly adhere to the upper surface of the piston or the inner wall surface of the cylinder, there is no possibility of deterioration in emissions. Furthermore, the fuel is vaporized and atomized by the heat of the intake valve, thereby improving ignitability and combustibility. Furthermore, the spray applied to the back of the intake valve umbrella is collected around the spark plug, making it possible to enrich the air-fuel mixture around the spark plug, and as mentioned above, the heat from the intake valve improves the fuel flow. Since the fuel is vaporized and atomized, it is possible to reliably prevent misfires from occurring.

また第7図及び第8図は本考案の他の実施例を
示す。この実施例では、シリンダヘツド1aには
各気筒毎に吸、排気ポート40a,40b,41
a,41bがそれぞれ2つずつ形成され、該ポー
ト40a〜41bにはそれを開閉する吸、排気弁
42a,42b,43a,43bが配設されてい
る。また吸気ポート40a,40bと吸気管2と
によつて形成される吸気通路44には一方の吸気
ポート40aに向けて隔壁45が配設されて低負
荷用吸気通路44aが形成され、該通路44aは
これも吸気スワールを発生させるような形状とな
つている。また上記吸気通路44には低負荷時に
閉じる開閉弁46が配設されている。そして燃料
噴射弁6は、その噴霧Fが上記両吸気弁42a,
42bの傘部背面に当たつて点火プラグ18回り
に集まるような取付位置及び噴霧角度に設定され
ている。
Further, FIGS. 7 and 8 show other embodiments of the present invention. In this embodiment, the cylinder head 1a has intake and exhaust ports 40a, 40b, 41 for each cylinder.
Two ports 40a and 41b are formed, and intake and exhaust valves 42a, 42b, 43a and 43b are provided in the ports 40a to 41b to open and close the ports. Further, in the intake passage 44 formed by the intake ports 40a, 40b and the intake pipe 2, a partition wall 45 is disposed toward one intake port 40a to form a low-load intake passage 44a. This is also shaped to generate intake swirl. Further, the intake passage 44 is provided with an on-off valve 46 that closes when the load is low. Then, the fuel injection valve 6 sends the spray F to both the intake valves 42a,
The mounting position and spray angle are set so that the spray hits the back surface of the umbrella portion of 42b and gathers around the spark plug 18.

本実施例においても上記実施例と同様の効果が
得られる。
In this embodiment, the same effects as in the above embodiment can be obtained.

なお上記実施例では成層化燃焼を行なうように
したエンジンの燃料噴射装置について説明した
が、本考案は各吸気通路に設けた燃料噴射弁から
対応する気筒の吸気行程後半に同期して該吸気行
程内に燃料を噴射するようにしたもの全てに適用
できる。
In the above embodiment, a fuel injection device for an engine that performs stratified combustion has been described, but in the present invention, fuel injection valves provided in each intake passage are injected in synchronization with the second half of the intake stroke of the corresponding cylinder. It can be applied to anything that injects fuel inside.

〔考案の効果〕[Effect of idea]

以上のように本考案によれば、各気筒の吸気通
路に設けた燃料噴射弁から対応する気筒の吸気行
程後半に同期して該吸気行程内に燃料を噴射する
ようにしたエンジンの燃料噴射装置において、各
燃料噴射弁の噴霧を開弁状態の吸気弁の傘部背面
に当てて点火プラグ回りに集めるようにしたの
で、空燃比分布のばらつきに起因する失火の発生
を防止でき、又噴霧が吸気通路内壁、あるいはピ
ストン上面やシリンダ内壁面に付着するのを防止
でき、さらには燃料の気化霧化を向上して着火性
及び燃焼性を向上できる効果がある。
As described above, according to the present invention, the fuel injection device for an engine is configured to inject fuel from the fuel injection valve provided in the intake passage of each cylinder during the intake stroke in synchronization with the latter half of the intake stroke of the corresponding cylinder. In this system, the spray from each fuel injector is applied to the back of the cap of the open intake valve and collected around the spark plug, which prevents misfires caused by variations in the air-fuel ratio distribution and prevents the spray from occurring. It is possible to prevent the fuel from adhering to the inner wall of the intake passage, the upper surface of the piston, or the inner wall surface of the cylinder, and has the effect of improving the vaporization and atomization of the fuel, thereby improving the ignitability and combustibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例によるエンジンの燃
料噴射装置の概略構成図、第2図は上記装置の要
部断面正面図、第3図は上記装置の要部平面図、
第4図は上記装置におけるCPU15の演算処理
のフローチヤートを示す図、第5図は上記装置に
おける吸気弁の開閉タイミングと燃料噴射タイミ
ングとの関係を示す図、第6図は吸気弁のバルブ
リフト量と吸気弁の全閉時期との関係を示す図、
第7図は本考案の他の実施例によるエンジンの燃
料噴射装置の要部断面正面図、第8図は上記装置
の要部平面図である。 1……エンジン、2a,42a,42b……吸
気弁、6……燃料噴射弁、17……燃焼室、1
8,44……吸気通路。
FIG. 1 is a schematic configuration diagram of a fuel injection device for an engine according to an embodiment of the present invention, FIG. 2 is a sectional front view of the main part of the device, and FIG. 3 is a plan view of the main part of the device.
Fig. 4 is a flowchart of the arithmetic processing of the CPU 15 in the above device, Fig. 5 is a diagram showing the relationship between the opening/closing timing of the intake valve and the fuel injection timing in the above device, and Fig. 6 is the valve lift of the intake valve. A diagram showing the relationship between the intake valve amount and the fully closed timing of the intake valve,
FIG. 7 is a sectional front view of a main part of a fuel injection device for an engine according to another embodiment of the present invention, and FIG. 8 is a plan view of a main part of the above device. 1...Engine, 2a, 42a, 42b...Intake valve, 6...Fuel injection valve, 17...Combustion chamber, 1
8, 44...Intake passage.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 吸気弁を介して燃焼室に通ずる各吸気通路内に
それぞれ燃料噴射弁を設け、該各燃料噴射弁から
対応する気筒の吸気行程後半に同期して該吸気行
程内にて燃料を順次噴射するようにしたエンジン
の燃料噴射装置において、上記燃料噴射弁の取付
位置及び噴霧角度を、該噴霧が開弁状態の吸気弁
の傘部背面に当たつて点火プラグ回りに集まるよ
うな位置及び角度に設定したことを特徴とするエ
ンジンの燃料噴射装置。
A fuel injection valve is provided in each intake passage leading to the combustion chamber via an intake valve, and fuel is sequentially injected from each fuel injection valve during the intake stroke in synchronization with the latter half of the intake stroke of the corresponding cylinder. In the fuel injection system for the engine, the installation position and spray angle of the fuel injector are set so that the spray hits the back of the umbrella part of the open intake valve and collects around the spark plug. An engine fuel injection device characterized by:
JP18957183U 1983-12-07 1983-12-07 engine fuel injector Granted JPS6097373U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18957183U JPS6097373U (en) 1983-12-07 1983-12-07 engine fuel injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18957183U JPS6097373U (en) 1983-12-07 1983-12-07 engine fuel injector

Publications (2)

Publication Number Publication Date
JPS6097373U JPS6097373U (en) 1985-07-03
JPH0121179Y2 true JPH0121179Y2 (en) 1989-06-23

Family

ID=30408686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18957183U Granted JPS6097373U (en) 1983-12-07 1983-12-07 engine fuel injector

Country Status (1)

Country Link
JP (1) JPS6097373U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2753312B2 (en) * 1989-03-15 1998-05-20 株式会社日立製作所 Fuel injection valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183515A (en) * 1981-05-07 1982-11-11 Nissan Motor Co Ltd Fuel-injected engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183515A (en) * 1981-05-07 1982-11-11 Nissan Motor Co Ltd Fuel-injected engine

Also Published As

Publication number Publication date
JPS6097373U (en) 1985-07-03

Similar Documents

Publication Publication Date Title
US5865153A (en) Engine control system and method
JP3980489B2 (en) In-cylinder injection internal combustion engine control device
EP0869269B1 (en) Spark ignited internal combustion engine with multiple event fuel injection
KR100394847B1 (en) Fuel injection timing control system for direct injection type internal combustion engine and method for the same
JPH11159382A (en) Cylinder injection type engine
JP2002242716A5 (en)
JP2008190511A (en) Exhaust gas reduction device for direct injection gasoline engine
JP2003013784A (en) Control device of direct injection spark ignition type internal combustion engine
JPH0517390B2 (en)
JP3090072B2 (en) Fuel injection control device for in-cylinder injection internal combustion engine
JP4126738B2 (en) In-cylinder injection spark ignition engine
JPH0121180Y2 (en)
JPH0121179Y2 (en)
US6571775B2 (en) Fuel injection control for start-up of internal combustion engine
JPH07293304A (en) Tumble control device for fuel injection type engine
JP3189564B2 (en) In-cylinder injection spark ignition engine
JPH10141115A (en) Control device of in-cylinder injection internal combustion engine
JP3265999B2 (en) Knock control device for in-cylinder injection internal combustion engine
JPH10331682A (en) Combustion stabilizing device of direct injection type spark ignition engine
JPH11101146A (en) Cylinder injection type engine
US11421623B2 (en) Internal combustion engine control device
JPS60195347A (en) Controlling method of fuel injection timing
JPH01155043A (en) Fuel injection system for engine
JPH06173821A (en) Fuel injection device for engine
JP2000337235A (en) Ignition control device of internal combustion engine