JPH11351012A - Direct cylinder injection type spark ignition engine - Google Patents

Direct cylinder injection type spark ignition engine

Info

Publication number
JPH11351012A
JPH11351012A JP10164531A JP16453198A JPH11351012A JP H11351012 A JPH11351012 A JP H11351012A JP 10164531 A JP10164531 A JP 10164531A JP 16453198 A JP16453198 A JP 16453198A JP H11351012 A JPH11351012 A JP H11351012A
Authority
JP
Japan
Prior art keywords
intake
valve
intake port
fuel
direct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10164531A
Other languages
Japanese (ja)
Other versions
JP3893750B2 (en
Inventor
Yuichi Iriya
祐一 入矢
Hisashi Mitsumoto
久司 光本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP16453198A priority Critical patent/JP3893750B2/en
Publication of JPH11351012A publication Critical patent/JPH11351012A/en
Application granted granted Critical
Publication of JP3893750B2 publication Critical patent/JP3893750B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/48Tumble motion in gas movement in cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide a direct cylinder injection type spark ignition engine that allows a desirable purge at stratified charge combustion and improves output at its high-speed and high-loaded operation. SOLUTION: A single cylinder is provided with three intake ports 5 (5a, 5b and 5c). The first or central intake port 5a is so shaped that an intake flow travels direct into a combustion-chamber cavity 2 defined in a piston 1, and is provided on its upstream side with a cutoff valve 12 and an evaporative emission purging outlet 14. The second and third intake ports 5b and 5c on both sides of the first intake port 5a are both so shaped that an intake flow generates a tumble flow in a combustion chamber 3. A variable valve system is provided to stop the operation of a third intake valve 7c for opening or closing the third intake port 5c. A cutoff valve opening/closing system 13 is provided to control the opening/closing of the cutoff valve 12, and a control unit 18 is installed to control fuel injection timing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、直接筒内噴射式
火花点火機関に関する。
The present invention relates to a direct cylinder injection type spark ignition engine.

【0002】[0002]

【従来の技術】従来の直接筒内噴射式火花点火機関とし
ては、例えば図21から図23(特開平5−79370
号公報)に示すようなものがある。これはピストン01
頂面に形成された凹状の燃焼室キャビティ02と、ピス
トン01の上昇に伴い点火時点において燃焼室キャビテ
ィ02の側壁近傍に挿入される点火プラグ04を設置
し、吸気ポート05はヘリカル型吸気ポートを形成する
第1吸気ポート05aとまっすぐに伸びるストレート型
吸気ポートを形成する第2吸気ポート05bとからな
る。また、これら各吸気ポート05a,05bは各々イ
ンテークマニホールド内に形成された吸気通路010を
介してコレクタ011につながり、第2吸気ポート05
bにつながる第2吸気通路010b内に吸気制御弁01
2を設置している。さらに、前記吸気ポート05下部
に、燃焼室03に対し斜め下向きに高圧燃料噴射弁06
を設置している。そして、この従来例は、特定の運転状
態のとき、吸気制御弁012の開閉制御013によりス
ワール流09のガス流動を生成し、燃料の点火プラグ0
4周りの成層化をし、超希薄空燃比で運転し燃費の向上
を図るものである。なお、07は吸気弁、08は排気弁
である。
2. Description of the Related Art As a conventional direct in-cylinder injection type spark ignition engine, for example, FIGS. 21 to 23 (JP-A-5-79370).
Publication). This is piston 01
A concave combustion chamber cavity 02 formed on the top surface and a spark plug 04 inserted near the side wall of the combustion chamber cavity 02 at the time of ignition with the rise of the piston 01 are installed, and the intake port 05 is a helical intake port. It comprises a first intake port 05a to be formed and a second intake port 05b to form a straight type intake port extending straight. Each of the intake ports 05a and 05b is connected to a collector 011 via an intake passage 010 formed in the intake manifold, and is connected to the second intake port 05.
b in the second intake passage 010b leading to the intake control valve 01
2 are installed. Further, a high-pressure fuel injection valve 06 is provided obliquely downward with respect to the combustion chamber 03 below the intake port 05.
Is installed. In this conventional example, in a specific operation state, the swirl flow 09 gas flow is generated by the opening / closing control 013 of the intake control valve 012, and the fuel ignition plug 0
The stratification is about 4 and the fuel efficiency is improved by operating at an ultra-lean air-fuel ratio. Here, 07 is an intake valve, and 08 is an exhaust valve.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の直接筒内噴射式火花点火機関にあっては、成
層時に強いスワール流09を形成する必要があるため
に、吸気制御弁012による第2吸気ポート05bの閉
鎖のみでは強いスワール流09を形成することができな
いため、第1吸気ポート05aをヘリカル形状としてい
る。このため、高回転・高負荷時の出力域では吸気抵抗
となり、出力性能が低下する。また、成層時にエバポ燃
料をパージする場合に、従来のスワール流09のガス流
動を用いた成層燃焼ではパージガスは第1吸気ポート0
5aを介してスワール流09のガス流動にのって燃焼室
03内に流入するため、エバポ燃料は燃焼室03の外側
に長く存在し、ピストン01頂面上の燃焼室キャビティ
02内に集中しないため、この燃焼室キャビティ02内
での噴射燃料と混合した燃焼が困難となり、排気性能が
悪化してしまう。この発明は、このような従来の問題点
に着目してなされたもので、成層燃焼時における良好な
パージを行い得るとともに、高回転・高負荷時の出力を
向上させることができる直接筒内噴射式火花点火機関を
提供することにある。
However, in such a conventional direct in-cylinder injection spark ignition engine, it is necessary to form a strong swirl flow 09 during stratification. Since the strong swirl flow 09 cannot be formed only by closing the second intake port 05b, the first intake port 05a has a helical shape. For this reason, in the output region at the time of high rotation and high load, intake resistance occurs, and the output performance decreases. Further, when evaporative fuel is purged at the time of stratification, the purge gas is supplied to the first intake port 0 in the conventional stratified combustion using the gas flow of the swirl flow 09.
Since the fuel flows into the combustion chamber 03 along the swirl flow 09 via the gas flow 5a, the evaporative fuel is long outside the combustion chamber 03 and does not concentrate in the combustion chamber cavity 02 on the top surface of the piston 01. Therefore, it becomes difficult to perform combustion mixed with the injected fuel in the combustion chamber cavity 02, and the exhaust performance deteriorates. SUMMARY OF THE INVENTION The present invention has been made in view of such a conventional problem, and it is possible to perform good purging at the time of stratified combustion and to improve the output at the time of high rotation and high load by direct in-cylinder injection. An object of the present invention is to provide a spark ignition engine.

【0004】[0004]

【課題を解決するための手段】上述の目的を達成するた
め、請求項1記載の発明は、1つの気筒に対して3つの
吸気ポートを形成するとともに、3つの吸気ポートの中
央に位置する中央第1吸気ポートを吸気の流れがピスト
ンの凹部に直接向かう形状に形成し、中央第1吸気ポー
トの上流側に遮断弁を設け、遮断弁下流側の中央第1吸
気ポートにエバポパージの流出口を設け、中央第1吸気
ポートの両側に位置する第2吸気ポートおよび第3吸気
ポートを吸気の流れが燃焼室内でタンブル流を生起する
形状に形成し、第3吸気ポートを開閉する吸気弁の作動
を運転状態に応じて停止する可変動弁機構と、機関の運
転状態に応じて遮断弁の開閉を制御する遮断弁開閉機構
と、機関の運転状態に応じて燃料の噴射時期を制御する
噴射時期制御手段と、を備えることを特徴とする。請求
項1記載の直接筒内噴射式火花点火機関によれば、運転
条件に応じた各ポートの開閉制御により、成層時の強い
スワール流の形成と弱成層時の2つの順タンブルガス流
動の形成、均質希薄燃焼時の弱いスワール流の形成、高
回転・高負荷時の出力域での低吸気抵抗化の両立を図
り、特定時期の燃料噴射により超希薄空燃比運転による
燃費の向上とスロットル全開運転時の空気の充填効率増
大化による出力性能向上の両立を図ることができる。ま
た、成層時にエバポ燃料をパージする場合に、中央第1
ポートから導入でき、かつ燃焼室内のガス流動を制御す
ることが可能なため、パージガスをピストン頂面上の燃
焼室内に集中でき、この燃焼室内で噴射燃料との混合を
促進でき、燃焼が改善され、排気性能の悪化を防ぐこと
ができる。
In order to achieve the above object, according to the first aspect of the present invention, three intake ports are formed for one cylinder and a center located at the center of the three intake ports. The first intake port is formed in such a shape that the flow of the intake air is directly directed to the recess of the piston, a shutoff valve is provided upstream of the central first intake port, and the outlet of the evaporative purge is provided at the central first intake port downstream of the shutoff valve. The second intake port and the third intake port located on both sides of the central first intake port are formed in such a shape that the flow of intake air generates a tumble flow in the combustion chamber, and the operation of an intake valve for opening and closing the third intake port. Variable valve mechanism that stops the engine according to the operating state, shut-off valve opening and closing mechanism that controls the opening and closing of the shut-off valve according to the operating state of the engine, and injection timing that controls the fuel injection timing according to the operating state of the engine Control means , Characterized in that it comprises a. According to the direct in-cylinder injection spark ignition engine according to the first aspect, the formation of a strong swirl flow during stratification and the formation of two forward tumble gas flows during weak stratification by controlling the opening and closing of each port according to the operating conditions. To achieve low swirl flow during homogeneous lean burn and low intake resistance in the output range at high speeds and high loads, and to improve fuel efficiency and fully open the throttle through ultra-lean air-fuel ratio operation by fuel injection at a specific time. It is possible to improve output performance by increasing air charging efficiency during operation. Also, when evaporating fuel is purged during stratification,
Since the gas can be introduced from the port and the gas flow in the combustion chamber can be controlled, the purge gas can be concentrated in the combustion chamber on the piston top surface, and the mixing with the injected fuel can be promoted in the combustion chamber, so that the combustion is improved. In addition, deterioration of exhaust performance can be prevented.

【0005】また、請求項2記載の発明は、請求項1記
載の直接筒内噴射式火花点火機関において、機関の運転
状態が点火栓近傍に混合気を集める成層燃焼を行う領域
にあるとき、可変動弁機構は第3吸気ポートの吸気弁の
作動を停止し、遮断弁開閉機構は中央第1吸気ポートの
遮断弁を閉鎖し、噴射時期制御手段は燃料噴射時期を圧
縮行程後期に設定する、ことを特徴とする。請求項2記
載の直接筒内噴射式火花点火機関によれば、機関の運転
条件が、低中速・低負荷域の成層燃焼領域では、筒内の
ガス流動を強めると共に、強いスワール流を形成し、燃
料を少なくとも圧縮行程後期に噴射することで、燃料の
点火プラグ周りの成層化を図り、超希薄空燃比で運転し
燃費の向上を図ることができると共に、燃料は一度ピス
トン表面の燃焼室を介して、点火プラグ方向へ行くた
め、燃料微粒化、および気化が進み、点火プラグへの液
状燃料付着による失火は無く、安定して運転できるよう
になる。また、エバポ燃料をパージする場合でも、エバ
ポ燃料は中央第1吸気ポートから直接ピストン頂面上の
燃焼室に向けて入れるので、スワールガス流動の中央で
あるピストン頂面上の燃焼室内にパージガスは集中し、
前記燃焼室内で噴射燃料と混合し安定燃焼が可能とな
る。
According to a second aspect of the present invention, in the direct in-cylinder injection spark ignition engine according to the first aspect, when the operating state of the engine is in an area where stratified charge combustion is performed near the spark plug to collect an air-fuel mixture. The variable valve mechanism stops the operation of the intake valve of the third intake port, the shutoff valve opening / closing mechanism closes the shutoff valve of the central first intake port, and the injection timing control means sets the fuel injection timing to the latter stage of the compression stroke. , Characterized in that. According to the direct in-cylinder injection type spark ignition engine according to the second aspect, in the stratified combustion region in the low-medium-speed, low-load region, the operating condition of the engine increases the gas flow in the cylinder and forms a strong swirl flow. By injecting the fuel at least in the latter stage of the compression stroke, stratification of the fuel around the ignition plug can be achieved, the fuel can be operated at an ultra-lean air-fuel ratio, and the fuel efficiency can be improved. , The fuel atomization and vaporization progress, and there is no misfire due to the adhesion of the liquid fuel to the ignition plug, and stable operation can be performed. Also, even when purging the evaporative fuel, the evaporative fuel is introduced directly from the central first intake port toward the combustion chamber on the piston top surface, so that the purge gas enters the combustion chamber on the piston top surface, which is the center of the swirl gas flow. Concentrate,
Mixing with the injected fuel in the combustion chamber enables stable combustion.

【0006】請求項3記載の発明では、請求項1または
2記載の直接筒内噴射式火花点火機関において、機関の
運転状態が点火栓近傍に混合気を集める弱成層燃料を行
う領域にあるとき、可変動弁機構は第3吸気ポートの吸
気弁を作動させ、遮断弁開閉機構は中央第1吸気ポート
の遮断弁を閉鎖し、噴射時期制御手段は燃料噴射時期を
圧縮行程前期に設定する、ことを特徴とする。請求項3
記載の直接筒内噴射式火花点火機関によれば、機関の運
転条件が、低中速・中負荷域の成層燃焼領域では、筒内
のガス流動を若干弱めるとともに、燃焼室に入ってくる
吸入空気が2つの順タンブル流ガス流動を生成し、燃料
を少なくとも圧縮行程前期に噴射することで、前記2つ
のタンブル流ガス流動の中間に燃料混合気の帯を生成す
る弱い成層化をし、希薄空燃比で運転し、燃費の向上を
図ることができる。また、エバポ燃料をパージする場合
も、2つの順タンブル流ガス流動の中央にパージガスは
集中し、そのガス流動中間の燃料混合気の帯と混合し安
定燃焼が可能となる。
According to a third aspect of the present invention, in the direct in-cylinder injection spark ignition engine according to the first or second aspect, when the operating state of the engine is in a region where a weak stratified fuel for collecting an air-fuel mixture is provided near the spark plug. The variable valve mechanism operates the intake valve of the third intake port, the shut-off valve opening / closing mechanism closes the shut-off valve of the central first intake port, and the injection timing control means sets the fuel injection timing to the first half of the compression stroke. It is characterized by the following. Claim 3
According to the direct in-cylinder injection spark ignition engine described above, in the stratified combustion region in the low-medium-speed / medium-load region, the operating conditions of the engine slightly weaken the gas flow in the cylinder and the intake air entering the combustion chamber. The air produces two forward tumble flow gas flows and injects fuel at least during the first half of the compression stroke, resulting in a weak stratification that creates a band of fuel mixture in the middle of the two tumble flow gas flows. Driving at an air-fuel ratio can improve fuel efficiency. Also, when purging the evaporative fuel, the purge gas concentrates at the center of the two forward tumble flow gas flows, and mixes with the fuel mixture zone in the middle of the gas flows, enabling stable combustion.

【0007】請求項4記載の発明では、請求項1ないし
3のいずれかの項に記載の直接筒内噴射式火花点火機関
において、機関の運転状態が燃焼室内に均質な希薄混合
気を形成する均質希薄燃焼を行う領域にあるとき、可変
動弁機構は第3吸気ポートの吸気弁を停止させ、遮断弁
開閉機構は中央第1吸気ポートの遮断弁を開き、噴射時
期制御手段は燃料噴射時期を吸気行程に設定する、こと
を特徴とする。請求項4記載の直接筒内噴射式火花点火
機関によれば、機関の運転条件が、低中速・中負荷域の
均質希薄燃焼領域では、強いスワール流を、中央第1吸
気ポートから流入する燃焼室に入ってくる吸入空気流れ
により弱め、燃料を少なくとも吸気行程に噴射すること
で、燃料混合気の均質化を図り、希薄空燃比で運転し、
燃費の向上を図ることができる。また、エバポ燃料をパ
ージする場合は燃料噴射が吸気行程時のためパージガス
と噴射燃料は十分混合し、従来の吸気ポート燃料噴射機
関と同様に安定燃焼が可能となる。
According to a fourth aspect of the present invention, in the direct cylinder injection type spark ignition engine according to any one of the first to third aspects, the operating state of the engine forms a homogeneous lean mixture in the combustion chamber. The variable valve mechanism stops the intake valve of the third intake port, the shutoff valve opening / closing mechanism opens the shutoff valve of the central first intake port when the engine is in the region where the homogeneous lean combustion is performed, and the injection timing control means controls the fuel injection timing. Is set in the intake stroke. According to the direct in-cylinder injection spark ignition engine according to the fourth aspect, in a homogeneous lean burn region in a low-medium-speed / medium-load region, a strong swirl flow flows from the central first intake port. Attenuated by the flow of intake air entering the combustion chamber, fuel is injected at least during the intake stroke to achieve a homogenized fuel mixture and operate at a lean air-fuel ratio,
Fuel efficiency can be improved. When evaporative fuel is purged, the purge gas and the injected fuel are sufficiently mixed because the fuel injection is performed during the intake stroke, and stable combustion can be performed similarly to the conventional intake port fuel injection engine.

【0008】請求項5記載の発明では、請求項1ないし
4記載の直接筒内噴射式火花点火機関において、機関の
運転状態が燃焼室内に均質な混合気を形成する均質燃焼
を行う領域にあるとき、可変動弁機構は第3吸気ポート
の吸気弁を作動させ、遮断弁開閉機構は中央第1ポート
の遮断弁を開き、噴射時期制御手段は燃料噴射時期を吸
気行程に設定する、ことを特徴とする。請求項5記載の
直接筒内噴射式火花点火機関によれば、機関の運転条件
が、高速・高負荷域の均質燃焼領域では、吸気ポート面
積を大きくし充填効率向上を図るとともに、燃料を少な
くとも吸気行程時に噴射することで、混合気の均質化を
図り、出力領域も十分な性能を確保できる。また、エバ
ポ燃料をパージする場合は、燃料噴射が吸気行程時のた
めパージガスと噴射燃料は十分混合し、従来の吸気ポー
ト燃料噴射機関と同様に安定燃焼が可能となる。
According to a fifth aspect of the present invention, in the direct in-cylinder injection spark ignition engine according to the first to fourth aspects, the operating state of the engine is in a region where homogeneous combustion is performed in which a homogeneous mixture is formed in the combustion chamber. At this time, the variable valve mechanism operates the intake valve of the third intake port, the shutoff valve opening and closing mechanism opens the shutoff valve of the central first port, and the injection timing control means sets the fuel injection timing to the intake stroke. Features. According to the direct in-cylinder injection spark ignition engine according to the fifth aspect, in the homogeneous combustion region in a high-speed / high-load region, the operating condition of the engine is to increase the intake port area to improve the charging efficiency and to reduce the fuel at least. By injecting during the intake stroke, the air-fuel mixture is homogenized, and sufficient performance can be ensured in the output region. Further, when purging the evaporative fuel, the purge gas and the injected fuel are sufficiently mixed because the fuel injection is performed during the intake stroke, and stable combustion can be performed similarly to the conventional intake port fuel injection engine.

【0009】請求項6記載の発明では、請求項1ないし
5記載の直接筒内噴射式火花点火機関において、中央第
1吸気ポートはシリンダに対して直立してピストンの凹
部を指向する形状であり、第2吸気ポートおよび第3吸
気ポートは燃焼室内にタンブル流を生起するストレート
形状である、ことを特徴とする。請求項6記載の直接筒
内噴射式火花点火機関によれば、中央第1吸気ポートか
ら流入する流れはピストン頂面上の燃焼室内に向かい、
第2、第3吸気ポートから流入する流れは順タンブルを
形成するため、運転条件に応じた各ポートの開閉制御時
に、運転条件に応じた要求ガス流動(成層時の強いスワ
ール流の形成、弱成層時の2つの順タンブルガス流動の
形成、均質希薄燃焼時の弱いスワール流の形成、高回転
・高負荷時の出力域での低吸気抵抗化)を形成できる。
According to a sixth aspect of the present invention, in the direct in-cylinder injection type spark ignition engine according to the first to fifth aspects, the central first intake port has a shape which stands upright with respect to the cylinder and points toward the recess of the piston. , The second intake port and the third intake port have a straight shape that generates a tumble flow in the combustion chamber. According to the direct in-cylinder injection type spark ignition engine according to claim 6, the flow flowing from the central first intake port is directed to the combustion chamber on the piston top surface,
Since the flows flowing from the second and third intake ports form forward tumbles, the required gas flow (the formation of a strong swirl flow during stratification, Formation of two forward tumble gas flows at the time of stratification, formation of a weak swirl flow at the time of homogeneous lean combustion, and low intake resistance in the output region at high rotation and high load).

【0010】請求項7記載の発明では、請求項1ないし
6記載の直接筒内噴射式火花点火機関において、中央第
1吸気ポートの上壁に吸気の流れ方向に沿ったガイド溝
を形成し、エバポパージの流出口はガイド溝近傍に開口
することを特徴とする。請求項7記載の直接筒内噴射式
火花点火機関によれば、機関の運転条件が、低中速・低
負荷域の成層燃焼領域、および低中速・中負荷域の弱成
層燃焼領域でのエバポ燃料をパージする場合において、
エバポ燃料は中央第1吸気ポートの上部を流れ、主に第
1吸気弁の排気弁側開口部から直接ピストン頂面上の燃
焼室に向けて大半が入り、スワールガス流動、あるいは
2つの順タンブル流ガス流動の中央に位置するピストン
頂面上の燃焼室内により多く集中するのでこの燃焼室内
で噴射燃料との混合が促進され、安定燃焼が可能とな
る。
According to a seventh aspect of the present invention, in the direct in-cylinder injection spark ignition engine according to the first to sixth aspects, a guide groove is formed in an upper wall of the central first intake port along a flow direction of intake air, The outlet of the evaporative purge is opened near the guide groove. According to the direct in-cylinder injection spark ignition engine described in claim 7, the operating conditions of the engine are a stratified combustion region in a low-medium speed / low load region and a weak stratified combustion region in a low-medium speed / medium load region. When purging evaporative fuel,
The evaporative fuel flows in the upper part of the central first intake port, mostly enters the combustion chamber on the top surface of the piston directly from the exhaust valve side opening of the first intake valve, and swirl gas flow or two forward tumbles Since more concentration occurs in the combustion chamber on the top surface of the piston located at the center of the flowing gas flow, mixing with the injected fuel is promoted in this combustion chamber, and stable combustion is possible.

【0011】請求項8記載の発明では、請求項1ないし
6記載の直接筒内噴射式火花点火機関において、中央第
1吸気ポートを開閉する吸気弁のリフト量を、他の第2
吸気ポートもしくは第3吸気ポートを開閉する吸気弁よ
りも小さく設定した、ことを特徴とする。請求項8記載
の直接筒内噴射式火花点火機関によれば、機関の運転条
件が、低中速・中負荷域の均質希薄燃焼領域での第3吸
気弁が作動停止し、第1吸気弁および第2吸気弁のみ作
動、かつ、第1吸気通路内の遮断弁が開口、燃料を少な
くとも吸気行程に噴射する領域と、高速・高負荷域の均
質燃焼領域での第1吸気弁、第2吸気弁および第3吸気
弁が作動、かつ、第1吸気通路内の遮断弁が開口、燃料
を少なくとも吸気行程時に噴射する領域では、第1吸気
弁と燃料噴霧の干渉が少なくなるため吸気弁へのデポジ
ット付着、すす発生を減少できる。
According to the invention described in claim 8, in the direct in-cylinder injection spark ignition engine according to any one of claims 1 to 6, the lift amount of the intake valve that opens and closes the central first intake port is adjusted by the other second valve.
It is characterized in that it is set smaller than the intake valve that opens and closes the intake port or the third intake port. According to the direct in-cylinder injection spark ignition engine according to the eighth aspect, the operating condition of the engine is such that the third intake valve stops operating in the low-medium-speed / medium-load homogeneous homogeneous lean combustion region, and the first intake valve operates. And only the second intake valve is operated, and the shutoff valve in the first intake passage is opened, and the first intake valve and the second in the region where fuel is injected at least during the intake stroke, and the homogeneous combustion region where high speed and high load are applied. In the region where the intake valve and the third intake valve are operated, and the shut-off valve in the first intake passage is opened, and at least in the region where fuel is injected during the intake stroke, interference between the first intake valve and fuel spray is reduced, so that the intake valve is moved to the intake valve. Deposition and soot generation can be reduced.

【0012】[0012]

【発明の実施の形態】以下、この発明の実施の形態を図
面に基づいて説明する。図1から図4は、本発明の実施
の形態1の直接筒内噴射式火花点火機関(以下、機関と
称す)の構成を示す図である。まず、構成を説明する
と、本実施の形態の機関は、ピストン1頂面に形成され
た凹部を有する燃焼室キャビティ2と、シリンダ17の
シリンダヘッドに燃焼室キャビティ2を臨んで挿入され
る点火プラグ4と、吸気ポート5下部に、燃焼室3に対
し斜め下向きに燃料を筒内に直接噴射する高圧燃料噴射
弁6とを有する。そして、本実施の形態は、1つの気筒
に対して3つの吸気弁7と吸気ポート5が形成されてい
るが、3つの吸気弁7の中央に位置する第1吸気弁7a
につながる第1吸気ポート5aはその吸気ポートを介し
て流入する吸気流れが、図3に示すように、ピストン1
頂面上の燃焼室キャビティ2内に向かうような吸気ポー
ト形状としている。そして、第1吸気ポート5a上流の
第1吸気通路10aに遮断弁12を設け、この遮断弁1
2の下流にエバポパージ用流出口14を設ける。また、
第1吸気弁7aの両側の2つの第2吸気弁7bおよび第
3吸気弁7cにつながる第2吸気ポート5bおよび第3
吸気ポート5cは、その吸気ポートを介して流入する吸
気流れが、図5に示すように、燃焼室3内で順タンブル
ガス流動19を形成するような吸気ポート形状としてい
る。そして、前記第1吸気弁7a、第2吸気弁7bおよ
び第3吸気弁7cを機関の運転条件により各々開閉する
ような可変動弁機構16と遮断弁開閉機構13とを設け
る。なお、8は排気弁、10bは第2吸気ポート5bに
つながる第2吸気通路、10cは第3吸気ポート5cに
つながる第3吸気通路であり、11はコレクタ、15は
エバポパージ制御機構である。
Embodiments of the present invention will be described below with reference to the drawings. FIGS. 1 to 4 are diagrams showing a configuration of a direct in-cylinder injection spark ignition engine (hereinafter, referred to as an engine) according to a first embodiment of the present invention. First, the configuration of the engine will be described. The engine according to the present embodiment includes a combustion chamber cavity 2 having a concave portion formed on the top surface of a piston 1 and a spark plug inserted into a cylinder head of a cylinder 17 facing the combustion chamber cavity 2. 4 and a high-pressure fuel injection valve 6 below the intake port 5 for directly injecting fuel into the cylinder obliquely downward with respect to the combustion chamber 3. In the present embodiment, three intake valves 7 and intake ports 5 are formed for one cylinder, but the first intake valve 7a located at the center of the three intake valves 7
As shown in FIG. 3, the first intake port 5a connected to the first intake port 5a receives the intake air flowing through the first intake port 5a.
The intake port shape is directed toward the inside of the combustion chamber cavity 2 on the top surface. A shutoff valve 12 is provided in the first intake passage 10a upstream of the first intake port 5a.
An evaporative purge outlet 14 is provided downstream of 2. Also,
The second intake port 5b and the third intake port connected to the two second intake valves 7b and the third intake valve 7c on both sides of the first intake valve 7a.
The intake port 5c has an intake port shape such that the intake air flowing through the intake port forms a forward tumble gas flow 19 in the combustion chamber 3 as shown in FIG. A variable valve mechanism 16 and a shutoff valve opening / closing mechanism 13 are provided to open and close the first intake valve 7a, the second intake valve 7b, and the third intake valve 7c, respectively, according to the operating conditions of the engine. In addition, 8 is an exhaust valve, 10b is a second intake passage connected to the second intake port 5b, 10c is a third intake passage connected to the third intake port 5c, 11 is a collector, and 15 is an evaporative purge control mechanism.

【0013】機関の運転状態そして負荷はアクセル開度
センサ22により検出され、回転数はクランク角センサ
21により検出され、これらはコントロールユニット1
8へ入力される。このコントロールユニット18は、こ
うした機関の運転状態に応じて後述するように遮断弁開
閉機構13と可変動弁機構16とを制御する一方、燃料
噴射時期制御手段としても機能し、運転状態に応じた噴
射時期に対応して、高圧燃料噴射弁6を駆動する。
The operating state and load of the engine are detected by an accelerator opening sensor 22 and the number of revolutions is detected by a crank angle sensor 21.
8 is input. The control unit 18 controls the shut-off valve opening / closing mechanism 13 and the variable valve mechanism 16 according to the operating state of the engine, as described later, and also functions as a fuel injection timing control means, and is adapted to the operating state. The high-pressure fuel injection valve 6 is driven according to the injection timing.

【0014】吸気ポート形状としては、第1吸気ポート
5aは、ピストン1頂面上の燃焼室キャビティ2内に向
かうため、第1吸気弁7a近くでシリンダ17に対し直
立する形状とし、第2,第3吸気ポート5b,5cは、
順タンブルガス流動19を形成するため、第2,第3吸
気弁7b,7c近くではストレート形状とする。なお、
本実施の形態に用いる可変動弁機構16の一例を図6に
示す。
As for the shape of the intake port, the first intake port 5a is directed up into the combustion chamber cavity 2 on the top surface of the piston 1, so that the first intake port 5a stands upright with respect to the cylinder 17 near the first intake valve 7a. The third intake ports 5b, 5c
In order to form the forward tumble gas flow 19, a straight shape is formed near the second and third intake valves 7b and 7c. In addition,
FIG. 6 shows an example of the variable valve mechanism 16 used in the present embodiment.

【0015】次に本実施の形態の作用を説明する。機関
の運転条件が、低中速・低負荷域の成層燃焼領域では、
図7に示すように可変動弁機構16により第3吸気弁7
cは停止し、第1吸気弁7aおよび第2吸気弁7bのみ
リフトさせ、かつ、遮断弁開閉機構13により第1吸気
通路10a内の遮断弁12を閉鎖することで、筒内のガ
ス流動を強めるとともに、第2吸気ポート5bから第2
吸気弁7bを介して燃焼室3に入ってくる吸入空気は、
第2吸気弁7b方向から排気弁8方向へ向かい、さらに
第3吸気弁7c側へと回転するような強いスワール流9
を形成し、燃料を少なくとも圧縮行程後期に噴射するこ
とで、前記スワール流9により燃料の点火プラグ4周り
を成層化し、超希薄空燃比で運転し燃費の向上を図ると
ともに、かつ、燃料は点火プラグ4方向へ直接向かわ
ず、一度ピストン1表面の燃焼室キャビティ2を介して
点火プラグ4方向へ行くため、燃料微粒化、および気化
が進み、点火プラグ4への液状燃料付着による失火は無
く、安定して運転できるようになる。
Next, the operation of the present embodiment will be described. In the stratified combustion region where the operating conditions of the engine are low, medium speed, and low load,
As shown in FIG. 7, the third intake valve 7 is controlled by the variable valve mechanism 16.
c is stopped, only the first intake valve 7a and the second intake valve 7b are lifted, and the shutoff valve 12 in the first intake passage 10a is closed by the shutoff valve opening / closing mechanism 13, so that the gas flow in the cylinder is reduced. And the second intake port 5b
The intake air entering the combustion chamber 3 via the intake valve 7b is
A strong swirl flow 9 that moves from the direction of the second intake valve 7b to the direction of the exhaust valve 8 and further rotates toward the third intake valve 7c.
By injecting the fuel at least in the latter half of the compression stroke, the swirl flow 9 stratifies the fuel around the spark plug 4 and operates at an ultra-lean air-fuel ratio to improve fuel efficiency, and the fuel is ignited. Since the fuel does not go directly to the plug 4 but goes to the spark plug 4 through the combustion chamber cavity 2 on the surface of the piston 1 once, the atomization and vaporization of the fuel proceeds, and there is no misfire due to the adhesion of the liquid fuel to the spark plug 4, You will be able to drive stably.

【0016】機関の運転条件が、低中速・中負荷域の弱
成層燃焼領域では、図5に示すように可変動弁機構16
により第1吸気弁7a、第2吸気弁7bおよび第3吸気
弁7cをリフトさせ、かつ、遮断弁開閉機構13により
第1吸気通路10a内の遮断弁12を閉鎖することで、
筒内のガス流動を若干弱めるとともに、第2吸気ポート
5bから第2吸気弁7bを介して燃焼室3に入ってくる
吸入空気と第3吸気ポート5cから第3吸気弁7cを介
して燃焼室3に入ってくる吸入空気とが2つの順タンブ
ルガス流動19を生成し、燃料を少なくとも圧縮行程前
期に噴射することで、前記2つの順タンブルガス流動1
9の中間に燃料混合気の帯を生成する弱い成層化をし、
希薄空燃比で運転し燃費の向上を図る。
In the weak stratified combustion region where the operating condition of the engine is in a low to medium speed / medium load region, as shown in FIG.
As a result, the first intake valve 7a, the second intake valve 7b, and the third intake valve 7c are lifted, and the shutoff valve 12 in the first intake passage 10a is closed by the shutoff valve opening / closing mechanism 13.
The gas flow in the cylinder is slightly weakened, and the intake air entering the combustion chamber 3 from the second intake port 5b via the second intake valve 7b and the combustion chamber from the third intake port 5c via the third intake valve 7c. 3 generates two forward tumble gas flows 19, and injects fuel at least in the first half of the compression stroke, whereby the two forward tumble gas flows 1
A weak stratification that creates a zone of fuel mixture in the middle of 9
Drive at a lean air-fuel ratio to improve fuel efficiency.

【0017】機関の運転条件が、低中速・中負荷域の均
質希薄燃焼領域では、図8に示すように、可変動弁機構
16により第3吸気弁7cは停止し、第1吸気弁7aお
よび第2吸気弁7bのみをリフトさせ、かつ、遮断弁開
閉機構13により第1吸気通路10a内の遮断弁12を
開口することで、第2吸気ポート5bから第2吸気弁7
bを介して燃焼室3に入ってくる吸入空気により生成さ
れる第2吸気弁7b方向から排気弁8方向へ向かい、さ
らに第3吸気弁7c側へと回転するような強いスワール
流9を、第1吸気ポート5aから第1吸気弁7aを介し
て燃焼室3に入ってくる吸入空気流れにより弱め、燃料
を少なくとも吸気行程に噴射することで、燃料混合気の
均質化を図り、希薄空燃比で運転し燃費の向上を図る。
As shown in FIG. 8, when the operating condition of the engine is in a homogeneous lean burn region in a low / medium speed / medium load region, the third intake valve 7c is stopped by the variable valve mechanism 16, and the first intake valve 7a is stopped. By lifting only the second intake valve 7b and opening the shutoff valve 12 in the first intake passage 10a by the shutoff valve opening / closing mechanism 13, the second intake valve 7 is moved from the second intake port 5b.
b, a strong swirl flow 9 that is generated by intake air entering the combustion chamber 3 from the second intake valve 7b toward the exhaust valve 8 and further rotates toward the third intake valve 7c. The fuel is weakened by the flow of intake air entering the combustion chamber 3 from the first intake port 5a via the first intake valve 7a, and the fuel is injected at least in the intake stroke to achieve a homogenized fuel mixture and a lean air-fuel ratio. To improve fuel efficiency.

【0018】さらに、機関の運転条件が、高速・高負荷
域の均質燃焼領域では、図9に示すように可変動弁機構
16により第1吸気弁7a、第2吸気弁7bをリフトさ
せ、かつ、遮断弁開閉機構13により第1吸気通路10
a内の遮断弁12を開口することで、吸気ポート面積を
大きくし充填効率向上を図るとともに、燃料を少なくと
も吸気行程時に噴射することで、筒内全体として均質な
混合気を作り、出力領域も十分な性能を確保できる。
Further, in the homogeneous combustion region where the operating condition of the engine is a high speed / high load region, the first intake valve 7a and the second intake valve 7b are lifted by the variable valve mechanism 16 as shown in FIG. , The first intake passage 10 by the shut-off valve opening / closing mechanism 13.
By opening the shut-off valve 12 in a, the intake port area is increased and the charging efficiency is improved, and the fuel is injected at least during the intake stroke to create a homogeneous air-fuel mixture as a whole in the cylinder, and the output area also increases. Sufficient performance can be secured.

【0019】ところで、エバポ燃料をパージする場合に
おいて、図10に示すように本実施の形態では、エバポ
燃料を第1吸気ポート5aから第1吸気弁7aを介して
直接ピストン1頂面上の燃焼室キャビティ2に向けて入
れるため、機関の運転条件が、低速・低負荷域の成層燃
焼時にエバポ燃料をパージする場合でも、スワール流9
の中央であるピストン1頂面上の燃焼室キャビティ2内
にパージガスは集中し、この燃焼室キャビティ2内で噴
射燃料と混合し安定燃焼が可能となり、排気性能も悪化
しなくなるので成立する。
In the case of purging the evaporative fuel, as shown in FIG. 10, in the present embodiment, the evaporative fuel is directly combusted on the top surface of the piston 1 from the first intake port 5a via the first intake valve 7a. Since the fuel is introduced into the chamber cavity 2, even when the engine is operated under the condition that the evaporative fuel is purged at the time of stratified combustion in a low speed / low load range, the swirl flow 9
The purge gas concentrates in the combustion chamber cavity 2 on the top surface of the piston 1 at the center of the combustion chamber and mixes with the injected fuel in the combustion chamber cavity 2 to enable stable combustion and the exhaust performance is not deteriorated.

【0020】また、機関の運転条件が、低中速・中負荷
域の弱成層燃焼時にエバポ燃料をパージする場合も、図
11に示すように、2つの順タンブルガス流動19の中
央にパージガスは集中し、そのガス流動中間の燃料混合
気の帯と混合し安定燃焼が可能となる。
Also, when the operating conditions of the engine are such that the evaporative fuel is purged during weakly stratified combustion in a low-medium-speed / medium-load region, as shown in FIG. The fuel concentrates and mixes with the fuel mixture zone in the middle of the gas flow, enabling stable combustion.

【0021】そして、機関の運転条件が、低中速・中負
荷域の均質希薄燃焼時、および高速・高負荷域の均質燃
焼時にエバポ燃料をパージする場合は、図12および図
13に示すように、燃料噴射が吸気行程時のためパージ
ガスと噴射燃料は十分混合し、従来の吸気ポート燃料噴
射機関と同様安定燃焼が可能となる。
When the engine is operated under the condition of homogeneous lean combustion in the low-medium-speed / medium-load region and the homogeneous combustion in the high-speed / high-load region, the evaporative fuel is purged as shown in FIGS. In addition, since the fuel injection is performed during the intake stroke, the purge gas and the injected fuel are sufficiently mixed, and stable combustion can be performed similarly to the conventional intake port fuel injection engine.

【0022】さらに、機関の運転条件が、低速・低負荷
域の成層燃焼時、および低中速・中負荷域の弱成層燃焼
時は、スロットル弁開度が大きいため吸気ポート負圧は
低下し、吸気ポートへのエバポ燃料のパージ流量は低下
するが、本実施の形態によればエバポ燃料を第1吸気ポ
ート5aの遮断弁12閉鎖時にこの遮断弁12下流に入
れるため、遮断弁12下流の吸気ポート負圧は発達する
のでパージ流量は低下しないという作用も得られる。こ
れまで説明した各燃焼を行わせる運転領域の一例を図1
4に示す。
Further, when the operating conditions of the engine are stratified combustion in a low speed / low load range and weak stratified combustion in a low / medium speed / medium load range, the intake port negative pressure decreases due to a large throttle valve opening. Although the purge flow rate of the evaporative fuel to the intake port decreases, according to the present embodiment, the evaporative fuel is introduced into the first intake port 5a downstream of the shutoff valve 12 when the shutoff valve 12 is closed. Since the intake port negative pressure develops, an effect that the purge flow rate does not decrease is also obtained. FIG. 1 shows an example of an operation region in which each combustion described above is performed.
It is shown in FIG.

【0023】図15から図17には、実施の形態2を示
す。本実施の形態2は、前述の実施の形態1に対して、
ピストン1頂面上の燃焼室キャビティ2に向かう第1吸
気ポート5aの断面形状として、吸気ポート5a上部に
吸入空気流れを誘導するガイド20を設けている。図1
8に他のガイド形状の例を示す。
FIGS. 15 to 17 show a second embodiment. The second embodiment is different from the first embodiment in that
As a sectional shape of the first intake port 5a toward the combustion chamber cavity 2 on the top surface of the piston 1, a guide 20 for guiding intake air flow is provided above the intake port 5a. FIG.
FIG. 8 shows an example of another guide shape.

【0024】本実施の形態2は、これにより、実施の形
態1の作用効果に加え、図19に示すように機関の運転
条件が、低中速・低負荷域の成層燃焼領域、および低中
速・中負荷域の弱成層燃焼領域でのエバポ燃料をパージ
する場合において、エバポ燃料は第1吸気ポート5aの
上部を流れ、主に第1吸気弁7aの排気弁8側開口部か
ら直接ピストン1頂面上の燃焼室キャビティ2に向けて
入るため、スワール流9、あるいは2つの順タンブルガ
ス流動19の中央にあるピストン1頂面上の燃焼室キャ
ビティ2内にパージガスはより多く集中し、前記燃焼室
キャビティ2内で噴射燃料と混合し安定燃焼が可能とな
る。
According to the second embodiment, in addition to the operation and effect of the first embodiment, as shown in FIG. 19, the operating conditions of the engine are changed to a stratified combustion region in a low / medium speed / low load region and a low / middle When purging the evaporative fuel in the weakly stratified combustion region in the high speed / medium load region, the evaporative fuel flows through the upper portion of the first intake port 5a, and mainly the piston directly from the opening of the first intake valve 7a on the exhaust valve 8 side. The purge gas is more concentrated in the combustion chamber cavity 2 on the top surface of the piston 1 in the middle of the swirl flow 9 or two forward tumble gas flows 19 to enter the combustion chamber cavity 2 on one top surface, Mixing with the injected fuel in the combustion chamber cavity 2 enables stable combustion.

【0025】図20には、実施の形態3を示す。本実施
の形態3は、前述の実施の形態1において、3つの吸気
弁のリフト量に関して、第1吸気弁7aのリフト量を第
2吸気弁7b、および第3吸気弁7cのリフト量よりも
短くしたものである。
FIG. 20 shows a third embodiment. In the third embodiment, the lift amount of the first intake valve 7a is set to be larger than the lift amounts of the second intake valve 7b and the third intake valve 7c in the first embodiment. It is shortened.

【0026】本実施の形態3は、これにより機関の運転
条件が、低中速・中負荷域の均質希薄燃焼領域での可変
動弁機構16により第3吸気弁7cは停止し、第1吸気
弁7aおよび第2吸気弁7bのみリフトさせ、かつ、遮
断弁開閉機構13により第1吸気通路10a内の遮断弁
12を開口し、燃料を少なくとも吸気行程に噴射する領
域と、高速・高負荷域の均質燃焼領域での可変動弁機構
16により第1吸気弁7a、第2吸気弁7bおよび第3
吸気弁7cをリフトさせ、かつ、遮断弁開閉機構13に
より第1吸気通路10a内の遮断弁12を開口し、燃料
を少なくとも吸気行程時に噴射する領域では、第1吸気
弁7aと燃料噴霧との干渉が少なくなるため吸気弁7へ
のデポジット付着、すす発生が減少できる。
According to the third embodiment, the operating condition of the engine is set such that the third intake valve 7c is stopped by the variable valve mechanism 16 in the homogeneous lean burn region in the low-medium-speed / medium-load region, and the first intake valve is stopped. Only the valve 7a and the second intake valve 7b are lifted, and the shutoff valve 12 in the first intake passage 10a is opened by the shutoff valve opening / closing mechanism 13, so that the fuel is injected at least in the intake stroke, and the high speed / high load area. The first intake valve 7a, the second intake valve 7b, and the third intake valve 7b are controlled by the variable valve mechanism 16 in the homogeneous combustion region.
The intake valve 7c is lifted, and the shut-off valve 12 in the first intake passage 10a is opened by the shut-off valve opening / closing mechanism 13, and at least in a region where fuel is injected at the time of the intake stroke, the first intake valve 7a and the fuel spray Since the interference is reduced, the deposit on the intake valve 7 and the occurrence of soot can be reduced.

【0027】[0027]

【発明の効果】以上説明してきたように、請求項1記載
の直接筒内噴射式火花点火機関にあっては、運転条件に
応じた各ポートの開閉制御により、成層時の強いスワー
ル流の形成と弱成層時の2つの順タンブルガス流動の形
成、均質希薄燃焼時の弱いスワール流の形成、高回転・
高負荷時の出力域での低吸気抵抗化の両立を図り、特定
時期の燃料噴射により超希薄空燃比運転による燃費の向
上とスロットル全開運転時の空気の充填効率増大化によ
る出力性能向上の両立を図ることができるという効果が
ある。また、成層時にエバポ燃料をパージする場合に、
中央ポートから導入でき、かつ燃焼室内のガス流動を制
御することが可能なため、パージガスをピストン頂面上
の燃焼室内に集中でき、この燃焼室内で噴射燃料との混
合を促進でき、燃焼が改善され、排気性能の悪化を防ぐ
ことができるという効果がある。
As described above, in the direct in-cylinder injection spark ignition engine according to the first aspect, a strong swirl flow is formed during stratification by controlling the opening and closing of each port according to the operating conditions. And formation of two forward tumble gas flows during weak stratification, formation of weak swirl flow during homogeneous lean burn,
Achieving both low intake resistance in the output range under high load, improving fuel efficiency by ultra-lean air-fuel ratio operation by fuel injection at a specific time, and improving output performance by increasing air filling efficiency during throttle fully open operation There is an effect that can be achieved. Also, when evaporating fuel is purged during stratification,
Since the gas can be introduced from the central port and the gas flow in the combustion chamber can be controlled, the purge gas can be concentrated in the combustion chamber on the top surface of the piston, mixing with the injected fuel can be promoted in this combustion chamber, and combustion is improved. Thus, there is an effect that deterioration of exhaust performance can be prevented.

【0028】請求項2記載の直接筒内噴射式火花点火機
関にあっては、機関の運転条件が、低中速・低負荷域の
成層燃焼領域では、筒内のガス流動を強めるとともに、
強いスワール流を形成し、燃料を少なくとも圧縮行程後
期に噴射することで、燃料の点火プラグ周りの成層化を
図り、超希薄空燃比で運転し燃費の向上を図るととも
に、かつ、燃料は一度ピストン表面の燃焼室を介して、
点火プラグ方向へ行くため、燃料微粒化、および気化が
進み、点火プラグへの液状燃料付着による失火は無く、
安定して運転できるようになるという効果がある。ま
た、エバポ燃料をパージする場合でも、エバポ燃料は中
央第1吸気ポートから直接ピストン頂面上の燃焼室内に
向けて入れるので、スワールガス流動の中央であるピス
トン頂面上の燃焼室内にパージガスは集中し、前記燃焼
室内で噴射燃料と混合し安定燃焼が可能となるという効
果がある。
In the direct in-cylinder injection spark ignition engine according to the second aspect of the present invention, the operating condition of the engine is such that in a stratified combustion region in a low-medium-speed, low-load region, the gas flow in the cylinder is enhanced and
By forming a strong swirl flow and injecting fuel at least in the latter stage of the compression stroke, stratification of the fuel around the spark plug is attempted, driving at ultra-lean air-fuel ratio to improve fuel efficiency, and fuel Through the surface combustion chamber,
Since the fuel goes toward the spark plug, atomization and vaporization of the fuel progress, and there is no misfire due to liquid fuel adhesion to the spark plug.
This has the effect of allowing stable operation. In addition, even when purging the evaporative fuel, the evaporative fuel is directly introduced from the central first intake port into the combustion chamber on the piston top surface, so that the purge gas enters the combustion chamber on the piston top surface, which is the center of the swirl gas flow. There is an effect that the fuel is concentrated and mixed with the injected fuel in the combustion chamber, thereby enabling stable combustion.

【0029】請求項3記載の直接筒内噴射式火花点火機
関にあっては、機関の運転条件が、低中速・中負荷域の
成層燃焼領域では、筒内のガス流動を若干弱めるととも
に、燃焼室に入ってくる吸入空気が2つの順タンブル流
ガス流動を生成し、燃料を少なくとも圧縮行程前期に噴
射することで、前記2つのタンブル流ガス流動の中間に
燃料混合気の帯を生成する弱い成層化をし、希薄空燃比
で運転し、燃費の向上を図ることができるという効果が
ある。また、エバポ燃料をパージする場合も、2つの順
タンブル流ガス流動の中央にパージガスは集中し、その
ガス流動中間の燃料混合気の帯と混合し安定燃焼が可能
となるという効果がある。
[0029] In the direct in-cylinder injection spark ignition engine according to the third aspect, in the stratified combustion region in the low-medium-speed / medium-load region, the operating condition of the engine slightly weakens the gas flow in the cylinder. The intake air entering the combustion chamber creates two forward tumble flow gas flows and injects fuel at least during the first half of the compression stroke, thereby creating a fuel mixture band intermediate the two tumble flow gas flows. There is an effect that it is possible to perform weak stratification, operate at a lean air-fuel ratio, and improve fuel efficiency. Also, when purging the evaporative fuel, the purge gas concentrates at the center of the two forward tumble flow gas flows, and has the effect of mixing with the fuel mixture zone in the middle of the gas flows and enabling stable combustion.

【0030】請求項4記載の直接筒内噴射式火花点火機
関にあっては、機関の運転条件が、低中速・中負荷域の
均質希薄燃焼領域では、強いスワール流を、中央第1吸
気ポートから流入する燃焼室に入ってくる吸入空気流れ
により弱め、燃料を少なくとも吸気行程に噴射すること
で、燃料混合気の均質化を図り、希薄空燃比で運転し、
燃費の向上を図ることができるという効果がある。ま
た、エバポ燃料をパージする場合は、燃料噴射が吸気行
程時のために、パージガスと噴射燃料は十分混合し、従
来の吸気ポート燃料噴射機関と同様に安定燃焼が可能と
なるという効果がある。
In the direct in-cylinder injection spark ignition engine according to the fourth aspect, in the engine operating condition, in a homogeneous lean burn region in a low-medium-speed / medium-load region, a strong swirl flow is applied to the central first intake air. Attenuated by the flow of intake air entering the combustion chamber flowing from the port, the fuel is injected at least during the intake stroke to achieve a homogenized fuel mixture and operate at a lean air-fuel ratio,
There is an effect that fuel efficiency can be improved. Further, when purging the evaporative fuel, since the fuel injection is performed during the intake stroke, the purge gas and the injected fuel are sufficiently mixed, and there is an effect that stable combustion can be performed similarly to the conventional intake port fuel injection engine.

【0031】請求項5記載の直接筒内噴射式火花点火機
関にあっては、機関の運転条件が、高速・高負荷域の均
質燃焼領域では、吸気ポート面積を大きくし充填効率向
上を図るとともに、燃料を少なくとも吸気行程時に噴射
することで、混合気の均質化を図り、出力領域も十分な
性能を確保できるという効果がある。またエバポ燃料を
パージする場合は燃料噴射が吸気行程時のためパージガ
スと噴射燃料は十分混合し、従来の吸気ポート燃料噴射
機関と同様に安定燃焼が可能となるという効果がある。
In the direct in-cylinder injection spark ignition engine according to the fifth aspect of the present invention, the operating condition of the engine is to increase the intake port area and improve the charging efficiency in a homogeneous combustion region in a high speed and high load region. By injecting the fuel at least during the intake stroke, the air-fuel mixture is homogenized, and there is an effect that sufficient performance can be secured in the output region. Further, when evaporating fuel is purged, since the fuel injection is performed during the intake stroke, the purge gas and the injected fuel are sufficiently mixed, and there is an effect that stable combustion can be performed similarly to the conventional intake port fuel injection engine.

【0032】請求項6記載の直接筒内噴射式火花点火機
関にあっては、中央第1吸気ポートから流入する流れは
ピストン頂面上の燃焼室内に向かい、第2、第3吸気ポ
ートから流入する流れは順タンブルを形成するため、運
転条件に応じた各ポートの開閉制御時に、運転条件に応
じた要求ガス流動(成層時の強いスワール流の形成、弱
成層時の2つの順タンブルガス流動の形成、均質希薄燃
焼時の弱いスワール流の形成、高回転・高負荷時の出力
域での低吸気抵抗化)を形成できるという効果がある。
In the direct in-cylinder injection spark ignition engine according to the sixth aspect, the flow flowing from the central first intake port flows into the combustion chamber on the piston top surface, and flows from the second and third intake ports. In order to form a forward tumble flow, the required gas flow (the formation of a strong swirl flow during stratification and the two forward tumble gas flows during weak stratification) during the opening / closing control of each port according to the operating conditions , Weak swirl flow during homogeneous lean burn, and low intake resistance in the output region at high rotation and high load).

【0033】請求項7記載の直接筒内噴射式火花点火機
関にあっては、機関の運転条件が、低中速・低負荷域の
成層燃焼領域、および低中速・中負荷域の弱成層燃焼領
域でのエバポ燃料をパージする場合において、エバポ燃
料は中央第1吸気ポート上部を流れ、主に第1吸気弁の
排気弁側開口部から直接ピストン頂面の燃焼室に向けて
大半が入り、スワールガス流動、あるいは2つの順タン
ブル流ガス流動の中央に位置するピストン頂面上の燃焼
室内により多く集中するのでこの燃焼室内で噴射燃料と
の混合が促進され、安定燃焼が可能となるという効果が
ある。
In the direct in-cylinder injection spark ignition engine according to the seventh aspect, the operating conditions of the engine are a stratified combustion region in a low / medium speed / low load region and a weak stratification in a low / medium speed / medium load region. When purging the evaporative fuel in the combustion area, the evaporative fuel flows in the upper part of the central first intake port and mostly enters the combustion chamber on the top surface of the piston directly from the exhaust valve side opening of the first intake valve. Is more concentrated in the combustion chamber on the piston top surface located at the center of the swirl gas flow or the two forward tumble flow gas flows, so that mixing with the injected fuel is promoted in this combustion chamber, and stable combustion is possible. effective.

【0034】請求項8記載の直接筒内噴射式火花点火機
関にあっては、機関の運転条件が、低中速・中負荷域の
均質希薄燃焼領域での第3吸気弁が作動停止し、第1吸
気弁および第2吸気弁のみ作動、かつ、第1吸気通路内
の遮断弁が開口、燃料を少なくとも吸気行程に噴射する
領域と、高速・高負荷域の均質燃焼領域での第1吸気
弁、第2吸気弁および第3吸気弁が作動、かつ、第1吸
気通路内の遮断弁が開口、燃料を少なくとも吸気行程時
に噴射する領域では、第1吸気弁と燃料噴霧の干渉が少
なくなるため吸気弁へのデポジット付着、すす発生が減
少できるという効果がある。
[0034] In the direct in-cylinder injection spark ignition engine according to claim 8, the operating condition of the engine is such that the third intake valve is deactivated in a homogeneous lean burn region in a low-medium-speed / medium-load region, Only the first intake valve and the second intake valve are operated, and the shut-off valve in the first intake passage is opened, and the first intake in a region where fuel is injected at least in an intake stroke and a homogeneous combustion region in a high speed / high load region. The valve, the second intake valve, and the third intake valve are operated, and the shutoff valve in the first intake passage is opened, and interference between the first intake valve and fuel spray is reduced at least in a region where fuel is injected at least during an intake stroke. Therefore, there is an effect that deposition of soot on the intake valve and generation of soot can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施の形態1の直接筒内噴射式火花点火
機関の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a direct in-cylinder injection spark ignition engine according to Embodiment 1 of the present invention.

【図2】実施の形態1の直接筒内噴射式火花点火機関の
構成を示す図である。
FIG. 2 is a diagram illustrating a configuration of a direct in-cylinder injection spark ignition engine according to the first embodiment;

【図3】図2のS3−S3断面図である。FIG. 3 is a sectional view taken along line S3-S3 of FIG. 2;

【図4】図2のS4−S4断面図である。FIG. 4 is a sectional view taken along line S4-S4 of FIG. 2;

【図5】実施の形態1の作用を説明する図である。FIG. 5 is a diagram illustrating the operation of the first embodiment.

【図6】実施の形態1の可変動弁機構16の一例を示す
図である。
FIG. 6 is a diagram illustrating an example of a variable valve mechanism 16 according to the first embodiment.

【図7】実施の形態1の作用を説明する図である。FIG. 7 is a diagram illustrating the operation of the first embodiment.

【図8】実施の形態1の作用を説明する図である。FIG. 8 is a diagram illustrating the operation of the first embodiment.

【図9】実施の形態1の作用を説明する図である。FIG. 9 is a diagram illustrating the operation of the first embodiment.

【図10】実施の形態1の作用を説明する図である。FIG. 10 is a diagram illustrating the operation of the first embodiment.

【図11】実施の形態1の作用を説明する図である。FIG. 11 is a diagram illustrating the operation of the first embodiment.

【図12】実施の形態1の作用を説明する図である。FIG. 12 is a diagram illustrating the operation of the first embodiment.

【図13】実施の形態1の作用を説明する図である。FIG. 13 is a diagram illustrating the operation of the first embodiment.

【図14】各燃焼を行わせる運転領域の一例を示す図で
ある。
FIG. 14 is a diagram showing an example of an operation region in which each combustion is performed.

【図15】実施の形態2の構成を示す図である。FIG. 15 is a diagram showing a configuration of a second embodiment.

【図16】図15のS16−S16断面図である。16 is a sectional view taken along S16-S16 of FIG.

【図17】図16のS17−S17断面図である。FIG. 17 is a sectional view taken along line S17-S17 of FIG. 16;

【図18】他のガイド形状の例を示す図である。FIG. 18 is a diagram showing an example of another guide shape.

【図19】実施の形態2の作用を説明する図である。FIG. 19 is a diagram illustrating the operation of the second embodiment.

【図20】実施の形態3を説明する図である。FIG. 20 is a diagram illustrating Embodiment 3;

【図21】従来の直接筒内噴射式火花点火機関を示す縦
断面図である。
FIG. 21 is a longitudinal sectional view showing a conventional direct in-cylinder injection spark ignition engine.

【図22】従来の直接筒内噴射式火花点火機関を示す横
断面図である。
FIG. 22 is a cross-sectional view showing a conventional direct in-cylinder injection spark ignition engine.

【図23】従来の直接筒内噴射式火花点火機関のシステ
ム構成を示す図である。
FIG. 23 is a diagram showing a system configuration of a conventional direct in-cylinder injection spark ignition engine.

【符号の説明】[Explanation of symbols]

1 ピストン 2 燃焼室キャビティ 3 燃焼室 4 点火プラグ 5 吸気ポート 5a 第1吸気ポート 5b 第2吸気ポート 5c 第3吸気ポート 6 高圧燃料噴射弁 7 吸気弁 7a 第1吸気弁 7b 第2吸気弁 7c 第3吸気弁 8 排気弁 9 スワール流 10a 第1吸気通路 10b 第2吸気通路 10c 第3吸気通路 11 コレクタ 12 遮断弁 13 遮断弁開閉機構 14 エバポパージ用流出口 15 エバポパージ制御機構 16 可変動弁機構 17 シリンダ 18 コントロールユニット 19 順タンブルガス流動 20 ガイド 21 クランク角センサ 22 アクセル開度センサ Reference Signs List 1 piston 2 combustion chamber cavity 3 combustion chamber 4 spark plug 5 intake port 5a first intake port 5b second intake port 5c third intake port 6 high-pressure fuel injection valve 7 intake valve 7a first intake valve 7b second intake valve 7c 3 intake valve 8 exhaust valve 9 swirl flow 10a first intake passage 10b second intake passage 10c third intake passage 11 collector 12 shutoff valve 13 shutoff valve opening / closing mechanism 14 evaporative purge outlet 15 evaporative purge control mechanism 16 variable valve mechanism 17 cylinder 18 Control unit 19 Forward tumble gas flow 20 Guide 21 Crank angle sensor 22 Accelerator opening sensor

フロントページの続き (51)Int.Cl.6 識別記号 FI F02B 23/08 F02B 23/08 Q 23/10 23/10 Z 31/00 31/00 Z 31/02 31/02 L F02D 13/02 F02D 13/02 E H G F02M 25/08 F02M 25/08 P Continued on the front page (51) Int.Cl. 6 Identification code FI F02B 23/08 F02B 23/08 Q 23/10 23/10 Z 31/00 31/00 Z 31/02 31/02 L F02D 13/02 F02D 13/02 E HG F02M 25/08 F02M 25/08 P

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ピストンの頂面に形成された凹部を有す
る燃焼室と、燃焼室に臨んで設けられる点火栓と、燃焼
室に対して吸気ポート側より斜め下方へ燃料を直接筒内
に噴射する噴射弁とを備える直接筒内噴射式火花点火機
関において、 1つの気筒に対して3つの吸気ポートを形成するととも
に、3つの吸気ポートの中央に位置する中央第1吸気ポ
ートを吸気の流れがピストンの凹部に直接向かう形状に
形成し、中央第1吸気ポートの上流側に遮断弁を設け、
遮断弁下流側の中央第1吸気ポートにエバポパージの流
出口を設け、中央第1吸気ポートの両側に位置する第2
吸気ポートおよび第3吸気ポートを吸気の流れが燃焼室
内でタンブル流を生起する形状に形成し、第3吸気ポー
トを開閉する吸気弁の作動を運転状態に応じて停止する
可変動弁機構と、機関の運転状態に応じて遮断弁の開閉
を制御する遮断弁開閉機構と、機関の運転状態に応じて
燃料の噴射時期を制御する噴射時期制御手段と、を備え
ることを特徴とする直接筒内噴射式火花点火機関。
1. A combustion chamber having a recess formed on a top surface of a piston, an ignition plug provided facing the combustion chamber, and fuel being directly injected into a cylinder obliquely downward from an intake port side of the combustion chamber. In the direct-injection type spark ignition engine having an injection valve, three intake ports are formed for one cylinder, and a flow of intake air flows through a central first intake port located at the center of the three intake ports. Formed in a shape directly facing the recess of the piston, and provided with a shutoff valve on the upstream side of the central first intake port,
An outlet for the evaporative purge is provided at the central first intake port downstream of the shut-off valve, and the second exhaust ports located on both sides of the central first intake port are provided.
A variable valve mechanism configured to form the intake port and the third intake port into a shape in which the flow of intake air generates a tumble flow in the combustion chamber, and stop the operation of an intake valve that opens and closes the third intake port according to an operation state; Direct in-cylinder comprising: a shut-off valve opening / closing mechanism that controls the opening / closing of a shut-off valve according to the operating state of the engine; and an injection timing control unit that controls the fuel injection timing according to the operating state of the engine. Injection spark ignition engine.
【請求項2】 機関の運転状態が点火栓近傍に混合気を
集める成層燃焼を行う領域にあるとき、可変動弁機構は
第3吸気ポートの吸気弁の作動を停止し、遮断弁開閉機
構は中央第1吸気ポートの遮断弁を閉鎖し、噴射時期制
御手段は燃料噴射時期を圧縮行程後期に設定する、こと
を特徴とする請求項1記載の直接筒内噴射式火花点火機
関。
2. The variable valve mechanism stops the operation of the intake valve of the third intake port when the operation state of the engine is in a region where the stratified combustion for collecting the air-fuel mixture is performed in the vicinity of the ignition plug, and the shut-off valve opening / closing mechanism operates. 2. The direct in-cylinder injection spark ignition engine according to claim 1, wherein the shut-off valve of the central first intake port is closed, and the injection timing control means sets the fuel injection timing to the latter half of the compression stroke.
【請求項3】 機関の運転状態が点火栓近傍に混合気を
集める弱成層燃焼を行う領域にあるとき、可変動弁機構
は第3吸気ポートの吸気弁を作動させ、遮断弁開閉機構
は中央第1吸気ポートの遮断弁を閉鎖し、噴射時期制御
手段は燃料噴射時期を圧縮行程前期に設定する、ことを
特徴とする請求項1または2記載の直接筒内噴射式火花
点火機関。
3. The variable valve mechanism activates an intake valve of a third intake port, and the shut-off valve opening / closing mechanism operates when the engine is in an operation state where weak stratified combustion for collecting an air-fuel mixture is performed near an ignition plug. 3. The direct in-cylinder injection spark ignition engine according to claim 1, wherein the shut-off valve of the first intake port is closed, and the injection timing control means sets the fuel injection timing in the first half of the compression stroke.
【請求項4】 機関の運転状態が燃焼室内に均質な希薄
混合気を形成する均質希薄燃焼を行う領域にあるとき、
可変動弁機構は第3吸気ポートの吸気弁を停止させ、遮
断弁開閉機構は中央第1吸気ポートの遮断弁を開き、噴
射時期制御手段は燃料噴射時期を吸気行程に設定する、
ことを特徴とする請求項1ないし3記載の直接筒内噴射
式火花点火機関。
4. When the operating state of the engine is in a region for performing a homogeneous lean combustion in which a homogeneous lean mixture is formed in the combustion chamber,
The variable valve mechanism stops the intake valve of the third intake port, the shutoff valve opening and closing mechanism opens the shutoff valve of the central first intake port, and the injection timing control means sets the fuel injection timing to the intake stroke.
The direct in-cylinder injection spark ignition engine according to claim 1, wherein
【請求項5】 機関の運転状態が燃焼室内に均質な混合
気を形成する均質燃焼を行う領域にあるとき、可変動弁
機構は第3吸気ポートの吸気弁を作動させ、遮断弁開閉
機構は中央第1ポートの遮断弁を開き、噴射時期制御手
段は燃料噴射時期を吸気行程に設定する、ことを特徴と
する請求項1ないし4記載の直接筒内噴射式火花点火機
関。
5. The variable valve mechanism activates an intake valve of a third intake port when the operating state of the engine is in a region where homogeneous combustion is performed to form a homogeneous air-fuel mixture in the combustion chamber, and the shut-off valve opening / closing mechanism operates. 5. The direct in-cylinder injection spark ignition engine according to claim 1, wherein the shut-off valve of the central first port is opened, and the injection timing control means sets the fuel injection timing to the intake stroke.
【請求項6】 中央第1吸気ポートはシリンダに対して
直立してピストンの凹部を指向する形状であり、第2吸
気ポートおよび第3吸気ポートは燃焼室内にタンブル流
を生起するストレート形状である、ことを特徴とする請
求項1ないし5記載の直接筒内噴射式火花点火機関。
6. The central first intake port has a shape that stands upright with respect to the cylinder and points toward the recess of the piston, and the second intake port and the third intake port have a straight shape that generates a tumble flow in the combustion chamber. The direct in-cylinder injection spark ignition engine according to any one of claims 1 to 5, characterized in that:
【請求項7】 中央第1吸気ポートの上壁に吸気の流れ
方向に沿ったガイド溝を形成し、エバポパージの流出口
はガイド溝近傍に開口する、ことを特徴とする請求項1
ないし6記載の直接筒内噴射式火花点火機関。
7. A guide groove formed in the upper wall of the central first intake port along the flow direction of the intake air, and the outlet of the evaporative purge is opened near the guide groove.
7. A direct in-cylinder injection spark ignition engine according to any one of claims 6 to 6.
【請求項8】 中央第1吸気ポートを開閉する吸気弁の
リフト量を、他の第2吸気ポートもしくは第3吸気ポー
トを開閉する吸気弁よりも小さく設定した、ことを特徴
とする請求項1ないし6記載の直接筒内噴射式火花点火
機関。
8. A lift amount of an intake valve that opens and closes a central first intake port is set smaller than an intake valve that opens and closes another second intake port or a third intake port. A direct in-cylinder injection spark ignition engine according to any one of claims 6 to 7.
JP16453198A 1998-06-12 1998-06-12 Direct cylinder injection spark ignition engine Expired - Lifetime JP3893750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16453198A JP3893750B2 (en) 1998-06-12 1998-06-12 Direct cylinder injection spark ignition engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16453198A JP3893750B2 (en) 1998-06-12 1998-06-12 Direct cylinder injection spark ignition engine

Publications (2)

Publication Number Publication Date
JPH11351012A true JPH11351012A (en) 1999-12-21
JP3893750B2 JP3893750B2 (en) 2007-03-14

Family

ID=15794943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16453198A Expired - Lifetime JP3893750B2 (en) 1998-06-12 1998-06-12 Direct cylinder injection spark ignition engine

Country Status (1)

Country Link
JP (1) JP3893750B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2803626A1 (en) * 2000-01-10 2001-07-13 Magneti Marelli France INTERNAL COMBUSTION ENGINE WITH DIRECT INJECTION WITH CONTROLLED VALVES
EP1245819A2 (en) * 2001-03-30 2002-10-02 Mazda Motor Corporation Direct-injection spark-ignition engine
JP2009150273A (en) * 2007-12-19 2009-07-09 Toyota Motor Corp Internal combustion engine
JP2009156166A (en) * 2007-12-26 2009-07-16 Toyota Motor Corp Cylinder direct injection type internal combustion engine
JP2010185439A (en) * 2009-02-13 2010-08-26 Toyota Motor Corp Internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2803626A1 (en) * 2000-01-10 2001-07-13 Magneti Marelli France INTERNAL COMBUSTION ENGINE WITH DIRECT INJECTION WITH CONTROLLED VALVES
WO2001051790A1 (en) * 2000-01-10 2001-07-19 Magneti Marelli France Internal combustion engine with controlled valves
US6691672B2 (en) 2000-01-10 2004-02-17 Magneti Marelli France Direct-injection internal combustion engine with controlled valves
EP1245819A2 (en) * 2001-03-30 2002-10-02 Mazda Motor Corporation Direct-injection spark-ignition engine
JP2009150273A (en) * 2007-12-19 2009-07-09 Toyota Motor Corp Internal combustion engine
JP2009156166A (en) * 2007-12-26 2009-07-16 Toyota Motor Corp Cylinder direct injection type internal combustion engine
JP2010185439A (en) * 2009-02-13 2010-08-26 Toyota Motor Corp Internal combustion engine

Also Published As

Publication number Publication date
JP3893750B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
US4856473A (en) Internal combustion engine with multiple intake valves and EGR arrangement
US3154059A (en) Stratified spark ignition internal combustion engine
JP3107489B2 (en) Air-fuel mixture forming device for internal combustion engine
US7395806B2 (en) Reciprocating internal-combustion engine with direct fuel injection by means of an injector arranged on the intake side
JPH06159079A (en) Intake device for engine
JP3893750B2 (en) Direct cylinder injection spark ignition engine
JPH0745817B2 (en) Direct injection multi-cylinder diesel engine
JPH10252477A (en) Direct cylinder fuel injection type spark ignition engine
JP3694963B2 (en) Direct in-cylinder spark ignition engine
JP3428372B2 (en) Direct in-cylinder injection spark ignition internal combustion engine
JPH10231729A (en) Intake device for internal combustion engine
JP3586963B2 (en) Engine intake system
JP3591141B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JPS6364616B2 (en)
JPH09242550A (en) Spark ignition engine of direct cylinder fuel injection type
CA1208088A (en) Internal combustion engine
JP4048814B2 (en) Intake device for spark ignition engine
JPH06213081A (en) Exhaust gas recirculation system of engine
JP3500701B2 (en) Engine intake system
JPH06147022A (en) Cylinder injection type internal combustion engine
JP3318355B2 (en) Intake system for direct injection diesel engine
JPH09222063A (en) Intake device for internal combustion engine
JP2000274278A (en) Cylinder injection type spark ignition internal combustion engine
JPH10339244A (en) Cylinder direct injection type engine
JPS60230529A (en) Engine equipped with fuel injector

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

EXPY Cancellation because of completion of term