JP2009156166A - Cylinder direct injection type internal combustion engine - Google Patents

Cylinder direct injection type internal combustion engine Download PDF

Info

Publication number
JP2009156166A
JP2009156166A JP2007335228A JP2007335228A JP2009156166A JP 2009156166 A JP2009156166 A JP 2009156166A JP 2007335228 A JP2007335228 A JP 2007335228A JP 2007335228 A JP2007335228 A JP 2007335228A JP 2009156166 A JP2009156166 A JP 2009156166A
Authority
JP
Japan
Prior art keywords
intake valve
intake
valve
fuel injection
lift amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007335228A
Other languages
Japanese (ja)
Other versions
JP4930365B2 (en
Inventor
Takashi Amano
貴士 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007335228A priority Critical patent/JP4930365B2/en
Publication of JP2009156166A publication Critical patent/JP2009156166A/en
Application granted granted Critical
Publication of JP4930365B2 publication Critical patent/JP4930365B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To intensify turning flow in a combustion chamber by fuel spray flow speed of a fuel injection valve in a cylinder direct injection type internal combustion engine provided with a plurality of intake valves flowing intake air into the combustion chamber so as to make intake air flowing into the combustion chamber of the internal combustion engine designated turning intake air flow in the combustion chamber and giving flow rate difference between two of the intake valves out of the plurality of the intake valves. <P>SOLUTION: The internal combustion engine has a fuel injection valve injecting fuel into a combustion chamber. A fuel injection direction from the fuel injection valve is in a same direction as a flow-in direction of intake air from the intake valve. Fuel is injected asymmetrically with respect to an injection center axis line in such a manner that spray speed at an intake air flow side from the intake valve having larger intake air quantity is higher and spray speed at an intake air flow side from the intake valve having smaller intake air quantity is lower in expansion of the spray in a horizontal direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、筒内直接噴射式内燃機関に関する。   The present invention relates to a direct injection type internal combustion engine.

筒内直接噴射式内燃機関においては、燃料噴射弁の燃料噴霧流速によって、燃焼室内の旋回吸気流が強化されることが、従来から知られている。しかし、吸気流と噴霧流とが互いに打ち消しあうことにより、十分な旋回吸気流を得られない場合がある。   In a direct injection type internal combustion engine, it is conventionally known that the swirling intake air flow in the combustion chamber is enhanced by the fuel spray flow rate of the fuel injection valve. However, there may be a case where a sufficient swirling intake flow cannot be obtained due to the intake flow and the spray flow canceling each other.

燃焼室内の旋回吸気流が不十分な状態では、(1)噴射された燃料のミキシングが不十分で、未燃のHC、CO等の増大を招き、燃費悪化の原因となる、また、(2)火炎伝播が弱く、始動時の冷間燃焼や希薄燃焼性能に劣る、更に、(3)燃焼速度が遅く、高負荷時にノッキングが発生する、等の問題が発生する。   In a state where the swirling intake air flow in the combustion chamber is insufficient, (1) the mixing of the injected fuel is insufficient, leading to an increase in unburned HC, CO, etc., resulting in deterioration of fuel consumption. The flame propagation is weak, the cold combustion and the lean combustion performance at the start are inferior, and (3) the combustion speed is slow and knocking occurs at a high load.

特開平2000−186652号公報Japanese Patent Laid-Open No. 2000-186652 特開平09−317505号公報JP 09-317505 A 特開平2004−144052号公報Japanese Patent Laid-Open No. 2004-144052

特許文献1には、燃料噴射弁先端に、周方向に弾性率が異なる弾性体を配置し、筒内圧が作用すると先端部材が所定方向に傾くようにした燃料噴射弁が開示されている。特許文献1の燃料噴射弁は、圧縮行程中に先端部材が傾き、燃料を適切な方向に偏向して噴射することができ、順タンブル流動場において均質運転と成層運転とで燃料噴射方向を変えて燃焼安定性の確保とスモーク発生の抑制を行うことができ、スワール流動場では、添加プラグ近傍で成層化が図れるとしている。しかし、スワール流やタンブル流の流れの方向によってはスワール流やタンブル流と噴霧流とが衝突し、十分な旋回吸気流を得られない場合がある。   Patent Document 1 discloses a fuel injection valve in which elastic bodies having different elastic moduli in the circumferential direction are arranged at the tip of the fuel injection valve so that the tip member tilts in a predetermined direction when an in-cylinder pressure is applied. In the fuel injection valve of Patent Document 1, the tip member tilts during the compression stroke, and the fuel can be deflected and injected in an appropriate direction, and the fuel injection direction is changed between a homogeneous operation and a stratified operation in a forward tumble flow field. Therefore, it is possible to ensure combustion stability and suppress the generation of smoke, and in the swirl flow field, stratification can be achieved in the vicinity of the addition plug. However, depending on the flow direction of the swirl flow or tumble flow, the swirl flow or tumble flow may collide with the spray flow, and a sufficient swirling intake flow may not be obtained.

特許文献2の筒内直接噴射式内燃機関では、燃焼室へ新気を導入する吸気弁として、第1の吸気弁と、この第1の吸気弁の両側にそれぞれ配置された第2、第3の吸気弁とを備え、成層燃焼時に、第1の吸気弁からの吸気量を、均一燃焼時より少なくすることで、成層燃焼時のみに新気よどみ部を生成する、希薄燃焼式内燃機関が開示されているが、噴霧流速によって、燃焼室内の旋回吸気流を強化するものではない。   In the in-cylinder direct injection internal combustion engine of Patent Document 2, as an intake valve for introducing fresh air into the combustion chamber, a first intake valve and second and third valves arranged on both sides of the first intake valve, respectively. A lean combustion internal combustion engine that generates a fresh air stagnation part only during stratified combustion by reducing the amount of intake air from the first intake valve during stratified combustion less than during uniform combustion. Although disclosed, the spray flow rate does not enhance the swirl intake flow in the combustion chamber.

また、特許文献3には、燃料噴射弁からの噴霧を偏向噴霧とし、成層燃焼を行う場合に、空気を主体とするスワールと混合するように噴霧方向や噴霧貫通力を調整することを特徴とする内燃機関が開示されているが、燃料噴射弁の燃料噴霧流速によって燃焼室内の旋回吸気流を強化するものではない。   Further, Patent Document 3 is characterized by adjusting the spray direction and the spray penetration force so as to be mixed with a swirl mainly composed of air when the spray from the fuel injection valve is a deflected spray and stratified combustion is performed. Although the internal combustion engine is disclosed, the swirling intake air flow in the combustion chamber is not enhanced by the fuel spray flow rate of the fuel injection valve.

本発明は、内燃機関の燃焼室内に流入した吸気が燃焼室内で所定の旋回吸気流となるように、燃焼室内に吸気を流入させる複数の吸気弁を備えた、筒内直接噴射式内燃機関において、燃料噴射弁の燃料噴霧流速によって燃焼室内の旋回吸気流を強化することを目的としている。   The present invention relates to an in-cylinder direct injection internal combustion engine having a plurality of intake valves that allow intake air to flow into the combustion chamber so that the intake air flowing into the combustion chamber of the internal combustion engine becomes a predetermined swirling intake air flow in the combustion chamber. An object of the present invention is to reinforce the swirling intake air flow in the combustion chamber by the fuel spray flow rate of the fuel injection valve.

請求項1に記載の発明によれば、複数の吸気弁を備え、内燃機関の燃焼室内に流入した吸気が、燃焼室内で所定の旋回吸気流となるように、複数の吸気弁のうち2つの吸気弁について、1の吸気弁の吸気量を大きく、他の1の吸気弁の吸気量を小さくして、燃焼室内に吸気を流入させる、筒内直接噴射式内燃機関において、燃焼室内に燃料を噴射する燃料噴射弁を備え、燃料噴射弁からの燃料噴射方向が、吸気弁からの吸気の流入方向と同一方向であって、噴霧の水平方向の広がりが、吸気量の大きい吸気弁からの吸気流の側の噴霧流速が大きく、吸気量の小さい吸気弁からの吸気流の側の噴霧流速が小さくなるように、噴射中心軸線に対して非対称に噴射され、旋回吸気流のスワール流を強化する、筒内直接噴射式内燃機関が提供される。   According to the first aspect of the present invention, a plurality of intake valves are provided, and two of the plurality of intake valves are arranged so that the intake air flowing into the combustion chamber of the internal combustion engine becomes a predetermined swirl intake flow in the combustion chamber. In an in-cylinder direct injection internal combustion engine in which intake air flows into the combustion chamber by increasing the intake amount of one intake valve and decreasing the intake amount of the other intake valve, A fuel injection valve that injects fuel, the fuel injection direction from the fuel injection valve is the same as the inflow direction of the intake air from the intake valve, and the spread of the spray in the horizontal direction is the intake air from the intake valve with a large intake amount As the spray flow rate on the flow side is large and the spray flow rate on the intake flow side from the intake valve with a small intake amount is small, it is injected asymmetrically with respect to the injection center axis, strengthening the swirl flow of the swirling intake flow An in-cylinder direct injection internal combustion engine is provided.

すなわち、請求項1の発明では、燃焼室内に所定の旋回吸気流を発生するように、吸気弁から吸気を流入させる場合に、燃焼室内へ噴射する燃料の噴霧流速を、噴霧の広がり方向による流速が噴射中心軸線に対して非対称になるようにして、流入する吸気流と同一方向に噴射する。燃焼室内の旋回吸気流は、複数の吸気弁からの吸気量に流量差を与え、吸気流量の大きい側の吸気弁から吸気流量の小さい側の吸気弁の方向に旋回気流が発生するようにするが、本発明では、燃料噴射弁からの燃料噴射を、吸気流量の大きい側の噴霧流速を大きくし、吸気流量の小さい側の噴霧流速が小さくなるように、噴射中心軸線に対して非対称になるようにする。したがって、吸気流の旋回が加速され、スワール流が燃料噴霧流速によって強化される。   That is, according to the first aspect of the present invention, when the intake air is introduced from the intake valve so as to generate a predetermined swirling intake air flow in the combustion chamber, the spray flow rate of the fuel injected into the combustion chamber is set to the flow velocity in the spray spreading direction. Is asymmetric with respect to the injection center axis, and is injected in the same direction as the inflowing intake air flow. The swirling intake air flow in the combustion chamber gives a flow rate difference to the intake air amount from a plurality of intake valves so that a swirling airflow is generated in the direction from the intake valve having a larger intake flow rate to the intake valve having a smaller intake flow rate. However, in the present invention, the fuel injection from the fuel injection valve is asymmetric with respect to the injection center axis so that the spray flow rate on the side with the larger intake flow rate is increased and the spray flow rate on the side with the lower intake flow rate is decreased. Like that. Therefore, the swirling of the intake air flow is accelerated and the swirl flow is enhanced by the fuel spray flow velocity.

請求項2に記載の発明によれば、複数の吸気弁が、第1の吸気弁と、第1の吸気弁に隣接する第2の吸気弁と、第2の吸気弁に隣接し、第2の吸気弁に関して、第1の吸気弁とは反対の側に配置された第3の吸気弁と、を備え、第1の吸気弁の開弁時期が、第3の吸気弁の開弁時期より遅く、燃料噴射弁からの燃料噴射が、第1の吸気弁のリフト量が、第3の吸気弁のリフト量より大きい時期に行われる、請求項1に記載の筒内直接噴射式内燃機関が提供される。   According to the invention of claim 2, the plurality of intake valves are adjacent to the first intake valve, the second intake valve adjacent to the first intake valve, the second intake valve, and the second intake valve. And the third intake valve disposed on the side opposite to the first intake valve, and the opening timing of the first intake valve is higher than the opening timing of the third intake valve. 2. The direct injection type internal combustion engine according to claim 1, wherein the fuel injection from the fuel injection valve is performed late at a time when the lift amount of the first intake valve is larger than the lift amount of the third intake valve. Provided.

すなわち、請求項2の発明では、各吸気弁の開弁時期を制御することにより、筒内に好適な旋回吸気流を発生し、更に燃料噴射弁の燃料噴射時期を制御することにより、旋回気流のスワール流を強化する。   That is, in the invention of claim 2, by controlling the valve opening timing of each intake valve, a suitable swirling intake air flow is generated in the cylinder, and further by controlling the fuel injection timing of the fuel injection valve, Strengthen the swirl flow.

請求項3に記載の発明によれば、複数の吸気弁が、第1の吸気弁と、第1の吸気弁に隣接する第2の吸気弁と、第2の吸気弁に隣接し、第2の吸気弁に関して、第1の吸気弁とは反対の側に配置された第3の吸気弁と、を備え、第1の吸気弁の開弁期間が、第3の吸気弁の開弁期間より長く、燃料噴射弁からの燃料噴射が、第1の吸気弁のリフト量が、第3の吸気弁のリフト量より大きい時期に行われる、請求項1に記載の筒内直接噴射式内燃機関が提供される。   According to the invention of claim 3, the plurality of intake valves are adjacent to the first intake valve, the second intake valve adjacent to the first intake valve, the second intake valve, and the second intake valve. And the third intake valve disposed on the side opposite to the first intake valve, and the opening period of the first intake valve is longer than the opening period of the third intake valve. 2. The direct injection type internal combustion engine according to claim 1, wherein the fuel injection from the fuel injection valve is performed at a time when the lift amount of the first intake valve is larger than the lift amount of the third intake valve. Provided.

すなわち、請求項3の発明では、各吸気弁の開弁期間の長さを制御することにより、筒内に好適な旋回吸気流を発生し、更に燃料噴射弁の燃料噴射時期を制御することにより、旋回気流のスワール流を強化する。   That is, in the invention of claim 3, by controlling the length of the opening period of each intake valve, a suitable swirling intake air flow is generated in the cylinder, and further the fuel injection timing of the fuel injection valve is controlled. , Strengthen swirl air flow swirl.

請求項4に記載の発明によれば、複数の吸気弁が、第1の吸気弁と、第1の吸気弁に隣接する第2の吸気弁と、第2の吸気弁に隣接し、第2の吸気弁に関して、第1の吸気弁とは反対の側に配置された第3の吸気弁と、を備え、第1の吸気弁のリフト量が、第3の吸気弁のリフト量より大きく、燃料噴射弁からの燃料噴射が、第1の吸気弁のリフト量が、第3の吸気弁のリフト量より大きい時期に行われる、請求項1に記載の筒内直接噴射式内燃機関が提供される。   According to the fourth aspect of the present invention, the plurality of intake valves are adjacent to the first intake valve, the second intake valve adjacent to the first intake valve, the second intake valve, and the second intake valve. A third intake valve disposed on the opposite side of the first intake valve, wherein the lift amount of the first intake valve is larger than the lift amount of the third intake valve, The direct injection internal combustion engine according to claim 1, wherein fuel injection from the fuel injection valve is performed at a time when the lift amount of the first intake valve is larger than the lift amount of the third intake valve. The

すなわち、請求項4の発明では、各吸気弁の開弁のリフト量を制御することにより、筒内に好適な旋回吸気流を発生し、更に燃料噴射弁の燃料噴射時期を制御することにより、旋回気流のスワール流を強化する。   That is, in the invention of claim 4, by controlling the lift amount of the opening of each intake valve, a suitable swirling intake flow is generated in the cylinder, and further, the fuel injection timing of the fuel injection valve is controlled, Strengthen swirl flow swirl.

請求項5に記載の発明によれば、燃料噴射弁からの燃料噴射時期において、第1回目の燃料噴射を、第1の吸気弁のリフト量が、第3の吸気弁のリフト量より大きい時期に行った後、更に複数回行う、請求項2から4のいずれか1項に記載の筒内直接噴射式内燃機関が提供される。   According to the fifth aspect of the present invention, at the fuel injection timing from the fuel injection valve, the first fuel injection is performed at a timing when the lift amount of the first intake valve is larger than the lift amount of the third intake valve. The direct injection type internal combustion engine according to any one of claims 2 to 4, wherein the direct injection type internal combustion engine is further performed a plurality of times.

すなわち、請求項5の発明では、各吸気弁の開弁時期、又は開弁期間の長さ、又は開弁のリフト量を制御することにより、筒内に好適な旋回吸気流を発生し、更に燃料噴射弁の燃料噴射時期、及び燃料噴射回数を制御することにより、旋回気流のスワール流を強化する。すなわち、噴射回数を複数に分割することにより、燃料噴霧と吸気流との衝突を緩和し、筒内流動の減衰を抑止し、旋回気流のスワール流を強化することができ、筒内の燃料と吸気とのミキシング性を向上させることができる。   That is, in the invention of claim 5, by controlling the opening timing of each intake valve, the length of the valve opening period, or the lift amount of the valve opening, a suitable swirling intake air flow is generated in the cylinder, The swirl flow of the swirling airflow is strengthened by controlling the fuel injection timing of the fuel injection valve and the number of fuel injections. That is, by dividing the number of injections into a plurality, the collision between the fuel spray and the intake flow can be mitigated, the attenuation of the in-cylinder flow can be suppressed, the swirl flow of the swirling airflow can be strengthened, Mixing with intake air can be improved.

請求項6に記載の発明によれば、記燃料噴射弁からの燃料噴射時期において、第1回目の燃料噴射を、第1の吸気弁のリフト量が、第3の吸気弁のリフト量より小さい時期に行い、更に、第1の吸気弁のリフト量が、第3の吸気弁のリフト量より大きい時期に複数回行う、請求項2から4のいずれか1項に記載の筒内直接噴射式内燃機関が提供される。   According to the sixth aspect of the present invention, at the fuel injection timing from the fuel injection valve, the lift amount of the first intake valve is smaller than the lift amount of the third intake valve at the first fuel injection. The direct injection type in-cylinder system according to any one of claims 2 to 4, wherein the direct injection type is performed at a time, and further, a plurality of times are performed at a time when the lift amount of the first intake valve is larger than the lift amount of the third intake valve. An internal combustion engine is provided.

すなわち、請求項6の発明では、各吸気弁の開弁時期、又は開弁期間の長さ、又は開弁のリフト量を制御することにより、筒内に好適な旋回吸気流を発生し、更に燃料噴射弁の燃料噴射時期、及び燃料噴射回数を制御することにより、旋回気流のスワール流を強化する。すなわち、噴射時期をずらせ、更に噴射回数を複数に分割することにより、燃料の予混合を十分行い、更に燃料噴霧と吸気流との衝突を緩和し、筒内流動の減衰を抑止し、旋回気流のスワール流を強化することができ、筒内の燃料と吸気とのミキシング性を向上させることができる。   That is, in the invention of claim 6, by controlling the valve opening timing, the length of the valve opening period, or the lift amount of the valve opening of each intake valve, a suitable swirling intake air flow is generated in the cylinder, The swirl flow of the swirling airflow is strengthened by controlling the fuel injection timing of the fuel injection valve and the number of fuel injections. In other words, by shifting the injection timing and further dividing the number of injections into a plurality of times, the fuel is sufficiently premixed, the collision between the fuel spray and the intake air flow is alleviated, the attenuation of in-cylinder flow is suppressed, and the swirling airflow The swirl flow can be strengthened, and the mixing property between the fuel in the cylinder and the intake air can be improved.

各請求項に記載の発明によれば、内燃機関の燃焼室内に流入した吸気が燃焼室内で所定の旋回吸気流となるように、燃焼室内に吸気を流入させる複数の吸気弁を備えた、筒内直接噴射式内燃機関において、燃料噴射弁の燃料噴霧流速によって燃焼室内の旋回吸気流を強化するという共通の効果を奏する。   According to the invention described in each claim, the cylinder is provided with a plurality of intake valves that allow the intake air to flow into the combustion chamber so that the intake air that has flowed into the combustion chamber of the internal combustion engine becomes a predetermined swirling intake air flow in the combustion chamber. In the internal direct injection internal combustion engine, there is a common effect that the swirling intake air flow in the combustion chamber is enhanced by the fuel spray flow velocity of the fuel injection valve.

以下、添付図面を用いて本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1(a)では、スワール流102を発生している筒内直接噴射式内燃機関において、燃料噴霧103の水平方向流速が、燃料噴射弁2から、噴射中心軸線105の方向に対して非対称になるように噴射される一実施形態を示す。図1(a)では、燃料噴射弁からの燃料噴射方向は、3つの吸気弁から流入する吸気の流入方向と同一で、燃料噴霧103の水平方向の広がりが、第1の吸気弁31から流入する吸気流の側の噴霧流速が大きく、第3の吸気弁33から流入する吸気流の側の噴霧流速が小さい。スワールは、第1の吸気弁31からの吸気流速が、第3の吸気弁33からの吸気流速より大きいことによって発生するが、燃料噴霧103の水平方向の広がりは、第1の吸気弁31からの吸気流速を増大させるように、噴射中心軸線方向に対して非対称となっている。このように、噴霧の広がり方向に対して噴霧の流速を変えて噴射することにより、スワール流102が燃料噴霧流速によって強化される。図1(b)は、上述の燃料噴射の実施形態を立面図で示したものである。燃焼室内の旋回吸気流101は、スワール流102とタンブル流を含み、矢印の方向に旋回している。   In FIG. 1 (a), in a direct injection internal combustion engine that generates a swirl flow 102, the horizontal flow velocity of the fuel spray 103 is asymmetric with respect to the direction of the injection center axis 105 from the fuel injection valve 2. 1 illustrates one embodiment of being injected. In FIG. 1A, the fuel injection direction from the fuel injection valve is the same as the inflow direction of the intake air flowing from the three intake valves, and the horizontal spread of the fuel spray 103 flows from the first intake valve 31. The spray flow rate on the side of the intake flow to be performed is large, and the spray flow rate on the side of the intake flow flowing in from the third intake valve 33 is small. The swirl is generated when the intake air flow velocity from the first intake valve 31 is larger than the intake air flow velocity from the third intake valve 33, but the horizontal spread of the fuel spray 103 is from the first intake valve 31. Is asymmetric with respect to the direction of the injection center axis so as to increase the intake air flow velocity. Thus, the swirl flow 102 is strengthened by the fuel spray flow rate by changing the spray flow rate with respect to the spray spreading direction. FIG. 1B is an elevation view of the fuel injection embodiment described above. The swirling intake air flow 101 in the combustion chamber includes a swirl flow 102 and a tumble flow, and swirls in the direction of the arrow.

図2は、図1の旋回吸気流101を発生する複数の吸気弁の第1の実施形態を、吸気弁のリフトカーブで説明し、燃料噴射時期を説明する図である。図2では、第1の吸気弁31と第3の吸気弁33とは、バルブリフトが同一で、開弁期間の長さも同一であるが、開弁時期をずらせており、第1の吸気弁31の開弁時期は、第3の吸気弁33の開弁時期より遅い。従って、第1の吸気弁31のリフト量が、第3の吸気弁33のリフト量より大きい時期が存在し、この時期に第1の吸気弁31からの吸気量が、第3の吸気弁33からの吸気量より大きくなり、図1(a)に示す方向のスワール流102が発生する。そこで、燃料噴射弁からの燃料噴射を、第1の吸気弁31のリフト量が、第3の吸気弁33のリフト量より大きい時期に行い、スワール流102を強化する。   FIG. 2 is a diagram for explaining a fuel injection timing by explaining a first embodiment of a plurality of intake valves that generate the swirling intake flow 101 of FIG. 1 using lift curves of the intake valves. In FIG. 2, the first intake valve 31 and the third intake valve 33 have the same valve lift and the same valve opening period, but the opening timing is shifted, and the first intake valve The opening timing of 31 is later than the opening timing of the third intake valve 33. Therefore, there is a time when the lift amount of the first intake valve 31 is larger than the lift amount of the third intake valve 33, and the intake amount from the first intake valve 31 becomes the third intake valve 33 at this time. The swirl flow 102 in the direction shown in FIG. Therefore, fuel injection from the fuel injection valve is performed at a time when the lift amount of the first intake valve 31 is larger than the lift amount of the third intake valve 33, and the swirl flow 102 is strengthened.

図3は、図1の旋回吸気流101を発生する複数の吸気弁の第2の実施形態を、吸気弁のリフトカーブで説明し、燃料噴射時期を説明する図である。図3では、第1の吸気弁31と第3の吸気弁33とは、バルブリフトが同一で、開弁の始期は同一であるが、開弁期間の長さが異なっており、第1の吸気弁31の開弁期間は、第3の吸気弁33の開弁期間より長い。従って、第1の吸気弁31のリフト量が、第3の吸気弁33のリフト量より大きい時期が存在し、この時期に第1の吸気弁31からの吸気量が、第3の吸気弁33からの吸気量より大きくなり、図1(a)に示す方向のスワール流102が発生する。そこで、燃料噴射弁からの燃料噴射を、第1の吸気弁31のリフト量が、第3の吸気弁33のリフト量より大きい時期に行い、スワール流102を強化する。   FIG. 3 is a view for explaining the fuel injection timing by describing the second embodiment of the plurality of intake valves that generate the swirling intake air flow 101 of FIG. 1 with the lift curves of the intake valves. In FIG. 3, the first intake valve 31 and the third intake valve 33 have the same valve lift and the same start time of valve opening, but the lengths of the valve opening periods are different. The opening period of the intake valve 31 is longer than the opening period of the third intake valve 33. Therefore, there is a time when the lift amount of the first intake valve 31 is larger than the lift amount of the third intake valve 33, and the intake amount from the first intake valve 31 becomes the third intake valve 33 at this time. The swirl flow 102 in the direction shown in FIG. Therefore, fuel injection from the fuel injection valve is performed at a time when the lift amount of the first intake valve 31 is larger than the lift amount of the third intake valve 33, and the swirl flow 102 is strengthened.

図4は、図1の旋回吸気流101を発生する複数の吸気弁の第3の実施形態を、吸気弁のリフトカーブで説明し、燃料噴射時期を説明する図である。図4では、第1の吸気弁31と第3の吸気弁33とは、開弁の時期及び開弁期間は同一であるが、バルブリフトが異なっており、第1の吸気弁31のリフト量が、第3の吸気弁33のリフト量より大きい。従って、第1の吸気弁31のリフト量が、第3の吸気弁33のリフト量より大きい時期が存在し、この時期に第1の吸気弁31からの吸気量が、第3の吸気弁33からの吸気量より大きくなり、図1(a)に示す方向のスワール流102が発生する。そこで、燃料噴射弁からの燃料噴射を、第1の吸気弁31のリフト量が、第3の吸気弁33のリフト量より大きい時期に行い、スワール流102を強化する。   FIG. 4 is a diagram for explaining a fuel injection timing by explaining a third embodiment of a plurality of intake valves that generate the swirling intake air flow 101 of FIG. 1 using lift curves of the intake valves. In FIG. 4, the first intake valve 31 and the third intake valve 33 have the same valve opening timing and valve opening period, but have different valve lifts, and the lift amount of the first intake valve 31 is different. Is larger than the lift amount of the third intake valve 33. Therefore, there is a time when the lift amount of the first intake valve 31 is larger than the lift amount of the third intake valve 33, and the intake amount from the first intake valve 31 becomes the third intake valve 33 at this time. The swirl flow 102 in the direction shown in FIG. Therefore, fuel injection from the fuel injection valve is performed at a time when the lift amount of the first intake valve 31 is larger than the lift amount of the third intake valve 33, and the swirl flow 102 is strengthened.

図5は、図2のリフトカーブに対して、燃料噴射弁からの第1回目の燃料噴射を、第1の吸気弁31のリフト量が、第3の吸気弁33のリフト量より大きい時期に行い、その後、更に第2回目以降の燃料噴射を複数回行う、本発明の更なる実施形態を示す。このように噴射回数を複数に分割することにより、燃料噴霧と吸気流との衝突を緩和し、筒内流動の減衰を抑止し、旋回気流のスワール流102を強化することができ、筒内の燃料と吸気とのミキシング性を向上させることができる。本実施例では、吸気弁のリフトカーブとして図2のリフトカーブを例示したが、図3又は図4のリフトカーブを有する吸気弁を使用してもよい。   FIG. 5 illustrates the first fuel injection from the fuel injection valve at a time when the lift amount of the first intake valve 31 is greater than the lift amount of the third intake valve 33 with respect to the lift curve of FIG. A further embodiment of the present invention is shown in which the second and subsequent fuel injections are performed a plurality of times. By dividing the number of injections in this way, the collision between the fuel spray and the intake air flow can be mitigated, the attenuation of the in-cylinder flow can be suppressed, and the swirl air flow 102 can be strengthened. Mixing property of fuel and intake air can be improved. In the present embodiment, the lift curve of FIG. 2 is exemplified as the lift curve of the intake valve, but an intake valve having the lift curve of FIG. 3 or FIG. 4 may be used.

図6は、図2のリフトカーブに対して、燃料噴射弁からの第1回目の燃料噴射を、第1の吸気弁31のリフト量が、第3の吸気弁33のリフト量より小さい時期に行い、更に、第1の吸気弁31のリフト量が、第3の吸気弁33のリフト量より大きい時期に第2回目以降の燃料噴射を複数回行う、本発明の更なる実施形態を示す。すなわち、第1回目の燃料噴射を、例えば全噴射量の30%とし、第1の吸気弁31のリフト量が、第3の吸気弁33のリフト量より小さい時期に行い、全噴射量の70%の噴射を、第1の吸気弁31のリフト量が、第3の吸気弁33のリフト量より大きい時期に複数回に分割して行うことにより、燃料の予混合を十分行い、更に燃料噴霧と吸気流との衝突を緩和し、筒内流動の減衰を抑止し、旋回気流のスワール流102を強化することができ、筒内の燃料と吸気とのミキシング性を向上させることができる。本実施例では、吸気弁のリフトカーブとして図2のリフトカーブを例示したが、図3又は図4のリフトカーブを有する吸気弁を使用してもよい。   FIG. 6 illustrates the first fuel injection from the fuel injection valve with respect to the lift curve of FIG. 2 at a time when the lift amount of the first intake valve 31 is smaller than the lift amount of the third intake valve 33. Further, a further embodiment of the present invention is shown in which the second and subsequent fuel injections are performed a plurality of times when the lift amount of the first intake valve 31 is larger than the lift amount of the third intake valve 33. That is, the first fuel injection is performed, for example, at 30% of the total injection amount, and is performed at a time when the lift amount of the first intake valve 31 is smaller than the lift amount of the third intake valve 33. % Injection is divided into a plurality of times when the lift amount of the first intake valve 31 is larger than the lift amount of the third intake valve 33, so that the fuel is sufficiently premixed and fuel spray is further performed. And the intake air flow can be alleviated, the attenuation of the in-cylinder flow can be suppressed, the swirl air flow 102 can be strengthened, and the mixing property between the in-cylinder fuel and the intake air can be improved. In the present embodiment, the lift curve of FIG. 2 is exemplified as the lift curve of the intake valve, but an intake valve having the lift curve of FIG. 3 or FIG. 4 may be used.

本発明を筒内直接噴射式内燃機関に適用した場合の、一実施形態の概略構成を説明する図で、(a)は水平方向の流れを上から見た図であり、(b)は立面における流れを示す図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram for explaining a schematic configuration of an embodiment when the present invention is applied to an in-cylinder direct injection internal combustion engine. FIG. It is a figure which shows the flow in a surface. 本発明において、吸気の旋回気流を発生する複数の吸気弁の第1の実施形態を吸気弁のリフトカーブで説明し、燃料噴射時期を説明する図である。In the present invention, a first embodiment of a plurality of intake valves that generate a swirling airflow of intake air will be described with reference to a lift curve of the intake valve, and a fuel injection timing will be described. 本発明において、吸気の旋回気流を発生する複数の吸気弁の第2の実施形態を吸気弁のリフトカーブで説明し、燃料噴射時期を説明する図である。In this invention, 2nd Embodiment of the several intake valve which generate | occur | produces the swirl | vortex airflow of intake is demonstrated with the lift curve of an intake valve, and is a figure explaining fuel injection timing. 本発明において、吸気の旋回気流を発生する複数の吸気弁の第3の実施形態を吸気弁のリフトカーブで説明し、燃料噴射時期を説明する図である。In this invention, 3rd Embodiment of the several intake valve which generate | occur | produces the swirl | vortex airflow of intake is demonstrated with the lift curve of an intake valve, and is a figure explaining fuel injection timing. 図2のリフトカーブに対して、燃料噴射時期と噴射回数の他の実施形態を説明する図である。It is a figure explaining other embodiment of fuel injection timing and the frequency | count of injection with respect to the lift curve of FIG. 図2のリフトカーブに対して、燃料噴射時期と噴射回数の更なる他の実施形態を説明する図である。It is a figure explaining further another embodiment of fuel injection timing and the frequency | count of injection with respect to the lift curve of FIG.

符号の説明Explanation of symbols

1 燃焼室
2 燃料噴射弁
31 第1の吸気弁
32 第2の吸気弁
33 第3の吸気弁
101 旋回吸気流
102 スワール流
103 燃料噴霧
104 吸気流
105 燃料噴射の水平方向成分の噴射中心軸線
DESCRIPTION OF SYMBOLS 1 Combustion chamber 2 Fuel injection valve 31 1st intake valve 32 2nd intake valve 33 3rd intake valve 101 Swirling intake flow 102 Swirl flow 103 Fuel spray 104 Intake flow 105 Injection center axis of horizontal component of fuel injection

Claims (6)

複数の吸気弁を備え、内燃機関の燃焼室内に流入した吸気が、燃焼室内で所定の旋回吸気流となるように、複数の吸気弁のうち2つの吸気弁について、1の吸気弁の吸気量を大きく、他の1の吸気弁の吸気量を小さくして、燃焼室内に吸気を流入させる、筒内直接噴射式内燃機関において、
前記燃焼室内に燃料を噴射する燃料噴射弁を備え、
前記燃料噴射弁からの燃料噴射方向が、前記吸気弁からの吸気の流入方向と同一方向であって、噴霧の水平方向の広がりが、前記吸気量の大きい吸気弁からの吸気流の側の噴霧流速が大きく、前記吸気量の小さい吸気弁からの吸気流の側の噴霧流速が小さくなるように、噴射中心軸線に対して非対称に噴射され、
前記旋回吸気流のスワール流を強化する、
筒内直接噴射式内燃機関。
An intake amount of one intake valve is provided for two intake valves of the plurality of intake valves so that the intake air that has a plurality of intake valves and flows into the combustion chamber of the internal combustion engine becomes a predetermined swirl intake flow in the combustion chamber. In a cylinder direct injection internal combustion engine in which the intake amount of the other intake valve is reduced and the intake air flows into the combustion chamber.
A fuel injection valve for injecting fuel into the combustion chamber;
The fuel injection direction from the fuel injection valve is the same direction as the inflow direction of the intake air from the intake valve, and the horizontal spread of the spray is the spray on the intake flow side from the intake valve having a large intake amount Injected asymmetrically with respect to the injection center axis so that the flow velocity is large and the spray flow velocity on the intake flow side from the intake valve with a small intake amount is small,
Strengthen swirl flow of the swirling intake flow,
In-cylinder direct injection internal combustion engine.
前記複数の吸気弁が、
第1の吸気弁と、前記第1の吸気弁に隣接する第2の吸気弁と、前記第2の吸気弁に隣接し、前記第2の吸気弁に関して、前記第1の吸気弁とは反対の側に配置された第3の吸気弁と、を備え、
前記第1の吸気弁の開弁時期が、前記第3の吸気弁の開弁時期より遅く、
前記燃料噴射弁からの燃料噴射が、前記第1の吸気弁のリフト量が、前記第3の吸気弁のリフト量より大きい時期に行われる、
請求項1に記載の筒内直接噴射式内燃機関。
The plurality of intake valves,
A first intake valve, a second intake valve adjacent to the first intake valve, an adjacent to the second intake valve, and the second intake valve is opposite to the first intake valve; A third intake valve arranged on the side of
The opening timing of the first intake valve is later than the opening timing of the third intake valve;
The fuel injection from the fuel injection valve is performed at a time when the lift amount of the first intake valve is larger than the lift amount of the third intake valve.
The in-cylinder direct injection internal combustion engine according to claim 1.
前記複数の吸気弁が、
第1の吸気弁と、前記第1の吸気弁に隣接する第2の吸気弁と、前記第2の吸気弁に隣接し、前記第2の吸気弁に関して、前記第1の吸気弁とは反対の側に配置された第3の吸気弁と、を備え、
前記第1の吸気弁の開弁期間が、前記第3の吸気弁の開弁期間より長く、
前記燃料噴射弁からの燃料噴射が、前記第1の吸気弁のリフト量が、前記第3の吸気弁のリフト量より大きい時期に行われる、
請求項1に記載の筒内直接噴射式内燃機関。
The plurality of intake valves,
A first intake valve, a second intake valve adjacent to the first intake valve, an adjacent to the second intake valve, and the second intake valve is opposite to the first intake valve; A third intake valve arranged on the side of
The opening period of the first intake valve is longer than the opening period of the third intake valve;
The fuel injection from the fuel injection valve is performed at a time when the lift amount of the first intake valve is larger than the lift amount of the third intake valve.
The in-cylinder direct injection internal combustion engine according to claim 1.
前記複数の吸気弁が、
第1の吸気弁と、前記第1の吸気弁に隣接する第2の吸気弁と、前記第2の吸気弁に隣接し、前記第2の吸気弁に関して、前記第1の吸気弁とは反対の側に配置された第3の吸気弁と、を備え、
前記第1の吸気弁のリフト量が、前記第3の吸気弁のリフト量より大きく、
前記燃料噴射弁からの燃料噴射が、前記第1の吸気弁のリフト量が、前記第3の吸気弁のリフト量より大きい時期に行われる、
請求項1に記載の筒内直接噴射式内燃機関。
The plurality of intake valves,
A first intake valve, a second intake valve adjacent to the first intake valve, an adjacent to the second intake valve, and the second intake valve is opposite to the first intake valve; A third intake valve arranged on the side of
The lift amount of the first intake valve is larger than the lift amount of the third intake valve;
The fuel injection from the fuel injection valve is performed at a time when the lift amount of the first intake valve is larger than the lift amount of the third intake valve.
The in-cylinder direct injection internal combustion engine according to claim 1.
前記燃料噴射弁からの燃料噴射時期において、第1回目の燃料噴射を、前記第1の吸気弁のリフト量が、前記第3の吸気弁のリフト量より大きい時期に行った後、更に複数回行う、請求項2から4のいずれか1項に記載の筒内直接噴射式内燃機関。   After the fuel injection timing from the fuel injection valve, the first fuel injection is performed several times after the lift amount of the first intake valve is larger than the lift amount of the third intake valve. The direct injection type internal combustion engine according to any one of claims 2 to 4, wherein the direct injection internal combustion engine is performed. 前記燃料噴射弁からの燃料噴射時期において、第1回目の燃料噴射を、前記第1の吸気弁のリフト量が、前記第3の吸気弁のリフト量より小さい時期に行い、更に、前記第1の吸気弁のリフト量が、前記第3の吸気弁のリフト量より大きい時期に複数回行う、請求項2から4のいずれか1項に記載の筒内直接噴射式内燃機関。   At the fuel injection timing from the fuel injection valve, the first fuel injection is performed at a timing when the lift amount of the first intake valve is smaller than the lift amount of the third intake valve. 5. The direct injection type internal combustion engine according to claim 2, wherein the lift amount of the intake valve is performed a plurality of times at a time when the lift amount of the intake valve is larger than the lift amount of the third intake valve.
JP2007335228A 2007-12-26 2007-12-26 In-cylinder direct injection internal combustion engine Expired - Fee Related JP4930365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007335228A JP4930365B2 (en) 2007-12-26 2007-12-26 In-cylinder direct injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007335228A JP4930365B2 (en) 2007-12-26 2007-12-26 In-cylinder direct injection internal combustion engine

Publications (2)

Publication Number Publication Date
JP2009156166A true JP2009156166A (en) 2009-07-16
JP4930365B2 JP4930365B2 (en) 2012-05-16

Family

ID=40960443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007335228A Expired - Fee Related JP4930365B2 (en) 2007-12-26 2007-12-26 In-cylinder direct injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP4930365B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072325A (en) * 2011-09-27 2013-04-22 Suzuki Motor Corp Internal combustion engine
WO2022113511A1 (en) * 2020-11-30 2022-06-02 日立Astemo株式会社 Valve control device, and valve control method
CN117028016A (en) * 2023-10-09 2023-11-10 潍柴动力股份有限公司 In-cylinder direct injection methanol engine and combustion chamber thereof and combustion chamber parameter determining method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11351012A (en) * 1998-06-12 1999-12-21 Nissan Motor Co Ltd Direct cylinder injection type spark ignition engine
JP2002371852A (en) * 2001-06-13 2002-12-26 Hitachi Ltd Cylinder direct injection internal combustion engine
JP2005127273A (en) * 2003-10-27 2005-05-19 Toyota Central Res & Dev Lab Inc Internal combustion engine
JP2007146680A (en) * 2005-11-24 2007-06-14 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11351012A (en) * 1998-06-12 1999-12-21 Nissan Motor Co Ltd Direct cylinder injection type spark ignition engine
JP2002371852A (en) * 2001-06-13 2002-12-26 Hitachi Ltd Cylinder direct injection internal combustion engine
JP2005127273A (en) * 2003-10-27 2005-05-19 Toyota Central Res & Dev Lab Inc Internal combustion engine
JP2007146680A (en) * 2005-11-24 2007-06-14 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072325A (en) * 2011-09-27 2013-04-22 Suzuki Motor Corp Internal combustion engine
US8991357B2 (en) 2011-09-27 2015-03-31 Suzuki Motor Corporation Internal combustion engine
DE102012217095B4 (en) * 2011-09-27 2016-06-30 Suzuki Motor Corporation Internal combustion engine
WO2022113511A1 (en) * 2020-11-30 2022-06-02 日立Astemo株式会社 Valve control device, and valve control method
CN117028016A (en) * 2023-10-09 2023-11-10 潍柴动力股份有限公司 In-cylinder direct injection methanol engine and combustion chamber thereof and combustion chamber parameter determining method
CN117028016B (en) * 2023-10-09 2024-01-12 潍柴动力股份有限公司 In-cylinder direct injection methanol engine and combustion chamber thereof and combustion chamber parameter determining method

Also Published As

Publication number Publication date
JP4930365B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
US9803538B2 (en) Ducted combustion systems utilizing duct structures
KR20070044068A (en) Shape of combustion chamber of direct injection diesel engine
JP2007009722A (en) Direct injection type spark-ignition internal combustion engine
JP6044712B2 (en) Compression ignition internal combustion engine
WO2014203382A1 (en) Compression ignition internal combustion engine
JP2008111381A (en) Cylinder direct injection type internal combustion engine
JP2007297989A (en) Cylinder injection type spark ignition internal combustion engine
JP4930365B2 (en) In-cylinder direct injection internal combustion engine
JP4650126B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JP2006194190A (en) Compression ignition internal combustion engine
JP2007327464A (en) Direct injection type spark ignition internal combustion engine
JP2007231908A (en) Fuel injection device for internal combustion engine
JP2010037964A (en) Cylinder fuel injection spark ignition internal combustion engine
KR101154579B1 (en) Injector Hole Structure for Engine
JP4428273B2 (en) In-cylinder direct injection internal combustion engine
JP3903852B2 (en) Spark ignition direct injection engine
JP2008202534A (en) Fuel injection control device for cylinder injection type internal combustion engine
JP2010180728A (en) Piston of cylinder direct injection type internal combustion engine
JP2012057566A (en) Combustion chamber structure for direct injection type diesel engine
JP5626153B2 (en) Internal combustion engine
JP4207481B2 (en) In-cylinder injection spark ignition internal combustion engine
JP2017106434A (en) Control method and control system for vehicle injector
JP2009150273A (en) Internal combustion engine
JP2016121587A (en) Internal combustion engine
JP2008223677A (en) Cylinder injection type spark ignition internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R151 Written notification of patent or utility model registration

Ref document number: 4930365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees