JP2007297989A - Cylinder injection type spark ignition internal combustion engine - Google Patents

Cylinder injection type spark ignition internal combustion engine Download PDF

Info

Publication number
JP2007297989A
JP2007297989A JP2006127353A JP2006127353A JP2007297989A JP 2007297989 A JP2007297989 A JP 2007297989A JP 2006127353 A JP2006127353 A JP 2006127353A JP 2006127353 A JP2006127353 A JP 2006127353A JP 2007297989 A JP2007297989 A JP 2007297989A
Authority
JP
Japan
Prior art keywords
cylinder
fuel
injection
valve
tumble flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006127353A
Other languages
Japanese (ja)
Inventor
Takeshi Ashizawa
剛 芦澤
Osamu Tomino
修 冨野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006127353A priority Critical patent/JP2007297989A/en
Priority to PCT/IB2007/001098 priority patent/WO2007125400A2/en
Priority to US12/224,603 priority patent/US20090013962A1/en
Priority to CNA200780014322XA priority patent/CN101427017A/en
Priority to KR1020087026722A priority patent/KR20080106589A/en
Priority to EP07734416A priority patent/EP2016273A2/en
Publication of JP2007297989A publication Critical patent/JP2007297989A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/242Arrangement of spark plugs or injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/106Tumble flow, i.e. the axis of rotation of the main charge flow motion is horizontal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/48Tumble motion in gas movement in cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/045Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylinder injection type spark ignition internal combustion engine capable of securely strengthening a tumble flow of which strength is changed in accordance with kinetic energy of intake air supplied to inside of a cylinder by injected fuel and of suppressing fuel adherence to a cylinder bore. <P>SOLUTION: A fuel injection valve 1 arranged approximately in the center of the upper part of the cylinder and an ignition plug 2 arranged in the upper part of the cylinder are provided. To strengthen the tumble flow T whirling around inside of the cylinder by descending along an exhaust valve side of the cylinder bore and ascending along an intake valve side of the cylinder bore, fuel F is injected toward the exhaust valve side of the cylinder bore by the fuel injection valve 1 at a last stage of an intake stroke. When the kinetic energy of intake air forming the tumble flow T at the time of inflow into the cylinder is small, an injection rate of the fuel injected from the fuel injection valve 1 to strengthen the tumble flow T is reduced, compared to the case where the kinetic energy is large. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、筒内噴射式火花点火内燃機関に関する。   The present invention relates to a direct injection spark ignition internal combustion engine.

気筒内に均質混合気を形成し、この均質混合気を圧縮行程末期の点火時期において着火燃焼させる均質燃焼において、気筒内へ供給された吸気により気筒内にタンブル流を形成し、このタンブル流を圧縮行程末期の点火時期まで持続させることにより、点火時期において気筒内にタンブル流による乱れを存在させ、この乱れによって均質混合気の燃焼速度を高めることができれば、良好な均質燃焼を実現することができる。   In homogeneous combustion in which a homogeneous mixture is formed in the cylinder and this homogeneous mixture is ignited and combusted at the ignition timing at the end of the compression stroke, a tumble flow is formed in the cylinder by the intake air supplied into the cylinder, and this tumble flow is By maintaining the ignition timing at the end of the compression stroke until the ignition timing causes turbulence in the cylinder due to the tumble flow, and this turbulence can increase the combustion speed of the homogeneous mixture, good homogeneous combustion can be realized. it can.

タンブル流を圧縮行程末期の点火時期まで持続させるために、吸気ポート内に吸気流制御弁を配置し、この吸気流制御弁によって吸気を吸気ポート上壁に沿わせて気筒内へ供給することにより、気筒内に強いタンブル流を形成する筒内噴射式火花点火内燃機関が提案されている(例えば、特許文献1参照)。   In order to maintain the tumble flow until the ignition timing at the end of the compression stroke, an intake flow control valve is arranged in the intake port, and by this intake flow control valve, intake air is supplied into the cylinder along the upper wall of the intake port. An in-cylinder injection spark ignition internal combustion engine that forms a strong tumble flow in a cylinder has been proposed (see, for example, Patent Document 1).

特開2005−180247JP 2005-180247 A 特開2004−190548JP2004-190548 特開2002−227651JP 2002-227651 A

前述の筒内噴射式火花点火内燃機関において、吸気流制御弁により吸気を吸気ポート上壁に沿わせて気筒内に供給する時には、吸気流制御弁により吸気ポートが絞られることになる。それにより、必要吸気量が比較的少ない時においては、特に問題なく強いタンブル流を気筒内に形成することができるが、必要吸気量が比較的多くなる時においては、吸気流制御弁により吸気ポートを絞ると吸気不足が発生することがあるために、吸気流制御弁によって強いタンブル流を気筒内に形成することはできない。   In the above-described in-cylinder spark ignition internal combustion engine, when intake air is supplied into the cylinder along the upper wall of the intake port by the intake flow control valve, the intake port is throttled by the intake flow control valve. As a result, when the required intake air amount is relatively small, a strong tumble flow can be formed in the cylinder without any problem. However, when the required intake air amount is relatively large, the intake port is controlled by the intake air flow control valve. Since a shortage of intake may occur if the throttle valve is throttled, a strong tumble flow cannot be formed in the cylinder by the intake flow control valve.

それにより、このような吸気流制御弁を配置することなく、シリンダボアの排気弁側に沿って下降してシリンダボアの吸気弁側に沿って上昇するように気筒内を旋回するタンブル流を、吸気行程末期において気筒上部略中心に配置された燃料噴射弁によりシリンダボアの排気弁側へ向けて噴射された燃料の貫徹力を利用して強めることが考えられる。   As a result, without arranging such an intake flow control valve, a tumble flow rotating in the cylinder so as to descend along the exhaust valve side of the cylinder bore and ascend along the intake valve side of the cylinder bore, It is conceivable that the fuel injection valve arranged at the substantially upper center of the cylinder at the end stage is strengthened by utilizing the penetration force of the fuel injected toward the exhaust valve side of the cylinder bore.

しかしながら、機関運転状態によって気筒内へ供給される吸気の運動エネルギが変化し、この運動エネルギに応じて気筒内に生成されるタンブル流の強さが変化するために、噴射燃料の貫徹力を強く設定すると、気筒内に生成されるタンブル流の強さが比較的弱くなった時に、噴射燃料がタンブル流を突き抜けてシリンダボアへ付着し、エンジンオイルを希釈させることがある。また、噴射燃料の貫徹力を弱く設定すると、気筒内に生成されるタンブル流の強さが比較的強くなった時には、タンブル流を強めることができなくなる。   However, since the kinetic energy of the intake air supplied into the cylinder changes depending on the engine operating state, and the strength of the tumble flow generated in the cylinder changes according to this kinetic energy, the penetration force of the injected fuel is increased. When set, when the strength of the tumble flow generated in the cylinder becomes relatively weak, the injected fuel may penetrate the tumble flow and adhere to the cylinder bore, thereby diluting the engine oil. If the penetration force of the injected fuel is set to be weak, the tumble flow cannot be increased when the strength of the tumble flow generated in the cylinder becomes relatively strong.

従って、本発明の目的は、気筒内へ供給される吸気の運動エネルギに応じて強さが変化するタンブル流を噴射燃料により確実に強めることができるようにすると共に、シリンダボアへの燃料付着を抑制することができる筒内噴射式火花点火内燃機関を提供することである。   Accordingly, an object of the present invention is to ensure that the tumble flow whose strength changes in accordance with the kinetic energy of the intake air supplied into the cylinder can be reliably increased by the injected fuel, and to suppress the fuel adhesion to the cylinder bore. It is an object of the present invention to provide an in-cylinder injection spark ignition internal combustion engine.

本発明による請求項1に記載の筒内噴射式火花点火内燃機関は、気筒上部略中心に配置された燃料噴射弁と、気筒上部に配置された点火プラグとを具備し、シリンダボアの排気弁側に沿って下降してシリンダボアの吸気弁側に沿って上昇するように気筒内を旋回するタンブル流を強めるために、吸気行程末期において前記燃料噴射弁によりシリンダボアの排気弁側へ向けて燃料が噴射され、前記タンブル流を生成する吸気の気筒内へ流入する際の運動エネルギが小さい時には、前記運動エネルギが大きい時に比較して、前記タンブル流を強めるために前記燃料噴射弁から噴射される燃料の噴射率を低くすることを特徴とする。   According to a first aspect of the present invention, there is provided an in-cylinder injection spark ignition internal combustion engine comprising a fuel injection valve disposed substantially at the center of a cylinder upper portion and an ignition plug disposed at an upper portion of the cylinder, the exhaust valve side of the cylinder bore The fuel injection valve injects fuel toward the exhaust valve side of the cylinder bore at the end of the intake stroke in order to strengthen the tumble flow that turns in the cylinder so as to descend along the intake valve side and rise along the intake valve side of the cylinder bore. When the kinetic energy when the intake air generating the tumble flow flows into the cylinder is small, the fuel injected from the fuel injection valve to intensify the tumble flow compared to when the kinetic energy is large. The injection rate is lowered.

本発明による請求項2に記載の筒内噴射式火花点火内燃機関は、請求項1に記載の筒内噴射式火花点火内燃機関において、前記タンブル流を生成する吸気の前記運動エネルギが小さいほど、前記燃料噴射弁から噴射される燃料の前記噴射率は低くされることを特徴とする。   The direct injection spark ignition internal combustion engine according to claim 2 according to the present invention is the direct injection spark ignition internal combustion engine according to claim 1, wherein the smaller the kinetic energy of the intake air that generates the tumble flow, The injection rate of the fuel injected from the fuel injection valve is lowered.

本発明による請求項3に記載の筒内噴射式火花点火内燃機関は、請求項2に記載の筒内噴射式火花点火内燃機関において、前記燃料噴射弁は、弁体を高リフト量及び低リフト量の二段階に制御可能であり、前記高リフト量だけの前記弁体の開弁により最大噴射率の燃料噴射が実現され、前記低リフト量だけの前記弁体の開弁により最小噴射率の燃料噴射が実現され、前記最大噴射率と前記最小噴射率との間の噴射率は、前記弁体を前記高リフト量及び前記低リフト量の一方及び他方で連続的に開弁させることにより実現することを特徴とする。   According to a third aspect of the present invention, there is provided an in-cylinder injection spark ignition internal combustion engine according to the second aspect of the present invention, wherein the fuel injection valve has a high lift amount and a low lift amount. The fuel injection with the maximum injection rate can be realized by opening the valve body for the high lift amount, and the minimum injection rate can be controlled by opening the valve body for the low lift amount. Fuel injection is realized, and the injection rate between the maximum injection rate and the minimum injection rate is realized by continuously opening the valve body at one or the other of the high lift amount and the low lift amount. It is characterized by doing.

本発明による請求項1に記載の筒内噴射式火花点火内燃機関によれば、タンブル流を強めるために、吸気行程末期において燃料噴射弁によりシリンダボアの排気弁側へ向けて燃料が噴射され、タンブル流を生成する吸気の気筒内へ流入する際の運動エネルギが小さい時には、運動エネルギが大きい時に比較して、タンブル流を強めるために燃料噴射弁から噴射される燃料の噴射率を低くするようになっている。それにより、気筒内へ流入する時の吸気の運動エネルギが小さい時には、タンブル流の強さが比較的弱くなり、この時には、燃料噴射弁から噴射される燃料の噴射率が低くされるために、噴射燃料の貫徹力が弱くされ、噴射燃料がタンブル流を突き抜けてシリンダボアへ付着することは抑制される。また、タンブル流の強さが比較的弱いために、貫徹力が弱くされた噴射燃料によってもタンブル流を確実に強めることができる。また、吸気の気筒内へ流入する際の運動エネルギが大きい時には、タンブル流の強さが比較的強くなり、この時には、貫徹力が弱められた噴射燃料ではタンブル流を強めることはできないが、燃料の噴射率が高くされるために、噴射燃料の貫徹力は強くされ、タンブル流を確実に強めることができる。また、タンブル流の強さが比較的強いために、貫徹力が強くされても噴射燃料はタンブル流を突き抜け難く、噴射燃料がシリンダボアへ付着することは抑制される。   According to the in-cylinder injection spark ignition internal combustion engine of the first aspect of the present invention, in order to strengthen the tumble flow, fuel is injected toward the exhaust valve side of the cylinder bore by the fuel injection valve at the end of the intake stroke. When the kinetic energy when flowing into the cylinder of the intake air that generates the flow is small, the injection rate of the fuel injected from the fuel injection valve is lowered to increase the tumble flow compared to when the kinetic energy is large It has become. As a result, when the kinetic energy of the intake air when flowing into the cylinder is small, the strength of the tumble flow becomes relatively weak, and at this time, the injection rate of the fuel injected from the fuel injection valve is lowered, so that the injection The penetration force of the fuel is weakened, and the injected fuel is prevented from penetrating through the tumble flow and adhering to the cylinder bore. Further, since the strength of the tumble flow is relatively weak, the tumble flow can be surely strengthened even by the injected fuel whose penetrating force is weakened. Also, when the kinetic energy when flowing into the intake cylinder is large, the strength of the tumble flow becomes relatively strong. At this time, the injected fuel with weak penetrating power cannot strengthen the tumble flow, Since the injection rate is increased, the penetration force of the injected fuel is increased, and the tumble flow can be reliably increased. In addition, since the strength of the tumble flow is relatively strong, even if the penetration force is increased, the injected fuel hardly penetrates the tumble flow, and adhesion of the injected fuel to the cylinder bore is suppressed.

また、本発明による請求項2に記載の筒内噴射式火花点火内燃機関によれば、請求項1に記載の筒内噴射式火花点火内燃機関において、タンブル流を生成する吸気の気筒内へ流入する際の運動エネルギが大きいほど、燃料噴射弁から噴射される燃料の噴射率は低くされるようになっている。それにより、タンブル流の強さが弱くなるほど噴射燃料の貫徹力が弱くされ、タンブル流の強さが強くなるほど噴射燃料の貫徹力が強くされるために、タンブル流を噴射燃料によりさらに確実に強めることができると共に、シリンダボアへの燃料付着を十分に抑制することができる。   According to the in-cylinder injection spark ignition internal combustion engine according to claim 2 of the present invention, in the in-cylinder injection spark ignition internal combustion engine according to claim 1, the intake air that generates the tumble flow flows into the cylinder. The greater the kinetic energy at which the fuel is injected, the lower the injection rate of the fuel injected from the fuel injection valve. As a result, the penetrating force of the injected fuel becomes weaker as the strength of the tumble flow becomes weaker, and the penetrating force of the injected fuel becomes stronger as the strength of the tumble flow becomes stronger. In addition, it is possible to sufficiently suppress fuel adhesion to the cylinder bore.

また、本発明による請求項3に記載の筒内噴射式火花点火内燃機関によれば、請求項2に記載の筒内噴射式火花点火内燃機関において、燃料噴射弁は、弁体を高リフト量及び低リフト量の二段階に制御可能であり、高リフト量だけの弁体の開弁により最大噴射率の燃料噴射が実現され、低リフト量だけの弁体の開弁により最小噴射率の燃料噴射が実現され、最大噴射率と最小噴射率との間の噴射率は、弁体を高リフト量及び低リフト量の一方及び他方で連続的に開弁させることにより実現するようになっている。それにより、弁体の二段階のリフト量制御によっても、タンブル流の強さに合わせて噴射率を多段階に変化させることができる。   Further, according to the in-cylinder injection spark ignition internal combustion engine according to claim 3 of the present invention, in the in-cylinder injection spark ignition internal combustion engine according to claim 2, the fuel injection valve has a high lift amount. The fuel injection with the maximum injection rate is realized by opening the valve body with the high lift amount, and the fuel with the minimum injection rate is opened with the valve body opening with the low lift amount. Injection is realized, and the injection rate between the maximum injection rate and the minimum injection rate is realized by continuously opening the valve body at one and the other of the high lift amount and the low lift amount. . Thereby, the injection rate can be changed in multiple stages in accordance with the strength of the tumble flow also by the two-stage lift amount control of the valve body.

図1は本発明による筒内噴射式火花点火内燃機関の実施形態を示すシリンダヘッドの底面図であり、図2は図1の筒内噴射式火花点火内燃機関の概略縦断面図である。これらの図において、1は気筒上部略中心に配置されて気筒内へ直接的に燃料を噴射するための燃料噴射弁であり、2は燃料噴射弁1の近傍に配置された点火プラグである。3はピストンであり、4は一対の吸気弁であり、5は一対の排気弁である。   FIG. 1 is a bottom view of a cylinder head showing an embodiment of a direct injection spark ignition internal combustion engine according to the present invention, and FIG. 2 is a schematic longitudinal sectional view of the direct injection spark ignition internal combustion engine of FIG. In these drawings, reference numeral 1 denotes a fuel injection valve that is disposed substantially at the center of the cylinder and injects fuel directly into the cylinder, and 2 is a spark plug that is disposed in the vicinity of the fuel injection valve 1. 3 is a piston, 4 is a pair of intake valves, and 5 is a pair of exhaust valves.

本筒内噴射式火花点火内燃機関は、気筒内に理論空燃比よりリーンな均質混合気を形成し、この混合気を点火プラグ2により着火燃焼させる均質燃焼を実施するものである。この均質燃焼のリーン空燃比は、NOX生成量が比較的少なくなるように設定される(例えば、20)。高出力が必要な高回転高負荷時等においては、理論空燃比又はリッチ空燃比での均質燃焼を実施するようにしても良い。また、機関排気系に排気ガスの空燃比がリーンである時にNOを吸蔵するNO吸蔵触媒装置が配置されている場合においては、NO吸蔵触媒装置から吸蔵NOを放出して還元浄化する時には、燃焼空燃比を設定リッチ空燃比とする均質燃焼が実施される。特に、リーン空燃比での均質燃焼は、点火時期において気筒内に乱れを存在させて燃焼速度を速めないと、所望の機関出力が得られない。それにより、吸気行程において気筒内に供給される吸気によってシリンダボアの排気弁側を下降して吸気弁側を上昇するタンブル流Tを気筒内に形成し、このタンブル流Tを圧縮行程末期の点火時期まで持続させて点火時期において気筒内に乱れを存在させることが好ましい。 The in-cylinder injection spark ignition internal combustion engine forms a homogeneous air-fuel mixture that is leaner than the stoichiometric air-fuel ratio in a cylinder and performs homogeneous combustion in which the air-fuel mixture is ignited and burned by an ignition plug 2. The lean air-fuel ratio of this homogeneous combustion is set so that the amount of NO x produced is relatively small (for example, 20). For example, when the engine speed is high and the load is high, homogeneous combustion at the stoichiometric air-fuel ratio or rich air-fuel ratio may be performed. Further, when the NO X storing catalyst apparatus for storing the NO X when the air-fuel ratio of the exhaust gas in the engine exhaust system is lean is located, to release the occluded NO X from the NO X storing catalyst apparatus reducing and purifying When performing, homogeneous combustion is performed with the combustion air-fuel ratio set to the set rich air-fuel ratio. In particular, in homogeneous combustion at a lean air-fuel ratio, a desired engine output cannot be obtained unless the combustion speed is increased by causing turbulence in the cylinder at the ignition timing. Thereby, a tumble flow T that descends the exhaust valve side of the cylinder bore and rises the intake valve side by intake air supplied into the cylinder in the intake stroke is formed in the cylinder, and this tumble flow T is used as the ignition timing at the end of the compression stroke. It is preferable that turbulence exists in the cylinder at the ignition timing.

しかしながら、シリンダヘッドを厚くして吸気ポートの形状配置を工夫したり、吸気ポート内に吸気流制御弁を設ける等しない限り、一般的に気筒内に形成されるタンブル流は、それほど強いものではなく、本実施形態のように、ピストン3の頂面にタンブル流の減衰を抑制するための部分円弧断面のキャビティ3aが形成されていても、それだけでは、圧縮行程中の減衰により点火時期までには容易に消滅し、点火時期においてタンブル流により気筒内に乱れを存在させることはできない。それにより、本実施形態においては、吸気行程において気筒内に形成されたタンブル流Tを、吸気行程末期において燃料噴射弁1によりシリンダボアの排気弁側へ向けて噴射された燃料Fの貫徹力を利用して強めるようにしている。こうして強められたタンブル流は、圧縮行程末期の点火時期まで良好に持続して気筒内に乱れを存在させることができる。   However, the tumble flow generally formed in the cylinder is not so strong unless the cylinder head is thickened and the shape of the intake port is devised, or the intake flow control valve is provided in the intake port. Even if the cavity 3a having a partial arc cross section for suppressing the attenuation of the tumble flow is formed on the top surface of the piston 3 as in the present embodiment, it is not possible until the ignition timing due to the attenuation during the compression stroke. It disappears easily, and turbulence cannot exist in the cylinder by the tumble flow at the ignition timing. Thereby, in the present embodiment, the tumble flow T formed in the cylinder in the intake stroke is utilized by the penetration force of the fuel F injected by the fuel injection valve 1 toward the exhaust valve side of the cylinder bore at the end of the intake stroke. And strengthen it. The strengthened tumble flow can be sustained well until the ignition timing at the end of the compression stroke, and the turbulence can exist in the cylinder.

本実施形態において、燃料噴射弁1は、例えば、スリット状の噴孔を有して比較的厚さの薄い略扇形状に燃料を噴射し、燃料噴霧Fの幅方向の中心平面が、タンブル流Tと平行に気筒中心軸線を通る縦平面とほぼ一致するようにされる。この縦平面は図2の断面であり、図2には、燃料噴霧Fの幅方向の中心断面が図示されている。もちろん、燃料噴射弁1は、円形噴孔を有して、燃料を柱状又は円錐状に噴射するものでも良い。   In the present embodiment, the fuel injection valve 1 has, for example, a slit-shaped injection hole and injects fuel into a substantially thin fan shape, and the center plane in the width direction of the fuel spray F is a tumble flow. It is made to substantially coincide with a vertical plane passing through the cylinder central axis in parallel with T. This vertical plane is the cross section of FIG. 2, and FIG. 2 shows a central cross section of the fuel spray F in the width direction. Of course, the fuel injection valve 1 may have a circular injection hole and inject fuel in a columnar or conical shape.

ところで、吸気行程において気筒内に形成されるタンブル流Tの強さは、機関運転状態に応じて変化する気筒内へ流入する吸気の運動エネルギに応じて変化する。吸気の運動エネルギは、1/2・mvで表され、mは単位時間当たりの吸入空気質量であり、vは吸入空気流速である。この運動エネルギは、機関運転状態として、機関回転数が高いほど又は機関負荷が高いほど、大きくなる。すなわち、高回転高負荷時において大きく、低回転低負荷時において小さくなる。また、気筒内へ流入する吸気の運動エネルギは、機関運転状態として、燃焼空燃比がリーン側であるほど大きくなる。燃焼空燃比が、設定リーン空燃比、理論空燃比、及び、設定リッチ空燃比の一つから他の一つへ切り換えられる場合には、設定リーン空燃比、理論空燃比、設定リッチ空燃比の順で、気筒内へ流入する吸気の運動エネルギは小さくなる。気筒内へ流入する吸気の運動エネルギが大きいほど、タンブル流Tの強さが強くなる。それにより、燃料噴射弁1から噴射される燃料噴霧Fの噴射率を比較的低く一定にすると、比較的強いタンブル流Tが形成された時には、タンブル流Tを強めることができない。また、噴射率を比較的高く一定にすると、比較的弱いタンブル流Tが形成された時には、燃料噴霧Fがタンブル流Tを突き抜けてシリンダボアに衝突して付着し、エンジンオイルを希釈させることがある。 By the way, the strength of the tumble flow T formed in the cylinder in the intake stroke changes in accordance with the kinetic energy of the intake air flowing into the cylinder which changes in accordance with the engine operating state. The kinetic energy of intake air is expressed by 1/2 · mv 2 , m is the intake air mass per unit time, and v is the intake air flow velocity. The kinetic energy increases as the engine speed increases or the engine load increases as the engine operating state. That is, it is large at high rotation and high load and small at low rotation and low load. Further, the kinetic energy of the intake air flowing into the cylinder becomes larger as the combustion air-fuel ratio is on the lean side in the engine operating state. When the combustion air-fuel ratio is switched from one of the set lean air-fuel ratio, the stoichiometric air-fuel ratio, and the set rich air-fuel ratio to the other, the order of the set lean air-fuel ratio, the stoichiometric air-fuel ratio, and the set rich air-fuel ratio. Thus, the kinetic energy of the intake air flowing into the cylinder becomes small. The strength of the tumble flow T increases as the kinetic energy of the intake air flowing into the cylinder increases. Thereby, if the injection rate of the fuel spray F injected from the fuel injection valve 1 is made relatively low and constant, the tumble flow T cannot be strengthened when the relatively strong tumble flow T is formed. Further, when the injection rate is relatively high and constant, when a relatively weak tumble flow T is formed, the fuel spray F may penetrate the tumble flow T and collide with and adhere to the cylinder bore, thereby diluting the engine oil. .

この問題を解決するために、本実施形態では、燃料噴射弁1として、弁体のリフト量が高リフト量と低リフト量の少なくとも二段階に可変とされたものを使用して燃料噴射を実施し、気筒内へ供給される吸気の運動エネルギが設定値以上である時には、図3に実線で示すように、弁体を高リフト量L1で開弁する。この時には、比較的強いタンブル流が気筒内に形成されるが、高リフト量L1での弁体の開弁により噴射率が高くなり、燃料噴霧Fの貫徹力が強くされるために、燃料噴霧Fによりタンブル流Tを十分に強めることができる。   In order to solve this problem, in this embodiment, fuel injection is performed using a fuel injection valve 1 in which the lift amount of the valve body is variable in at least two stages, a high lift amount and a low lift amount. When the kinetic energy of the intake air supplied into the cylinder is equal to or higher than the set value, the valve element is opened with the high lift amount L1, as indicated by the solid line in FIG. At this time, a relatively strong tumble flow is formed in the cylinder. However, since the injection rate is increased by opening the valve body with the high lift amount L1, the penetration force of the fuel spray F is increased, so that the fuel spray is increased. F can sufficiently strengthen the tumble flow T.

一方、気筒内へ供給される吸気の運動エネルギが設定値より小さい時には、図3に点線で示すように、弁体を低リフト量L2で開弁する。この時には、比較的弱いタンブル流が気筒内に形成されるが、低リフト量L2での開弁により噴射率が低くなり、燃料噴霧Fの貫徹力が弱くされるために、燃料噴霧Fがタンブル流を突き抜けてシリンダボアへ衝突して付着することは抑制される。また、比較的弱いタンブル流は、貫徹力の弱い燃料噴霧Fによっても確実に強めることができる。   On the other hand, when the kinetic energy of the intake air supplied into the cylinder is smaller than the set value, the valve element is opened with a low lift amount L2, as indicated by a dotted line in FIG. At this time, a relatively weak tumble flow is formed in the cylinder, but the injection rate is lowered by opening the valve with the low lift amount L2, and the penetration force of the fuel spray F is weakened. It is possible to suppress sticking through the flow and colliding with the cylinder bore. In addition, the relatively weak tumble flow can be surely strengthened by the fuel spray F having a low penetration force.

本実施形態において、燃料噴射終了時期は吸気下死点(BDC)に固定されており、それにより、各機関運転状態において、要求燃料量が噴射されるように、噴射率を考慮して開弁時間(t1又はt2)が算出され、算出された開弁時間が実現されるように燃料噴射開始時期を設定することとなる。当然のことながら、噴射率が高い時には、低い時に比較して、同じ燃料量を噴射するための開弁時間は短くなる。   In the present embodiment, the fuel injection end timing is fixed at the intake bottom dead center (BDC), so that the valve is opened in consideration of the injection rate so that the required fuel amount is injected in each engine operating state. The time (t1 or t2) is calculated, and the fuel injection start timing is set so that the calculated valve opening time is realized. As a matter of course, when the injection rate is high, the valve opening time for injecting the same amount of fuel is shorter than when the injection rate is low.

噴射率を低くして噴射時間(開弁時間)を長くした方がタンブル流を利用して噴射燃料は気筒内全体に分散し易くなり、良好な均質混合気を気筒内に形成するのには有利である。それにより、タンブル流の強さが弱いほど噴射率が低くなるように、さらに多段階に噴射率を変化させることが好ましい。これを実現するために、ピエゾアクチュエータ等を使用して弁体のリフト量をさらに多段階に制御するようにしても良い。   If the injection rate is lowered and the injection time (valve opening time) is made longer, the injected fuel is more easily dispersed throughout the cylinder using the tumble flow, and a good homogeneous mixture is formed in the cylinder. It is advantageous. Thereby, it is preferable to change the injection rate in more stages so that the injection rate becomes lower as the strength of the tumble flow is weaker. In order to realize this, the lift amount of the valve body may be controlled in more stages using a piezoelectric actuator or the like.

弁体を高リフト量L1及び低リフト量L2の二段階にしか制御することができない場合には、図4に示すように、弁体を高リフト量L1及び低リフト量L2で連続的に開弁させることにより、この燃料噴射の全体的な噴射率を、弁体を高リフト量L1だけで開弁させた時の最大噴射率と、弁体を低リフト量L2だけで開弁させた時の最小噴射率との間の噴射率とすることができる。もちろん、高リフト量L1及び低リフト量L2での連続的な弁体の開弁は、高リフト量L1での開弁を低リフト量L2での開弁より前としても、低リフト量L2での開弁を高リフト量L1での開弁より前としても良い。   When the valve body can be controlled only in two stages of the high lift amount L1 and the low lift amount L2, as shown in FIG. 4, the valve body is continuously opened with the high lift amount L1 and the low lift amount L2. By making the valve, the overall injection rate of this fuel injection is the maximum injection rate when the valve body is opened only by the high lift amount L1, and when the valve body is opened only by the low lift amount L2. The injection rate can be between the minimum injection rate and the minimum injection rate. Of course, the continuous opening of the valve body with the high lift amount L1 and the low lift amount L2 is performed with the low lift amount L2 even if the valve opening with the high lift amount L1 is performed before the valve opening with the low lift amount L2. The valve opening may be before the valve opening with the high lift amount L1.

図4は、現在の機関運転状態に対応する要求燃料量の半分を高リフト量L1で噴射し、残り半分を低リフト量L2で噴射する場合を示しており、この燃料噴射の全体的な噴射率は、最大噴射率と最小噴射率との間の中間の噴射率となる。当然のこととして、要求燃料量の半分を噴射するための高リフト量L1の開弁時間t1’は、要求燃料量の残り半分の噴射するための低リフト量L2の開弁時間t2’より短くなる。燃料噴射開始時期は、これら二つの開弁時間t1’及びt2’を連続的に実現した時が吸気下死点となるように設定される。   FIG. 4 shows a case in which half of the required fuel amount corresponding to the current engine operating state is injected with the high lift amount L1, and the other half is injected with the low lift amount L2. The rate is an intermediate injection rate between the maximum injection rate and the minimum injection rate. As a matter of course, the valve opening time t1 ′ of the high lift amount L1 for injecting half of the required fuel amount is shorter than the valve opening time t2 ′ of the low lift amount L2 for injecting the remaining half of the required fuel amount. Become. The fuel injection start timing is set so that the intake bottom dead center is obtained when these two valve opening times t1 'and t2' are continuously realized.

最大噴射率と最小噴射率との間の中間の噴射率より噴射率を高める場合には、高リフト量で噴射される燃料量を要求燃料量の半分より多くし、その分、低リフト量で噴射される燃料量を要求燃料量の半分より少なくすれば良い。また、最大噴射率と最小噴射率との間の中間の噴射率より噴射率を低くする場合には、高リフト量で噴射される燃料量を要求燃料量の半分より少なくし、その分、低リフト量で噴射される燃料量を要求燃料量の半分より多くすれば良い。   When the injection rate is increased from the intermediate injection rate between the maximum injection rate and the minimum injection rate, the amount of fuel injected with the high lift amount is made more than half of the required fuel amount, and the amount of low lift is reduced accordingly. The amount of fuel injected may be less than half of the required fuel amount. In addition, when the injection rate is set lower than the intermediate injection rate between the maximum injection rate and the minimum injection rate, the amount of fuel injected with a high lift amount is set to be less than half of the required fuel amount, and the amount is reduced accordingly. The amount of fuel injected by the lift amount may be set to be larger than half of the required fuel amount.

このように、要求燃料量のうちで、高リフト量で噴射される燃料量の割合を大きくするほど(それに応じて、低リフト量で噴射される燃料量の割合は小さくなる)、噴射率を高くすることができ、また、高リフト量で噴射される燃料量の割合を小さくするほど(それに応じて、低リフト量で噴射される燃料量の割合は大きくなる)、噴射率を低くすることができる。それにより、気筒内に形成されるタンブル流の強さが弱いほど、噴射率を低くする燃料噴射が可能となり、燃料噴霧Fがタンブル流を突き抜けないようにしてタンブル流を確実に強めることができると共に、不必要に燃料噴霧の貫徹力が強くされないために、タンブル流を利用した噴射燃料の分散が促進され、良好な均質混合気を形成するのに有利である。   Thus, the larger the ratio of the fuel amount injected with the high lift amount out of the required fuel amount (the proportion of the fuel amount injected with the low lift amount becomes smaller accordingly), the injection rate becomes smaller. The injection rate can be lowered as the ratio of the fuel amount injected with a high lift amount decreases (the proportion of the fuel amount injected with a low lift amount increases accordingly) Can do. As a result, the lower the strength of the tumble flow formed in the cylinder, the lower the injection rate, the fuel injection becomes possible, and the fuel spray F can be surely strengthened so as not to penetrate the tumble flow. At the same time, since the penetration force of the fuel spray is not increased unnecessarily, the dispersion of the injected fuel using the tumble flow is promoted, which is advantageous for forming a good homogeneous mixture.

本実施形態において、燃料噴射終了時期を吸気下死点としたが、これは本発明を限定するものではなく、燃料噴射が主に吸気行程末期に実施されるようにすれば良く、燃料噴射終了時期は吸気下死点近傍であって良い。   In the present embodiment, the fuel injection end timing is the intake bottom dead center, but this is not a limitation of the present invention, and it is sufficient that the fuel injection is performed mainly at the end of the intake stroke. The timing may be near the intake bottom dead center.

本発明による筒内噴射式火花点火内燃機関の実施形態を示すシリンダヘッドの底面図である。It is a bottom view of a cylinder head showing an embodiment of a cylinder injection type spark ignition internal combustion engine by the present invention. 図1の筒内噴射式火花点火内燃機関の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the cylinder injection type spark ignition internal combustion engine of FIG. 弁体のリフトパターンを示すタイムチャートである。It is a time chart which shows the lift pattern of a valve body. 弁体のもう一つのリフトパターンを示すタイムチャートである。It is a time chart which shows another lift pattern of a valve body.

符号の説明Explanation of symbols

1 燃料噴射弁
2 点火プラグ
3 ピストン
T タンブル流
F 噴射燃料
1 Fuel Injection Valve 2 Spark Plug 3 Piston T Tumble Flow F Injection Fuel

Claims (3)

気筒上部略中心に配置された燃料噴射弁と、気筒上部に配置された点火プラグとを具備し、シリンダボアの排気弁側に沿って下降してシリンダボアの吸気弁側に沿って上昇するように気筒内を旋回するタンブル流を強めるために、吸気行程末期において前記燃料噴射弁によりシリンダボアの排気弁側へ向けて燃料が噴射され、前記タンブル流を生成する吸気の気筒内へ流入する際の運動エネルギが小さい時には、前記運動エネルギが大きい時に比較して、前記タンブル流を強めるために前記燃料噴射弁から噴射される燃料の噴射率を低くすることを特徴とする筒内噴射式火花点火内燃機関。   A cylinder having a fuel injection valve disposed substantially at the center of the cylinder upper portion and a spark plug disposed at the upper portion of the cylinder, and descending along the exhaust valve side of the cylinder bore and rising along the intake valve side of the cylinder bore In order to intensify the tumble flow turning inside, the fuel is injected by the fuel injection valve toward the exhaust valve side of the cylinder bore at the end of the intake stroke, and the kinetic energy when the intake air that generates the tumble flow flows into the cylinder An in-cylinder spark-ignition internal combustion engine characterized by lowering the injection rate of the fuel injected from the fuel injection valve when the kinetic energy is small compared to when the kinetic energy is large. 前記タンブル流を生成する吸気の前記運動エネルギが小さいほど、前記燃料噴射弁から噴射される燃料の前記噴射率は低くされることを特徴とする請求項1に記載の筒内噴射式火花点火内燃機関。   2. The direct injection spark ignition internal combustion engine according to claim 1, wherein the injection rate of the fuel injected from the fuel injection valve is lowered as the kinetic energy of the intake air generating the tumble flow is smaller. . 前記燃料噴射弁は、弁体を高リフト量及び低リフト量の二段階に制御可能であり、前記高リフト量だけの前記弁体の開弁により最大噴射率の燃料噴射が実現され、前記低リフト量だけの前記弁体の開弁により最小噴射率の燃料噴射が実現され、前記最大噴射率と前記最小噴射率との間の噴射率は、前記弁体を前記高リフト量及び前記低リフト量の一方及び他方で連続的に開弁させることにより実現することを特徴とする請求項2に記載の筒内噴射式火花点火内燃機関。   The fuel injection valve can control the valve body in two stages of a high lift amount and a low lift amount, and fuel injection at a maximum injection rate is realized by opening the valve body by the high lift amount, and the low injection amount is achieved. The fuel injection with the minimum injection rate is realized by opening the valve body with the lift amount only, and the injection rate between the maximum injection rate and the minimum injection rate is that the valve body has the high lift amount and the low lift rate. 3. The direct injection spark ignition internal combustion engine according to claim 2, which is realized by continuously opening the valve at one and the other of the quantities.
JP2006127353A 2006-05-01 2006-05-01 Cylinder injection type spark ignition internal combustion engine Pending JP2007297989A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006127353A JP2007297989A (en) 2006-05-01 2006-05-01 Cylinder injection type spark ignition internal combustion engine
PCT/IB2007/001098 WO2007125400A2 (en) 2006-05-01 2007-04-27 In-cylinder injection type spark-ignition internal combustion engine
US12/224,603 US20090013962A1 (en) 2006-05-01 2007-04-27 In-Cylinder Injection Type Spark Ignition-Internal Combustion Engine
CNA200780014322XA CN101427017A (en) 2006-05-01 2007-04-27 In-cylinder injection type spark-ignition internal combustion engine
KR1020087026722A KR20080106589A (en) 2006-05-01 2007-04-27 In-cylinder injection type spark-ignition internal combustion engine
EP07734416A EP2016273A2 (en) 2006-05-01 2007-04-27 In-cylinder injection type spark-ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006127353A JP2007297989A (en) 2006-05-01 2006-05-01 Cylinder injection type spark ignition internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007297989A true JP2007297989A (en) 2007-11-15

Family

ID=38655876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006127353A Pending JP2007297989A (en) 2006-05-01 2006-05-01 Cylinder injection type spark ignition internal combustion engine

Country Status (6)

Country Link
US (1) US20090013962A1 (en)
EP (1) EP2016273A2 (en)
JP (1) JP2007297989A (en)
KR (1) KR20080106589A (en)
CN (1) CN101427017A (en)
WO (1) WO2007125400A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174449A (en) * 2008-01-25 2009-08-06 Toyota Motor Corp Internal combustion engine
WO2013073111A1 (en) * 2011-11-18 2013-05-23 株式会社デンソー Fuel injection control device for internal combustion engine
JP2015057552A (en) * 2014-12-22 2015-03-26 株式会社デンソー Fuel injection control device for internal combustion engine

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2047079A1 (en) * 2006-08-04 2009-04-15 Toyota Jidosha Kabushiki Kaisha Direct injection spark ignition internal combustion engine and fuel injection method for same
DE112014002349B4 (en) * 2013-05-10 2019-12-05 Denso Corporation Fuel injection control device and fuel injection system
JP6307971B2 (en) * 2014-03-27 2018-04-11 株式会社デンソー Fuel injection control device
JP6172189B2 (en) * 2015-03-23 2017-08-02 マツダ株式会社 Fuel injection control device for direct injection engine
JP6337877B2 (en) * 2015-12-10 2018-06-06 マツダ株式会社 Combustion chamber structure of internal combustion engine
JP7052534B2 (en) * 2018-05-02 2022-04-12 マツダ株式会社 Compression ignition engine controller
AT524316B1 (en) * 2021-02-25 2022-05-15 Avl List Gmbh COMBUSTION ENGINE
AT526350B1 (en) 2022-08-08 2024-02-15 Avl List Gmbh Internal combustion engine with a top-down cooling concept

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3295975B2 (en) * 1992-09-02 2002-06-24 日産自動車株式会社 gasoline engine
DE19730842A1 (en) * 1997-07-18 1999-01-21 Audi Ag IC engine
DE19962293A1 (en) * 1999-12-23 2001-06-28 Fev Motorentech Gmbh Piston internal combustion engine has direct fuel injection, roof-shaped cylinder ceiling and piston base in vertical section, one roof surface associated with inlet valves, one with outlet valve
JP4032690B2 (en) * 2001-10-09 2008-01-16 株式会社日立製作所 In-cylinder injection gasoline engine
JP4342481B2 (en) * 2005-06-28 2009-10-14 トヨタ自動車株式会社 In-cylinder injection spark ignition internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174449A (en) * 2008-01-25 2009-08-06 Toyota Motor Corp Internal combustion engine
JP4506844B2 (en) * 2008-01-25 2010-07-21 トヨタ自動車株式会社 Internal combustion engine
WO2013073111A1 (en) * 2011-11-18 2013-05-23 株式会社デンソー Fuel injection control device for internal combustion engine
JP2013108422A (en) * 2011-11-18 2013-06-06 Denso Corp Fuel injection control device of internal combustion engine
CN103946522A (en) * 2011-11-18 2014-07-23 株式会社电装 Fuel injection control device for internal combustion engine
CN103946522B (en) * 2011-11-18 2016-08-31 株式会社电装 The fuel injection control apparatus of internal combustion engine
JP2015057552A (en) * 2014-12-22 2015-03-26 株式会社デンソー Fuel injection control device for internal combustion engine

Also Published As

Publication number Publication date
KR20080106589A (en) 2008-12-08
WO2007125400A2 (en) 2007-11-08
US20090013962A1 (en) 2009-01-15
CN101427017A (en) 2009-05-06
EP2016273A2 (en) 2009-01-21
WO2007125400A3 (en) 2008-04-24

Similar Documents

Publication Publication Date Title
JP2007297989A (en) Cylinder injection type spark ignition internal combustion engine
JP4722129B2 (en) In-cylinder injection spark ignition internal combustion engine
JP6056989B2 (en) Control unit for direct injection gasoline engine
JP4277883B2 (en) In-cylinder injection spark ignition internal combustion engine
JP4541846B2 (en) In-cylinder injection engine
WO2015129285A1 (en) Device for controlling direct-injection gasoline engine
JP2008088856A (en) Cylinder injection type spark ignition internal combustion engine
JP4321567B2 (en) In-cylinder injection spark ignition internal combustion engine
JP4715687B2 (en) In-cylinder injection spark ignition internal combustion engine
JP2007327464A (en) Direct injection type spark ignition internal combustion engine
JP2009024627A (en) Cylinder-injection spark-ignition internal combustion engine
JP2009174440A (en) Cylinder injection type spark ignition internal combustion engine
JP2007146680A (en) Cylinder injection type spark ignition internal combustion engine
JP4582049B2 (en) In-cylinder injection spark ignition internal combustion engine
JP6631574B2 (en) Premixed compression ignition engine
JP2007309277A (en) Cylinder injection type spark ignition internal combustion engine
JP6402753B2 (en) Combustion chamber structure of direct injection engine
JP2008202534A (en) Fuel injection control device for cylinder injection type internal combustion engine
JP2008019840A (en) Cylinder injection type spark ignition internal combustion engine
JP4720799B2 (en) In-cylinder direct injection internal combustion engine
JP2006274890A (en) Cylinder injection type internal combustion engine
JP4840213B2 (en) In-cylinder injection spark ignition internal combustion engine
JP2009275671A (en) Direct injection type spark ignition internal combustion engine
JP2008223677A (en) Cylinder injection type spark ignition internal combustion engine
JP2007255267A (en) Cylinder injection type spark ignition internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080902