JPS60190217A - Operation control of wet desulfurization and denitration apparatus - Google Patents

Operation control of wet desulfurization and denitration apparatus

Info

Publication number
JPS60190217A
JPS60190217A JP59046256A JP4625684A JPS60190217A JP S60190217 A JPS60190217 A JP S60190217A JP 59046256 A JP59046256 A JP 59046256A JP 4625684 A JP4625684 A JP 4625684A JP S60190217 A JPS60190217 A JP S60190217A
Authority
JP
Japan
Prior art keywords
gas
amount
nox
concn
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59046256A
Other languages
Japanese (ja)
Inventor
Kouzaburou Kinoshita
木下 浩三郎
Yoshitora Okada
岡田 良虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP59046256A priority Critical patent/JPS60190217A/en
Publication of JPS60190217A publication Critical patent/JPS60190217A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To suppress the charge amount of a stock material to a necessary min. degree, in the operation control of a wet desulfurization and denitration apparatus, by applying feed forward control and feed back control to the charge amount of a chemical agent for generating ClO2-gas on the basis of NOx-concn. CONSTITUTION:SOx/NOx-containing exhaust gas generated in a boiler 1 is cooled by a cooling tower 2 and mixed with ClO2-gas in a duct 2d to be sent to a disulfurization and denitration tower 3. At this time, the outputs of a biler fuel meter 11 and a conversion meter 12 for converting NOx-concn. to O2-concn. are read in an operation part 14 where the amount of ClO2-gas required in denitration is calculated to be outputted to an adder 17. On the other hand, the output of a conversion meter 13 for converting NOx-concn. to O2-concn. is outputted to a limiter 16 and the adder 17 through an output NOx-concn. controller 15. A limiter 18 controls supply valves 9a-9c from the feed forward signal and a feed back signal inputted to the adder 17 and controls the generation amount of the Cl2-gas. By this method, exhaust gas mixed with ClO2-gas is desulfurized and denitrated to be exhausted from a chimney 6.

Description

【発明の詳細な説明】 〔産業−1−の利用分野〕 本発明はCpO2ガス原料の投入量の変更によってCj
! 02ガス発生量を調節する湿式脱硫脱硝装置の運転
制御方法に関する。
[Detailed Description of the Invention] [Field of Application in Industry-1-] The present invention provides Cj
! 02 relates to a method for controlling the operation of a wet desulfurization and denitrification equipment that adjusts the amount of gas generated.

〔従来技術〕[Prior art]

一定量を越えるNOx、SOxを含む燃焼排ガスは公害
規制のためそのまま大気中に放出することば出来ない。
Combustion exhaust gas containing NOx and SOx exceeding a certain amount cannot be directly released into the atmosphere due to pollution regulations.

このため従来より排ガスの脱硫脱硝方法が種々提案され
、実施されているが、従来より広く用いられている湿式
の脱硫脱硝装置においてはNa011. Cj! O7
を利用して以下の如き反応により脱硫、脱硝を行ってい
る。
For this reason, various exhaust gas desulfurization and denitration methods have been proposed and implemented in the past, but in the wet type desulfurization and denitration equipment that has been widely used in the past, Na011. Cj! O7
Desulfurization and denitration are carried out using the following reactions.

先ず脱硫の化学反応は下記(1)式で代表される。First, the chemical reaction of desulfurization is represented by the following formula (1).

502 + 2Na011−=Na2503 + N2
0 =illまた脱硝の化学反応は下記(2)、(3〕
式で代表される。
502 + 2Na011-=Na2503 + N2
0 =ill Also, the chemical reaction of denitrification is as follows (2), (3)
It is represented by the formula.

2NO+Cj! 02 +H20−1NOz +1IN
Or +IICA・・・(2)NO2+2Na25O3
−2Na2 S01 +’A N2 =131(11式
で示す反応は十分なNa011の供給により略完全な脱
硫が可能であり、生成されたNa2503は(3)式で
示すNa2 so、として用いられる。一方(2)式で
用いるCj2O,、は予め製造したものをボンへ、或い
はタンクから供給する方法が採られる場合もあるが、コ
スト面から下記(4)式の反応を利用してcxO2を発
生さ・U、これを供給する方法が採られている。
2NO+Cj! 02 +H20-1NOz +1IN
Or +IICA...(2)NO2+2Na25O3
-2Na2 S01 +'A N2 = 131 (The reaction shown in equation 11 can achieve almost complete desulfurization by supplying sufficient Na011, and the generated Na2503 is used as Na2 so shown in equation (3).On the other hand Cj2O, used in equation (2), may be produced in advance and fed into a bomb or from a tank, but from a cost perspective, it is also possible to generate cxO2 using the reaction in equation (4) below.・U, a method of supplying this is adopted.

2NaC60341+2504 +SO2’2CeC)
z +2NallSO4・・・(4) ところでに記(4)式で示す反応により装造されるCa
O2、並びにNa2503は上記+21. (31式で
示す反応を促進し、脱硝率を高めるために従来は若干過
剰気味に供給されていた。しかしこのような供給力法は
経済性の面からは無駄が多いことは勿論、反応残りの6
7!02が装置の腐食を促進し、またこれが大気中に放
出されるのを防止するために用いられている還元吸収剤
の使用量が増ずなどの問題があった。このため近時にあ
っては脱硫脱硝装置の入側における1)1〜ガス中のN
O絶対量をめ、これを酸化するのに必要で、且つ十分な
C7!02を供給する力性が提案され、既に本出願人に
よって11許出願がなされ(特開昭55〜127128
号)、また実用化もなされている。
2NaC60341+2504 +SO2'2CeC)
z +2NallSO4...(4) By the way, Ca produced by the reaction shown in formula (4)
O2 and Na2503 are +21. (In order to accelerate the reaction shown in Equation 31 and increase the denitrification rate, a slightly excessive supply was conventionally used.However, such a supply power method is not only wasteful from an economic point of view, but also 6
7!02 accelerates corrosion of the equipment, and the amount of reducing absorbent used to prevent it from being released into the atmosphere does not increase. For this reason, recently, 1) 1 to N in the gas at the inlet side of the desulfurization and denitrification equipment is
The ability to supply sufficient C7!02 necessary and sufficient to oxidize O based on the absolute amount of O was proposed, and the present applicant has already filed an application for 11th patent (Japanese Patent Laid-Open No. 55-127128).
(No.), and has also been put into practical use.

しかしこの方法においても脱硫脱硝装置の入側における
排ガス中のNO絶対量はボイラ等の操業条件、その他各
種の外乱によって変動すること、NO絶対量の測定値に
゛基づきCβ02発生のためのNaCj! 0311+
2 SOt 、 SOz等各薬品の供給をフィードフォ
ワード制御しているが、化学反応の遅れを考慮しても脱
硫脱硝塔内において、NO量と、その酸化に必要なC7
!02量とを完全に一致させるのは極めて難しいこと、
NO絶対最に測定誤差があること等の理由から、Ci1
! 02の供給計は若干過剰気味であり、実操業面にお
いても脱硫脱硝装置の排ガス出口におけるNoxa度は
管理目標値よりも低きに過ぎる状態にあり、各Cβ02
ガス用原料、過剰ClO2ガスの吸収剤の使用量が多く
ランニングコストが高いという問題があった。
However, even in this method, the absolute amount of NO in the exhaust gas at the inlet side of the desulfurization and denitrification equipment fluctuates depending on the operating conditions of the boiler and other various disturbances.Based on the measured value of the absolute amount of NO, NaCj! 0311+
2 The supply of chemicals such as SOt and SOz is controlled in a feed-forward manner, but even if the delay in chemical reactions is taken into account, the amount of NO and the amount of C7 necessary for its oxidation are reduced in the desulfurization and denitrification tower.
! It is extremely difficult to completely match the amount of 02,
For reasons such as the fact that there is a measurement error in the absolute
! The supply meter for 02 is slightly excessive, and in actual operation, the Noxa degree at the exhaust gas outlet of the desulfurization and denitrification equipment is too low than the management target value, and each Cβ02
There was a problem in that a large amount of gas raw material and an absorbent for excess ClO2 gas were used, resulting in high running costs.

〔目的〕〔the purpose〕

本発明はかかる事情に鑑みなされたものであって、その
目的とするところは脱硫脱硝装置の排ガス入口で測定し
たNOx相対量に基づき脱硝に必要なCβ02ガスを発
生させるための薬品投人足をフィードフォワード制御す
ると共に、脱硫脱硝装置の排ガス出1」で測定下NOx
 濃度を管理目標値に近づけるようC7!02ガス量を
修正すべく、薬品段大量をフィードハック制fffll
 シ、原料投入量を必要、且つ最少限に納めて効率的な
装置の運転を行い得るようにした湿式脱硫脱硝装置の運
転制御方法を提供するにある。
The present invention has been made in view of the above circumstances, and its purpose is to introduce chemical injections to generate Cβ02 gas necessary for denitrification based on the relative amount of NOx measured at the exhaust gas inlet of the desulfurization and denitrification equipment. In addition to feedforward control, NOx is measured at the exhaust gas output 1 of the desulfurization and denitrification equipment.
In order to correct the C7!02 gas amount so that the concentration approaches the control target value, a large amount of chemical stage is feed-hacked fffll
Another object of the present invention is to provide a method for controlling the operation of a wet desulfurization and denitrification apparatus, which enables efficient operation of the apparatus by minimizing the amount of raw materials input.

〔構成〕〔composition〕

本発明に係る湿式脱硫脱硝装置はその原料投入量の変更
によってClO2ガス発生量を調節する湿式脱硫脱硝装
置において、前記脱硫脱硝装置のJJトガス入側におり
る排ガス中のNOx相対量に基づいて脱硝に必要なC4
O□ガス量を決定し、これを実現すべく原料投入量をフ
ィードフォワード制御すると共に、前記脱硫脱硝装置の
排ガス出側におL)る排ガス中のNOx ii度を実測
し、この実測値が予め定めた管理目標値に一致するよう
C7!02ガスの供給pを修正ずべく原料投入量をフィ
ードバック制御a11することを特徴とする。
The wet desulfurization and denitrification equipment according to the present invention is a wet type desulfurization and denitration equipment that adjusts the amount of ClO2 gas generated by changing the raw material input amount, based on the relative amount of NOx in the exhaust gas flowing into the JJ gas inlet side of the desulfurization and denitration equipment. C4 required for denitrification
The amount of O□ gas is determined, and in order to achieve this, the amount of raw material input is feedforward controlled, and the degree of NOx in the exhaust gas is actually measured at the exhaust gas outlet side of the desulfurization and denitrification equipment, and this actual value is It is characterized in that the amount of raw material input is feedback-controlled a11 in order to correct the supply p of C7!02 gas so as to match a predetermined management target value.

〔実施例〕〔Example〕

第1図は本発明方法の実施状態を示す模式図であり、図
中りは脱硫脱硝装置、1は燃焼ボイラ、2は冷却塔、3
は脱硫脱硝塔、4ば脱水器、5ば排風機、6は煙突、7
はClO□ガス発生器である。ボイラ1から発生したS
Ox、 NOxを含む燃焼排ガスは先ずダクト1aを経
て冷却塔2に導かれ冷却される。冷却塔2においては水
槽2aの水をポンプ2bにて冷却塔2の頂部に配したノ
スル2cから散水し、この水との接触によって燃焼排ガ
スを60℃から80℃程度にまで冷却するようになって
いる。冷却された燃焼排ガスはダクト2dを経て脱硫脱
硝塔3に送られるが、途中ダクト2d内でClO2ガス
発生器7からのC7+02ガスが混入され、にj! 0
2ガスと一部反応混合された状態で脱硫脱硝塔3の下部
に導入される。ClO2ガス発生器7は前記(7+)式
で示ず如< NaC110311+2 SOt + 5
02の各薬品をバルブ9a、9b、9cの各操作により
所定量宛投入することにって07!o2ガスを発生させ
るよう構成されており、Cl1O2ガスの発生量は上記
薬品の投入量、換言すれば各バルブ9a、 9b、 9
cの制御量によって決まる。脱硫脱硝塔3は内部に上、
下複数段の棚3aが配設され、また頂部にはノズル3b
を備えており、ノズル3bからばポンプ3Gにて液槽3
dから汲み上げられたNa011. Naz SOzを
含む水溶液が噴霧され、を合++から塔内に導入され上
昇する燃焼排ガスとの+iii記(1)、(2)、(3
)式で示す如き反応により脱(Jj脱(n’iがなされ
る。脱硫脱硝された燃焼排ガスはダクh3eから脱水器
4を経て脱水され、排風(浅5にて煙突6より大気中に
排出される。なお」−述しis脱硫脱硝装置り自体は従
来公知のものである。そして本発明方法においては上記
した如き脱硫脱(j’i装置りの入(ルjであるボイラ
1の燃焼骨組11、冷却132に至るダクトla内に配
設したNOx ’18度02jN算計12、及び出側で
ある排風機5から煙突6に1ユるダグ15.]内に設&
JたNOx 濃度02換算at13からの各検出(g号
を演算制御部10に所定のり・イミングで読み込み、こ
れに基づいて以下の制御を行う。即し先ず演算制御部1
0においてはボイラ燃焼量1tll及びNOx濃度02
換算計12の出力を演算部14にあ1Lのこめ、予め入
力されている燃料の種類によって定まる単位理論燃焼ガ
ス量に基づき脱硫脱硝装置りへの入側における燃焼排ガ
ス中のNOxOx絶対界出し、次いでこのNOx絶対量
を酸化、換言すれば脱硝するに必要なCβ02ガス量を
め、このC7!Ozガス量に相当する信号を加算器17
へ出力する。一方NOx濃度02換算計13の出力信号
は所定のタイミングで出口NOx 濃度調節計15に読
み込まれ、これを予め定めた管理目標値と一致させるに
必要な修正信号をリミッタ16へ出力する。リミッタ1
6は必要範囲内信号を加算器17へ出力する。加算器1
7においてはこれに入力されたCj! 02ガスの必要
量に相当する信号、即ちフィードフォワード信号と修正
信号、即ちフィードハック信号とを加算し、その和に相
当する信号をリミッタ18へ出力する。リミッタ18に
おいては入力信号を必要な範囲内で各薬品の供給バルブ
9a、9b。
FIG. 1 is a schematic diagram showing the implementation state of the method of the present invention, in which the lower part is a desulfurization and denitrification equipment, 1 is a combustion boiler, 2 is a cooling tower, 3
is a desulfurization and denitrification tower, 4 is a dehydrator, 5 is an exhaust fan, 6 is a chimney, 7 is
is a ClO□ gas generator. S generated from boiler 1
The combustion exhaust gas containing Ox and NOx is first led to the cooling tower 2 via the duct 1a and cooled. In the cooling tower 2, water from a water tank 2a is sprayed by a pump 2b from a nostle 2c placed at the top of the cooling tower 2, and the combustion exhaust gas is cooled from 60°C to about 80°C by contact with this water. ing. The cooled combustion exhaust gas is sent to the desulfurization and denitrification tower 3 through the duct 2d, but on the way, C7+02 gas from the ClO2 gas generator 7 is mixed in the duct 2d. 0
The gas is introduced into the lower part of the desulfurization and denitrification tower 3 in a state where it is partially reacted and mixed with the two gases. The ClO2 gas generator 7 is as shown in the above formula (7+) < NaC110311+2 SOt + 5
07! By injecting a predetermined amount of each chemical in 02 by operating the valves 9a, 9b, and 9c, 07! It is configured to generate O2 gas, and the amount of Cl1O2 gas generated depends on the amount of the above-mentioned chemical input, in other words, each valve 9a, 9b, 9
It is determined by the control amount of c. The desulfurization and denitrification tower 3 has a
A plurality of lower shelves 3a are arranged, and a nozzle 3b is installed at the top.
The liquid tank 3 is supplied from the nozzle 3b with the pump 3G.
Na011.d pumped from d. An aqueous solution containing Naz SOz is sprayed, and the mixture is introduced into the tower and mixed with the rising combustion exhaust gas (1), (2), (3).
) Desorption (Jj de(n'i) is carried out by the reaction shown in the equation. The desulfurized and denitrated combustion exhaust gas is dehydrated from the duct h3e through the dehydrator 4, and is discharged into the atmosphere from the chimney 6 at the shallow end 5. Note that the desulfurization and denitrification equipment mentioned above is conventionally known.In the method of the present invention, the desulfurization and denitrification equipment as described above is used. NOx '18 degrees 02jN calculator 12 installed in the duct la leading to the combustion frame 11 and the cooling 132, and the 1 unit duct 15 installed from the exhaust fan 5 on the exit side to the chimney 6
Each detection (g) from the NOx concentration 02 conversion at13 is read into the arithmetic control unit 10 at a predetermined timing and timing, and the following control is performed based on this.
At 0, the boiler combustion amount is 1tll and the NOx concentration is 02
The output of the converter 12 is inputted into the calculation unit 14 to determine the absolute level of NOxOx in the combustion exhaust gas at the entrance to the desulfurization and denitration equipment based on the unit theoretical combustion gas amount determined by the type of fuel inputted in advance. Next, calculate the amount of Cβ02 gas required to oxidize this absolute amount of NOx, in other words, denitrify it, and calculate this C7! Adder 17 adds a signal corresponding to the Oz gas amount.
Output to. On the other hand, the output signal of the NOx concentration 02 conversion meter 13 is read into the outlet NOx concentration controller 15 at a predetermined timing, and a correction signal necessary to make it coincide with a predetermined management target value is output to the limiter 16. Limiter 1
6 outputs a signal within the required range to the adder 17. Adder 1
In 7, the Cj! inputted to this! A signal corresponding to the required amount of 02 gas, that is, a feedforward signal, and a correction signal, that is, a feedhack signal are added together, and a signal corresponding to the sum is output to the limiter 18. In the limiter 18, each chemical supply valve 9a, 9b controls the input signal within a necessary range.

9c用設定器19a、 191)、 19cに入力し、
各薬品の投入量を制御し、fl○2ガスの発生量を調節
するようになっている。なお上記実施例においては薬品
の投入量制御を自動的に行う構成につき説明したが手動
的に行っ°(もよいことは勿論である。
Input to 9c setting device 19a, 191), 19c,
The amount of each chemical introduced is controlled to adjust the amount of fl2 gas generated. In the above embodiments, a configuration was described in which the amount of medicine inputted was automatically controlled, but it is of course possible to control the amount of chemical input manually.

第2図は本発明力法依った場合、また第3図は1it来
力法に依った場合における湿式脱硫脱硝装置りの出側、
IIII I)JJI風機出側において実測したNOx
濃度の推移を示すグラフであって、横軸に時間(分を、
また縦軸にNOx mH度(ppm )をとって示しで
ある。このグラフから明らかな如く、従来方法に依った
場合にはτi理目標値として定めたNOX 4度60円
1mを大幅に下まわっており(♀゛11線部す)、薬品
の使用コストが大きいことが推測されるが、本発明方法
に依った場合には若干のずれは認められるが、略管理目
標値に添ったNOx濃度となっており、C7!02ガス
の発生が過不足無く正確に制御され、効率的な運転が行
なわれていることが解、 る。
Figure 2 shows the output side of the wet desulfurization and denitrification equipment when the power method of the present invention is used, and Figure 3 shows the output side of the wet desulfurization and denitrification equipment when the 1 it power method is used.
III I) NOx actually measured on the outlet side of the JJI wind turbine
A graph showing changes in concentration, with time (minutes,
The graph also shows NOx mH degree (ppm) on the vertical axis. As is clear from this graph, when using the conventional method, the NOx value was significantly lower than the NOx 4 degrees 60 yen 1m set as the τi theoretical target value (♀゛11 line part), and the cost of using chemicals was high. However, when using the method of the present invention, although there is a slight deviation, the NOx concentration is approximately in line with the management target value, and the generation of C7!02 gas is accurate without excess or deficiency. It is clear that controlled and efficient operation is being carried out.

〔効果〕〔effect〕

以」二の如く本発明方法にあっては脱硫脱硝装置入側に
おりる琲カス中のNOx相対量に基づき、JJQ硝に必
要なCff 02ガス供給量を決定し、Cj!Ozガス
原′X1の投入111をフィートツメワード制御すると
共に、脱硫脱硝装置の出側におけるυ1ガス中のNOに
濃度を実測し、これを管理目標に一致させるべく投入量
をフィー1−ハック制御するから、脱硝後の燃焼排ガス
中におりるNOx濃度が管理目標値) を越える危険性
を防止出来ることは勿論、NOx濃度が管理目標値から
必要以上に低下して薬品使用が増すことも防止出来てラ
ンニングコストの低減を図れるなど、本発明は優れた’
Jノ果を奏するものである。
As described in Section 2 below, in the method of the present invention, the amount of Cff 02 gas required for the JJQ nitrate is determined based on the relative amount of NOx in the slag entering the desulfurization and denitrification equipment, and the Cj! In addition to controlling the input 111 of the Oz gas source 'X1, the concentration of NO in the υ1 gas at the outlet side of the desulfurization and denitrification equipment is actually measured, and the input amount is controlled by the fee 1-hack in order to match this with the management target. This not only prevents the risk of the NOx concentration in the combustion exhaust gas after denitrification exceeding the management target value, but also prevents the NOx concentration from dropping more than necessary from the management target value and increasing the use of chemicals. The present invention has excellent advantages such as being able to reduce running costs.
It plays the fruit of J.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施状態を示す模式図、第2図は
本発明方法における出口N0xb四度の推移を示すグラ
フ、第3図は従来方法による出口NOx濃度の推移を示
すグラフである。 D・・・湿式脱硫脱硝装置 1・・・ボイラ 2・・・
冷却塔 3・・・脱硫脱硝塔 4・・・脱水器 5・・
・Jjl風機6・・・煙突 7・・・C7!02ガス発
生器 9a、9b、9c・・・バルブ 10・・・演算
制御部 11・・・燃焼量針 12・・・NOx濃度0
2換算計 13・・・Nox濃度02換算BL 14・
・・演算部15・・・NOx濃度調節計 16・・・リ
ミッタ 17・・・加算部 18・・・リミッタ 19
a、 19b、 19c・・・設定器特許出願人 住友
金属工業株式会社 代理人弁理士河野登夫
Fig. 1 is a schematic diagram showing the implementation state of the method of the present invention, Fig. 2 is a graph showing the change in outlet NOxb four degrees in the method of the present invention, and Fig. 3 is a graph showing the change in outlet NOx concentration according to the conventional method. . D...Wet desulfurization and denitrification equipment 1...Boiler 2...
Cooling tower 3... Desulfurization and denitrification tower 4... Dehydrator 5...
・Jjl wind machine 6...Chimney 7...C7!02 gas generator 9a, 9b, 9c...Valve 10...Arithmetic control section 11...Combustion amount needle 12...NOx concentration 0
2 conversion total 13...Nox concentration 02 conversion BL 14.
...Calculation section 15...NOx concentration controller 16...Limiter 17...Addition section 18...Limiter 19
a, 19b, 19c...Setting device patent applicant Tomio Kono, patent attorney representing Sumitomo Metal Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、 その原料投入量の変更によってCA’02ガス発
生鼠を調節する湿式脱硫膜モ1’i装置の運転制御力法
において、前記脱硫脱硝装置の排ガス入側におりる拮ガ
ス中のNOx相対量に基づいて脱硝に必要なc z ’
o 2ガス量を決定し、これを実現すべく原料投入量を
フィードフォソーF制御′4゛るとノ(に、前記脱硫膜
+i1’i装置のJJFガス出側におりる排ガス中のN
OX 濃度を実測し、この実測値が予め定めた管理目標
値に一致するようCβ02ガスの供給量を修正すべく原
オ“−1投入団をフィードバック制御することを特徴と
する湿式脱硫脱硝装置の運転制御方法。
1. In the operation control force method of the wet desulfurization membrane model 1'i equipment, which adjusts the CA'02 gas generation rate by changing the raw material input amount, the relative NOx in the antagonistic gas flowing into the exhaust gas input side of the desulfurization and denitrification equipment is c z ' required for denitrification based on the amount
o 2 Determine the amount of gas and feed the raw material input amount to achieve this.
A wet desulfurization and denitrification device characterized in that the OX concentration is actually measured and the raw O'-1 input group is feedback-controlled in order to correct the supply amount of Cβ02 gas so that the measured value matches a predetermined control target value. Operation control method.
JP59046256A 1984-03-09 1984-03-09 Operation control of wet desulfurization and denitration apparatus Pending JPS60190217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59046256A JPS60190217A (en) 1984-03-09 1984-03-09 Operation control of wet desulfurization and denitration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59046256A JPS60190217A (en) 1984-03-09 1984-03-09 Operation control of wet desulfurization and denitration apparatus

Publications (1)

Publication Number Publication Date
JPS60190217A true JPS60190217A (en) 1985-09-27

Family

ID=12742103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59046256A Pending JPS60190217A (en) 1984-03-09 1984-03-09 Operation control of wet desulfurization and denitration apparatus

Country Status (1)

Country Link
JP (1) JPS60190217A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005528209A (en) * 2002-06-05 2005-09-22 エクソンモービル リサーチ アンド エンジニアリング カンパニー Method for reducing NOx in waste gas streams using chlorine dioxide
JP2006305566A (en) * 2005-04-25 2006-11-09 Korea Inst Of Energy Research Method for removing sulfur dioxide and nitrogen oxide contained in combustion exhaust gas
CN109718653A (en) * 2019-02-14 2019-05-07 中国石油大学(北京) A kind of flue gas desulfurization and denitrification device and method
CN112403238A (en) * 2020-11-02 2021-02-26 攀枝花市蓝鼎环保科技有限公司 A SOx/NOx control device for high sulfur concentration flue gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005528209A (en) * 2002-06-05 2005-09-22 エクソンモービル リサーチ アンド エンジニアリング カンパニー Method for reducing NOx in waste gas streams using chlorine dioxide
JP2006305566A (en) * 2005-04-25 2006-11-09 Korea Inst Of Energy Research Method for removing sulfur dioxide and nitrogen oxide contained in combustion exhaust gas
JP4486615B2 (en) * 2005-04-25 2010-06-23 韓国エネルギー技術研究院 Method for removing sulfur dioxide and nitrogen oxides from flue gas
CN109718653A (en) * 2019-02-14 2019-05-07 中国石油大学(北京) A kind of flue gas desulfurization and denitrification device and method
CN112403238A (en) * 2020-11-02 2021-02-26 攀枝花市蓝鼎环保科技有限公司 A SOx/NOx control device for high sulfur concentration flue gas
CN112403238B (en) * 2020-11-02 2022-11-29 攀枝花市蓝鼎环保科技有限公司 A SOx/NOx control device for high sulfur concentration flue gas

Similar Documents

Publication Publication Date Title
JPS6157927B2 (en)
JPH06205935A (en) Denitrification control device
EP0190366A1 (en) Boiler capable of recovering waste heat and having denitration devices
JPS60190217A (en) Operation control of wet desulfurization and denitration apparatus
EP3647659A1 (en) Gas combustion treatment device, combustion treatment method, and gas purification system provided with gas combustion treatment device
JPS61263618A (en) Improved method for reducing discharge of nox of combustion efluent
US7780934B2 (en) Method and system for reducing ammonia slip after selective reduction of NOx
JPH1114034A (en) Exhaust gas treating apparatus and operation method thereof
JPS60110321A (en) Control of exhaust gas desulfurizing plant
US6123910A (en) Method of predicting and controlling harmful oxide and apparatus therefor
JP3997340B2 (en) Method of controlling the number of absorption tower circulation pumps in flue gas desulfurization equipment
EP0468205B1 (en) Apparatus for treating exhaust gas
CN112649553A (en) Method for testing natural oxidation rate of slurry in limestone wet desulphurization absorption tower
US5681375A (en) Boiler flue gas conditioning system using dilute sulfuric acid injection
JPS62276322A (en) Nitrogen oxide reducing device
US3791103A (en) Method of treating waste gas arising from industrial facility
JP2809411B2 (en) Slurry circulation control system for wet flue gas desulfurization unit
JPH0631136A (en) Method for controlling injection of ammonia to denitrator in circulating system in combination of gas turbine and waste heat recovery boiler
JP3544716B2 (en) Method and apparatus for controlling ammonia injection amount in denitration apparatus
JPH0411248B2 (en)
JPH08318132A (en) Method for denitrating waste gas and denitrator
JPS6121720A (en) Control apparatus of wet waste gas desulfurization apparatus
JPS5955334A (en) System for controlling injection of reducing agent in denitrator for stack gas
JPH0452401A (en) Exhaust heat recovery system provided with denitrification device
JPH0367728B2 (en)