JPS60189967A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60189967A
JPS60189967A JP59045666A JP4566684A JPS60189967A JP S60189967 A JPS60189967 A JP S60189967A JP 59045666 A JP59045666 A JP 59045666A JP 4566684 A JP4566684 A JP 4566684A JP S60189967 A JPS60189967 A JP S60189967A
Authority
JP
Japan
Prior art keywords
region
transistor
channel
parasitic
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59045666A
Other languages
Japanese (ja)
Inventor
Tetsutada Sakurai
桜井 哲真
Katsutoshi Izumi
泉 勝俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59045666A priority Critical patent/JPS60189967A/en
Publication of JPS60189967A publication Critical patent/JPS60189967A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7824Lateral DMOS transistors, i.e. LDMOS transistors with a substrate comprising an insulating layer, e.g. SOI-LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0928Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising both N- and P- wells in the substrate, e.g. twin-tub
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To contrive the improvement in high withstand voltage characteristic by eliminating the heat runaway of an element by reduction in parasitic bi-polar effect by a method wherein at least a region containing generated recombination centers or a region whose band gap is winder than that of the semiconductor region in the periphery is formed in the base region of a parasitic bi-polar transistor. CONSTITUTION:A P type island 18 and an N type island 19 are provided in a supporting substrate 16 made of polycrystalline Si or the like via isolation film 17 composed of an insulation film or a semi-inuslation film. A P-channel DSA-structural MOS transistor 20 and an N-channel DSA-structural MOS transistor 21 are formed in these islands. The transistors 20 and 21 have drains 3, channels 4, sources 5, the insulation films 6 of gates, the insulation films 7 of fields, source electrodes 8, gate electrodes 9, drain electrodes 10, contact windows 11, and field plates 81 and 91; besides, consists of buried layers 22, etc. for reduction in so called back gate effect. Then, a region containing a large amount of generated recombination centers, region whose band gap is wider than that of the semiconductor region in the periphery, or region 23 having both these effects is formed in the channel 4 serving as the base of the parasitic bi-polar transistor.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高耐圧特性を有するMOsトランジスタに関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a MOS transistor having high breakdown voltage characteristics.

(従来技術) 高耐圧特性を有するMO日トランジスタの構造としては
、いわゆるD8ム(Diffusion Self−A
lign )構造、■−溝(V−groove )構造
、オフセットゲート構造及びこれらの変形構造が知られ
ている。
(Prior art) The structure of a MO transistor with high breakdown voltage characteristics is the so-called D8M (Diffusion Self-A
lign) structure, -groove (V-groove) structure, offset gate structure, and modified structures thereof are known.

この内、DSA構造は高耐圧素子であシ、かつ集積化が
容易でsbチャネル長を短くできるため、高性能(高り
、高fT)を必要とするMOsトランジスタに幅広く採
用されていた。このDSA構造のMOSト2ンジスタの
代表的な構造を第1図に示す。以下、この図に従い、従
来構造が有していた欠点を明らかにする吃のである。尚
、以下の説明では半導体に存在する二つの伝導形のうち
、一方を例にとシ進めるが、他方についても同様な結果
を得るものである。支持基板1中に形成されたUSA 
蝉造のMOS )ランジスタは、基板の伝導形をN形と
した場合、v形の°ドレイン3.P形のチャネル部4゜
1形のソース5.ゲート部の絶縁膜6.フィールド部の
絶縁膜7.ソース電極8.ゲート電極9゜ドレイン電極
10.及びコンタクト窓11などからなっている。動作
状態にシいては、ゲート電極9に印加された入力端子に
よって絶縁膜6の下のチャネル部4にチャネル12が形
成されて増幅された信号電流が流れると共に、チャネル
部4と基板1で形成されたPN接合の近傍に空乏層13
が出現し、ソース電極8〜ドしイン電極10間に印加さ
れた電圧を負担するものである。この時、ソース電極8
及びゲート電極9の一部を絶縁M7上でチャネル部4よ
り外方に延ばした構造(通常フィールドプレート構造8
1.91と呼称)とすることは、空乏層13の絶縁膜7
に近い部分を同様に外方に延ばして電界の集中を防ぐこ
とが可能となり高耐圧化に極めて有利となるものである
Among these, the DSA structure is a high breakdown voltage element, easy to integrate, and can shorten the sb channel length, so it has been widely used in MOS transistors that require high performance (high, high fT). A typical structure of a MOS transistor having this DSA structure is shown in FIG. Below, we will explain the drawbacks of the conventional structure using this diagram. In the following explanation, one of the two conduction types existing in semiconductors will be taken as an example, but similar results will be obtained with the other type. USA formed in support substrate 1
Semizo's MOS) transistor has a v-type drain when the conduction type of the substrate is N type. P-type channel section 4.1-type source 5. Insulating film at gate part 6. Insulating film in field section7. Source electrode8. Gate electrode 9° Drain electrode 10. and a contact window 11. In the operating state, a channel 12 is formed in the channel portion 4 under the insulating film 6 by the input terminal applied to the gate electrode 9, and an amplified signal current flows through the channel portion 4. A depletion layer 13 is formed near the PN junction.
appears and bears the voltage applied between the source electrode 8 and the in-electrode 10. At this time, the source electrode 8
and a structure in which a part of the gate electrode 9 is extended outward from the channel part 4 on the insulating M7 (normally a field plate structure 8).
1.91) means that the insulating film 7 of the depletion layer 13
This makes it possible to prevent concentration of electric fields by similarly extending the portions close to the outside to the outside, which is extremely advantageous in increasing the withstand voltage.

さて、この構造の素子においては空乏層13内において
、正孔14及び電子15からな゛るキャ0リアの発生が
生ずる。この内篭子15は基板l中で多数キャリアーと
して振るまうため、あまシ問題と々らないが、正孔14
はチャネル部4中に流れこみ、チャネル部4の電位を上
ける働き管するものでおる。チャネル部4の電位が変動
するとゲート電極9に印加された大刀信号が変動するこ
ととなシ、正−常な増幅動作が期待できず、素子特性の
劣化をもたらすこととなる。そこで、このようなチャネ
ル電位の変動を防ぐためコンタクト窓11を用いて、比
較的定電位を有するソース電極8をチャネル部4及びソ
ース5に同時に電気的に接触させる構造とする。
Now, in the element having this structure, carriers consisting of holes 14 and electrons 15 are generated within the depletion layer 13. This inner cage 15 acts as a majority carrier in the substrate l, so there is no problem, but the hole 14
flows into the channel portion 4 and serves to increase the potential of the channel portion 4. If the potential of the channel section 4 fluctuates, the long signal applied to the gate electrode 9 will fluctuate, and normal amplification operation cannot be expected, resulting in deterioration of device characteristics. Therefore, in order to prevent such fluctuations in the channel potential, a structure is adopted in which the source electrode 8 having a relatively constant potential is brought into electrical contact with the channel portion 4 and the source 5 at the same time using the contact window 11.

ソース5の下のチャネル部4はいわゆるピンチ抵抗的な
形状となるため、あたかも高抵抗(図中−’VXI−記
号で明示)が存在するかのように振るまい、正孔14の
移動即ち正孔電流が流れた場゛合、ソース5とチャネル
s4のバイアス電圧を与えることとなる。高電圧印加時
に社空乏化された領域が広がるため、キャリアの発生も
多くな)正、孔電流が増大し、ついにはソース5とチャ
ネル部4で形成されたPN接合を順バイアスする程の電
位差が生ずることとなる。さて、このような状態のD日
A構造のMOS トランジスタは本質的なMOB動作に
加えて、5をエミッタ、4をベース、1及び3をコレク
タとするいわゆる寄生バイボージ動作を伴なうこととな
る。この場合、本来のMOS )う゛ンジスタには見ら
れなかった熱暴走による素子の破壊モードが出現する。
Since the channel section 4 under the source 5 has a so-called pinch resistance shape, it behaves as if a high resistance (expressed by the symbol -'VXI- in the figure) exists, and the movement of the holes 14, i.e., the positive When a hole current flows, a bias voltage is applied to the source 5 and the channel s4. When a high voltage is applied, the depleted region expands, and more carriers are generated.Positive and hole currents increase, and the potential difference becomes large enough to forward bias the PN junction formed by the source 5 and channel part 4. will occur. Now, in addition to the essential MOB operation, the MOS transistor with the D/A structure in this state is accompanied by a so-called parasitic biborg operation in which 5 is the emitter, 4 is the base, and 1 and 3 are the collectors. . In this case, a destruction mode of the element due to thermal runaway, which was not observed in the original MOS transistor, appears.

即ち、寄生パイボーラド2ンジスタが動作し始め、かつ
チャネル部4に充分な正孔電流が流れ込むと、ソース5
からトランジスタ動作によって、hP、C倍の電子がチ
ャネル部4に注入されることとなる。この注入された多
量の電子による電流と空乏層、13に印加された電圧に
よって発熱が生ずるが、発熱によってh7゜示増大する
ため、 「正孔電流の流入−hPI倍の電子電流−発熱→hol
eの増大→h□倍の電子電流の増大−一層の発熱」 なる正帰還がかかル、ついには発熱に、よる素子の破壊
をひきおこすものである。
That is, when the parasitic piborad 2 transistor starts to operate and a sufficient hole current flows into the channel part 4, the source 5
As a result of the transistor operation, hP and C times as many electrons are injected into the channel portion 4. Heat generation occurs due to the current caused by this large amount of injected electrons and the voltage applied to the depletion layer 13, but since the heat generation increases by h7°, "inflow of hole current - electron current times hPI - heat generation → hol
Increasing e→electronic current increasing by h□ times - further heat generation" This is the positive feedback that eventually leads to heat generation and destruction of the element.

(発明の目的) 本発明は前記の如き問題点を解決し、寄生バイポーラ効
果のないDSA構造のMOS )ランジスタを提供する
ことを目的とするものである。
(Objective of the Invention) It is an object of the present invention to solve the above-mentioned problems and to provide a MOS transistor having a DSA structure without parasitic bipolar effects.

(発明の構成) 上記の目的を達成するため、本発明はMOEJ形トラン
ジスタを含む半導体装置において、寄生バイポーラトラ
ンジスタのベース領域に、生成再結合中心を含む領域又
はバンドギャップが周囲の半導体領域に比べて広い領域
が少なくとも形成されたことを特徴とする半導体装置を
発明の要旨とするものである。
(Structure of the Invention) In order to achieve the above object, the present invention provides a semiconductor device including an MOEJ transistor, in which a region containing a production recombination center or a band gap is compared to a surrounding semiconductor region in a base region of a parasitic bipolar transistor. The gist of the invention is a semiconductor device characterized in that at least a wide area is formed.

次に本発明の実施例を添附図面について説明する。なお
実施例は一つの例示であって、本発明の精神を逸脱しな
い範囲で、種々の変更あるいは改良を行いうろことは云
うまでもない。
Next, embodiments of the present invention will be described with reference to the accompanying drawings. It should be noted that the embodiments are merely illustrative, and it goes without saying that various changes and improvements may be made without departing from the spirit of the present invention.

第2図は本発明の一実施例であシ、複数の素子を同一基
板上に搭載する装置を示したものである。
FIG. 2 is an embodiment of the present invention, and shows an apparatus for mounting a plurality of elements on the same substrate.

ここでは、高耐圧化に有利な、いわゆる誘電体分離構造
としているが、通常のこの種の装置と同様、単結晶基板
中に搭載することももちろん可能である。以下の説明で
は相補形の島(P形とN形の島)を有する場合を例とす
る。多結晶81等からなる支持基板16中に絶縁膜や牛
絶縁膜等からなる分離膜17を介して、P形の島18及
びN形の島19が設けられている。これらの島の中には
PチャネルのDSA構造MO8)ランジスタ20及びN
チャネルのDSA構造のMOS )ランジスタ21が形
成される。20及び21はドレイン3.チャネル部4゜
ソース5.ゲート部の絶縁膜6.フィールド部の絶縁膜
7.ソース電極8.ゲート電極9.ドレイン電極10.
コンタクト窓11.フィールドプレート81.91を有
するほか、いわゆるバックゲート効果を小さくするため
の埋込層22などからなる。動作状態においては、ゲー
ト電極9の下の絶縁膜6と接する領域にチャネル12が
形成され、ソース5とドレイン3の間を電気的な導通状
態とし、又ソース5とドレイン3間に印加される電圧を
支える空乏層13が出現するものである。
Here, a so-called dielectric isolation structure is used, which is advantageous for increasing the withstand voltage, but it is of course possible to mount it in a single crystal substrate as in a normal device of this type. In the following description, a case where complementary islands (P-type and N-type islands) are provided will be taken as an example. A P-type island 18 and an N-type island 19 are provided in a support substrate 16 made of polycrystalline 81 or the like with a separation film 17 made of an insulating film, a copper insulating film, etc. interposed therebetween. Inside these islands are P channel DSA structure MO8) transistor 20 and N
A channel DSA structure MOS transistor 21 is formed. 20 and 21 are drains 3. Channel part 4° source 5. Insulating film at gate part 6. Insulating film in field section7. Source electrode8. Gate electrode 9. Drain electrode 10.
Contact window 11. In addition to field plates 81 and 91, it also includes a buried layer 22 to reduce the so-called back gate effect. In the operating state, a channel 12 is formed in a region under the gate electrode 9 in contact with the insulating film 6, and electrical continuity is established between the source 5 and the drain 3, and a voltage is applied between the source 5 and the drain 3. A depletion layer 13 appears that supports the voltage.

さて、本発明の構造的な特徴は寄生バイポーラトランジ
スタのベースとなるチャネル部4中に生成再結合中心を
多量に含む領域又はバンドギャップが周囲の半導体領域
よシ広い領域又はこれらの効果を併せ持つ領域23−を
形成することにある。
Now, the structural feature of the present invention is that the channel portion 4, which is the base of the parasitic bipolar transistor, contains a region containing a large number of production recombination centers, a region with a wider band gap than the surrounding semiconductor region, or a region that has both of these effects. 23-.

以下、この領域の効果及びその実現方法について述べる
ものである。第3図は寄生バイポーラトランジスタがN
PN形の場合を例にとり、従来技術と本発明の効果をバ
ンド構造の点から明らかKしたものである。これらの図
は説明を明確に行なうため、モデル的に表記されておシ
、寄生バイポーラトランジスタが動作する様々バイアス
が示され、破線C−−−)はフェルミレベルを、一点鎖
線は禁制帯の中心をそれぞれ表わしている。さて、従来
技術(第3図a)においては空乏層13中で発生した正
孔及び電子(図中・及び0印で示す)がチャネル部4及
びドレイン3に流入する。流入した正孔がソース5とチ
ャネル部4の接合を順バイアスし、ソー25からチャネ
ル部4へhFIn倍の電子の注入を行なう。注入された
電子は空乏層13中をすべり落ちる際、新たなキャリア
の発生をうながし、一種の正帰還作用をする。この過程
に前述の空乏層中の発熱が重なシ、素子の破壊モードに
入るものである。しかし、本発明(第3図b)の如き構
造門実現すれば、空乏層13中で発生した正゛孔及び電
子はそれぞれチャネル部4及び空乏層13に流れ込むも
のの領域23の禁制帯幅が広いためソース5と領域23
の接合を注入が顕著になる程順バイアスすることはない
。また、充分、順ノ(イアスされたとしても領域23中
に多量の生成再結合中心が存在するため、電子は領域2
3中で消、滅し、トランジスタ作用が生じない。発明者
らの実験によれば、チャネル部4中に領域23を形成す
る方法としては絶縁物の禁制帯幅が広いこと、及びs1
巾に添加された異種元素が生成再結合中心と々ることを
応用し、酸素イ・オン、窒素イオン。
The effects in this area and how to achieve them will be described below. Figure 3 shows that the parasitic bipolar transistor is N
Taking the case of the PN type as an example, the effects of the prior art and the present invention are clearly compared in terms of band structure. In order to make the explanation clear, these figures are expressed in model form to show the various biases at which the parasitic bipolar transistor operates. each represents. Now, in the prior art (FIG. 3a), holes and electrons (indicated by . and 0 marks in the figure) generated in the depletion layer 13 flow into the channel portion 4 and the drain 3. The inflowing holes forward bias the junction between the source 5 and the channel portion 4, and hFIn times as many electrons are injected from the source 25 into the channel portion 4. When the injected electrons slide down in the depletion layer 13, they promote the generation of new carriers, thereby acting as a kind of positive feedback. When this process is combined with the above-mentioned heat generation in the depletion layer, the device enters a destructive mode. However, if the structural gate of the present invention (FIG. 3b) is realized, holes and electrons generated in the depletion layer 13 flow into the channel part 4 and the depletion layer 13, respectively, but the forbidden band width of the region 23 is wide. For source 5 and area 23
The junction is not forward biased to the extent that the injection becomes significant. In addition, even if the electrons are sufficiently ordered, there are a large number of production and recombination centers in the region 23, so the electrons are
3, disappears and disappears, and no transistor action occurs. According to experiments conducted by the inventors, the method for forming the region 23 in the channel portion 4 requires that the forbidden band width of the insulator is wide and that s1
Oxygen ions, nitrogen ions, etc. are generated by applying the fact that different elements added to the width generate and reach recombination centers.

炭素イオン又はこれらの組み合せたものを添加すること
が有効であった。例えば1’80にθVで約5×10I
4tTn−2〜5 X I O”m−2、これらの元素
をイオン注入した場合に寄生バイポーラトランジスタの
効果を小さくでき、特に酸素イオンをI X 10”c
rn−”以上、注入した場合はその効果が顕゛著であっ
た。またHe。
Adding carbon ions or a combination thereof was effective. For example, at 1'80, approximately 5 x 10I at θV
4tTn-2~5XIO"m-2, when these elements are ion-implanted, the effect of the parasitic bipolar transistor can be reduced.
The effect was remarkable when more than rn-'' was injected.Also, He.

Ar 、 Xe等不活性ガスを添加しても同様な効果が
認められた。しかし、この場合はアニールによって寄生
バイポーラ効果の抑制作用が小さくなったことから、S
i と化合して絶縁物を形成しないような元素の添加は
前述の作用のうち、禁制帯幅の増加による注入の抑制効
果よシむしろ再結合中心の増加による注入された小数キ
ャリアの消滅が支配的と推察される。このような元素は
添加後のアニール条件を充分制御する必要があると考え
られる。
Similar effects were observed even when inert gases such as Ar and Xe were added. However, in this case, because the suppressing effect on the parasitic bipolar effect was reduced by annealing, S
The addition of elements that do not combine with i to form an insulator has the effect of suppressing injection by increasing the forbidden band width, but rather by annihilating the injected minority carriers by increasing the number of recombination centers. It is assumed that this is the target. It is considered that it is necessary to sufficiently control the annealing conditions after addition of such elements.

本発明の別の形態としてチャネル部4及びソース5をi
結晶S工で形成することも実験的に試みた。これは多結
晶中では生成再結合中心が極めて多いことを利用したも
のである。この場合の素子製作条件はチャネル部4の接
合深さは約2μm1表面不純物濃度はI XIOcm−
” +ソース5の接合深さは約lpm +表面不純物濃
度は1.5 X 10(7)−3とし、島18は3X1
0”%−sの不純物濃度とした。この場合には若干プロ
セス的に複雑となるものの寄生パイボ−2効果は全く認
められず、チャネル部4の占有面積が約15000 p
rn”と太きいにもかかわらずドレイン3〜チャネル部
4内のリーク電流はμA、以下のオーダでおるという良
好な結果を得た。尚、ここではソースまで多結晶を用い
たが、これは実験の都合によるものでオシ、必ずしも必
要としない。父、空乏層の延びるドレイン領域が多結晶
の場合は空乏層が延びず高耐圧特性の実現が国難であっ
た。従って、ドレイン領域は多結晶であってはいけない
。尚、DSA構造のMOS )ランジスタに本発明を適
用する場合、領域23が絶縁物化する程、N、0等の元
素を添加することは得策で々いことに注意が必要である
。これは領域23が絶縁物化するとドレイン3〜ソース
5間にかかる電圧を、この領域23で支えなければなら
ない場合が生じ、イオン注入量の増大が不可欠となるか
らである。説明からも明らかなように、注入量は絶縁物
化する場合に比べて、1桁から3桁程度小さくできるこ
と・に本発明の効果の特長がある。また領域23は寄生
バイポーラトランジスタのエミッタを全て囲む形で形成
することは必ずしも必要でない。この理由は第3図にお
いてソース5から横方向に注入されて島18に到達する
キャリアは、不純物IfO比が小さいため少ないこと、
及び島1日に到達するまでの距離(ベース幅)が長いた
め再結合して消滅し易く、バイポーラトランジスタとし
ての動作にあまり寄与しないためである。
In another embodiment of the present invention, the channel portion 4 and the source 5 are
We also experimentally attempted to form it using crystal S technology. This takes advantage of the fact that polycrystals have an extremely large number of production and recombination centers. The device manufacturing conditions in this case are that the junction depth of the channel portion 4 is approximately 2 μm, the surface impurity concentration is I
” + The junction depth of the source 5 is approximately lpm + The surface impurity concentration is 1.5 x 10(7)-3, and the island 18 is 3 x 1
The impurity concentration was set to 0''%-s. In this case, although the process was somewhat complicated, no parasitic pibo-2 effect was observed, and the area occupied by the channel portion 4 was approximately 15,000 p.
We obtained good results in that the leakage current in the drain 3 to channel part 4 was on the order of μA or less despite the large size. This is due to the convenience of the experiment and is not necessarily necessary.If the drain region where the depletion layer extends is polycrystalline, the depletion layer will not extend and achieving high breakdown voltage characteristics has been a national problem.Therefore, the drain region should be polycrystalline. Note that when applying the present invention to a DSA structure MOS transistor, it is not advisable to add elements such as N and 0 to the extent that the region 23 becomes an insulator. This is because if the region 23 is made of an insulator, the voltage applied between the drain 3 and the source 5 may have to be supported by this region 23, and an increase in the amount of ion implantation becomes essential. As is clear, the advantageous effect of the present invention is that the implantation amount can be reduced by one to three orders of magnitude compared to the case of using an insulator.Also, the region 23 is formed to completely surround the emitter of the parasitic bipolar transistor. The reason for this is that in FIG. 3, fewer carriers are injected laterally from the source 5 and reach the island 18 because the impurity IfO ratio is small.
This is also because the distance (base width) it takes to reach the island is long, so it is easy to recombine and disappear, and it does not contribute much to the operation as a bipolar transistor.

なお領域23としては作用性が高い箇所に設けることが
必要である。第2図の場合においては、寄生バイポーラ
トランジスタがパーティカル構造なので、実効のベース
幅が狭く、かつエミッタとベースの濃度比が大きいエミ
ッタ直下に設けることが必要である。
Note that the region 23 needs to be provided at a location with high effectiveness. In the case of FIG. 2, since the parasitic bipolar transistor has a particle structure, it is necessary to provide it directly under the emitter, which has a narrow effective base width and a high concentration ratio between emitter and base.

次に、本発明の別の応用例について述べる。第4図はπ
形の単結晶基板1中に複数の相補形MOSトランジスタ
を形成したものであり、Nチャネルトランジスタ21は
基板中に直接形成されるが、Pチャネルトランジスタ2
0は基板1中にウェル24と呼ばれる領域(この例では
N形とした)を形成し、この中に製作されている。これ
らの素子は占有面積を小さくするため、周囲を囲む絶縁
分離領域25を設けて、相互の距離を可能なIIJ!シ
接近させることが試みられている。しかし、ある限度を
超えて接近させると、例えばPチャネルMOSトランジ
スタ20のドレイン(p形)、ウェル(N形)#基板(
7CiP形)、21のドレイン(N形)から構成される
寄生PNPN素子が電源投入時などにオンル、Pチャネ
ルMOB )ランジスタ20のドレインとNチャネルM
OE+ トランジスタ21のソース金電気的に導通させ
てしまういわゆるラッチアップが生ずる。PNPN素子
はPIF )ランジスタとNPN )ランジスタが正帰
還ループを構成したものであるが、本発明の特徴である
、生成再結合中心を多量に・含む領域、又はノくンドギ
ャップが周囲の半導体領域よ如広い領域またはこれらの
効果を併せ持つ領域23をこの素子の電流通路中に設け
れば、少なくとも一方のトランジスタが充分な正帰還量
を、他方のトランジスタに与えることができなくなシ、
前述のラッチアップは牢じ力いことは明白である。第4
図においては領域23を酸素のイオン注入で形成した場
合の例を示している。
Next, another application example of the present invention will be described. Figure 4 is π
A plurality of complementary MOS transistors are formed in a shaped single-crystal substrate 1, and an N-channel transistor 21 is formed directly in the substrate, but a P-channel transistor 2 is formed directly in the substrate.
0 forms a region called a well 24 (in this example, it is N-type) in the substrate 1, and is manufactured therein. In order to reduce the area occupied by these elements, an insulating isolation region 25 surrounding them is provided to minimize the distance between them. Attempts are being made to bring them closer together. However, if they are brought close to each other beyond a certain limit, for example, the drain (p type) of the P channel MOS transistor 20, the well (n type) #substrate (
When the power is turned on, etc., a parasitic PNPN element consisting of the drain of transistor 20 (N-type) and the drain of transistor 20 (P-channel MOB) and the drain of N-channel M
A so-called latch-up occurs which causes the source metal of OE+ transistor 21 to become electrically conductive. A PNPN element consists of a PIF transistor and an NPN transistor that form a positive feedback loop, and the feature of the present invention is that it can be used in a region containing a large number of production-recombination centers or in a semiconductor region with a non-kund gap surrounding it. If a very wide region or a region 23 having both of these effects is provided in the current path of this element, at least one transistor will not be able to provide a sufficient amount of positive feedback to the other transistor.
It is clear that the aforementioned latch-up is irresistible. Fourth
The figure shows an example where the region 23 is formed by oxygen ion implantation.

この場合、PNP)ランジスタのベース中に領域23が
形成されたこととなる。このような構造とすれは、寄生
P N P、N素子が動−作しないため、相補形のMO
日トランジスタをパターンルールが許容する極限まで高
集積化することが可能となる。
In this case, a region 23 is formed in the base of the PNP transistor. With such a structure, the parasitic PNP,N elements do not operate, so the complementary MO
It becomes possible to highly integrate transistors to the maximum extent permitted by pattern rules.

次に、本発明の第2の応用例について述及ることとする
。第2図においては誘電体分離された島(18及び19
)に−個ずつの素子が形成されているが、本発明の応用
例を組み合せ、バイポーラトランジスタ及びMOS ト
ランジスタ等の高耐圧素子を1つの島に収容すると共に
、島18又は19中には第4図に示したよりな形で複数
の素子を搭載することが可能でるる。この場合、第4図
の基板lは第2図の島18又は19に対応することとな
る。このような構成とすれは、高耐圧のバイポーラトラ
ンジスタ又は高耐圧のMOS )ランジスタと多数の低
耐圧の0MO8からなる回路を同一基板上に形成できる
ことは明白であり、高耐圧素子を含む回路の集積度向上
による経済化が、本発明の利点として追加される。
Next, a second application example of the present invention will be described. In Figure 2, dielectrically isolated islands (18 and 19)
), but by combining the applied examples of the present invention, high voltage elements such as bipolar transistors and MOS transistors are accommodated in one island, and a fourth element is formed in island 18 or 19. It is possible to mount multiple elements in the form shown in the figure. In this case, the substrate l in FIG. 4 would correspond to the island 18 or 19 in FIG. 2. With such a configuration, it is obvious that a circuit consisting of a high voltage bipolar transistor or a high voltage MOS transistor and a large number of low voltage 0MO8 transistors can be formed on the same substrate, and it is possible to integrate circuits including high voltage elements. Economies due to increased efficiency are additional advantages of the present invention.

なお上記の実施例においてはDS^構造のMOB )ラ
ンジスタ及び0MO8)ランジスタの場合について述べ
たが、この外にラテラル構造のMOEI )ランジスタ
についても、適用できることは云うまでもない。
In the above embodiments, the MOB transistor and the MOEI transistor having a DS^ structure have been described, but it goes without saying that the present invention can also be applied to a MOEI transistor having a lateral structure.

(発明の効果) 以上、説明したように、本発明の提案する領域を組み込
んだMOB形の半導体装置は寄生バイポーラ効果を小さ
くできるため、素子の熱暴走がなく高耐圧特性の実現に
有利となる。又、低耐圧素子の高集積化にも極めて効果
的である。
(Effects of the Invention) As explained above, since the MOB type semiconductor device incorporating the region proposed by the present invention can reduce the parasitic bipolar effect, there is no thermal runaway of the element and it is advantageous in realizing high breakdown voltage characteristics. . Furthermore, it is extremely effective for increasing the degree of integration of low-voltage elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体装置の断面図、第2図及び第4図
は本発明の半導体装置の一実施例、第3図は本発明の効
果を模式的に示したエネルギーバンド図である。 l・・支持基板、2・・DSA構造のMOB トランジ
スタ、3・・・ドレイン、4・・・チャネル部、5・・
・ソース、6・・・ゲート部の絶縁膜、7・・・フィー
ルド部の絶縁膜、8・・ソース電極、al・・・ソース
フィールドプレート、9・・ゲート電極、91川ゲート
フイールドプレート、10−・・ドレイン電極、11・
・・コンタクト窓、12−:チャネル、13・・空乏層
、14・・正孔、15・・・電子、16・・・支持基板
、17・・分離膜、1B・・・P形の島、19・・・N
形の島、20・・・PチャネルのMOB )ランジスタ
、21・・・NチャネルのMOB )ランジスタ、22
・・埋込層、23・・生成再結合中心を多量に含む領域
又はバンドギャップが周囲の半導体領域よシ広い領域又
はこれらの効果を併せ持つ領域、24・・・ウェル、2
5・・絶縁分離領域 %杵出願人 第1図 第2図 第3図 第4図 コ
FIG. 1 is a sectional view of a conventional semiconductor device, FIGS. 2 and 4 are examples of the semiconductor device of the present invention, and FIG. 3 is an energy band diagram schematically showing the effects of the present invention. l...Support substrate, 2...MOB transistor with DSA structure, 3...Drain, 4...Channel part, 5...
- Source, 6... Insulating film of gate part, 7... Insulating film of field part, 8... Source electrode, al... Source field plate, 9... Gate electrode, 91 River gate field plate, 10 -...Drain electrode, 11.
... Contact window, 12-: Channel, 13... Depletion layer, 14... Hole, 15... Electron, 16... Support substrate, 17... Separation film, 1B... P-type island, 19...N
shaped island, 20...P channel MOB) transistor, 21...N channel MOB) transistor, 22
...Buried layer, 23...A region containing a large amount of production recombination centers or a region whose band gap is wider than the surrounding semiconductor region, or a region having both of these effects, 24...Well, 2
5. Insulation separation area % Punch Applicant Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 (11MOB形トランジスタを含む半導体装置において
、寄生パイボーラトランノスタのベース領域に、生成再
結合中心を含む領域又はバンドギャップが周囲の半導体
領域に比べて広い領域が少なくとも形成されたことを特
徴とする半導体装置。 (2) MO8形トランジスタを含む半導体装置におい
て少なくとも寄生バイポーラトランジスタのベース領域
に多結晶81層を含むことを特徴とする特許請求の範囲
第1項記載の半導体装置。 (3)複数の誘電体分離された島を有し、骸晶の少なく
とも1つには高耐圧素子が形成されておシ、かつ、骸晶
の少なくとも1つには、寄生バイポーラトランジスタを
形成するベース領域に、生成再結合中心を含む領域また
はバンドギャップが周囲の半導体領域に比べて広い領域
が形成されている素子を含むことを特徴とする特許請求
の範囲第1項記載の半導体装置。
[Claims] (11) In a semiconductor device including an MOB transistor, at least a region containing a production recombination center or a region having a wider band gap than the surrounding semiconductor region is formed in the base region of the parasitic pibora transnoster. (2) The semiconductor device according to claim 1, characterized in that the semiconductor device includes an MO8 transistor, and includes a polycrystalline 81 layer at least in the base region of the parasitic bipolar transistor. (3) It has a plurality of dielectrically separated islands, a high voltage element is formed in at least one of the skeleton crystals, and a parasitic bipolar transistor is formed in at least one of the skeleton crystals. 2. The semiconductor device according to claim 1, wherein the semiconductor device includes an element in which a region including a production-recombination center or a region having a wider band gap than surrounding semiconductor regions is formed in a base region.
JP59045666A 1984-03-12 1984-03-12 Semiconductor device Pending JPS60189967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59045666A JPS60189967A (en) 1984-03-12 1984-03-12 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59045666A JPS60189967A (en) 1984-03-12 1984-03-12 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS60189967A true JPS60189967A (en) 1985-09-27

Family

ID=12725706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59045666A Pending JPS60189967A (en) 1984-03-12 1984-03-12 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60189967A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017373A1 (en) * 1997-09-30 1999-04-08 Infineon Technologies Ag Semiconductor power component with enhanced latch-up resistance
FR2940525A1 (en) * 2008-12-18 2010-06-25 Commissariat Energie Atomique SEMICONDUCTOR DEVICE

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017373A1 (en) * 1997-09-30 1999-04-08 Infineon Technologies Ag Semiconductor power component with enhanced latch-up resistance
FR2940525A1 (en) * 2008-12-18 2010-06-25 Commissariat Energie Atomique SEMICONDUCTOR DEVICE
EP2200083A3 (en) * 2008-12-18 2012-04-04 Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives Semiconductor detector comprising floating gate

Similar Documents

Publication Publication Date Title
US4620211A (en) Method of reducing the current gain of an inherent bipolar transistor in an insulated-gate semiconductor device and resulting devices
US4053925A (en) Method and structure for controllng carrier lifetime in semiconductor devices
JP3417013B2 (en) Insulated gate bipolar transistor
US5397905A (en) Power semiconductor device having an insulated gate field effect transistor and a bipolar transistor
JP2864629B2 (en) Conductivity modulation type MOSFET
JPS60189967A (en) Semiconductor device
US3855609A (en) Space charge limited transistor having recessed dielectric isolation
US5608236A (en) Semiconductor device
US3894891A (en) Method for making a space charge limited transistor having recessed dielectric isolation
JPS6115369A (en) Semiconductor device and manufacture thereof
KR100192966B1 (en) Mos control diode and manufacturing method thereof
JPH0513705A (en) Semiconductor device
JP3327658B2 (en) Manufacturing method of vertical bipolar transistor
JPH02135781A (en) Insulated-gate type vertical semiconductor device
JPH0870121A (en) Insulated gate semiconductor device
JPS6359262B2 (en)
JP2840797B2 (en) Method for manufacturing semiconductor device
JPH0513769A (en) Semiconductor device
JPS6193641A (en) Semiconductor device
JPH05109748A (en) Semiconductor device and manufacture of the same
KR19980078231A (en) Complementary field effect transistor and its well forming method
EP0057336A2 (en) Bipolar transistor with base plate
JPH07321315A (en) Semiconductor device
JPH05283718A (en) Semiconductor device
JPS60245177A (en) Semiconductor device