JPS60188860A - Effective value meter - Google Patents

Effective value meter

Info

Publication number
JPS60188860A
JPS60188860A JP59044006A JP4400684A JPS60188860A JP S60188860 A JPS60188860 A JP S60188860A JP 59044006 A JP59044006 A JP 59044006A JP 4400684 A JP4400684 A JP 4400684A JP S60188860 A JPS60188860 A JP S60188860A
Authority
JP
Japan
Prior art keywords
signal
frequency
effective value
value
sweep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59044006A
Other languages
Japanese (ja)
Inventor
Osami Asai
浅井 修身
Setsuo Arikawa
有川 節夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59044006A priority Critical patent/JPS60188860A/en
Publication of JPS60188860A publication Critical patent/JPS60188860A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To obtain an effective value meter that can measure the effective value of an AC distorted wave in a short time by converting directly a measured signal to numerical value data, and determining the effective value by making aritmetic processing. CONSTITUTION:Principal part of the meter is constituted of an A/D converter 13, CPU14 that reads, stores and operates the numerical value data, etc. After starting measurement, the CPU14 makes initial setting, then sets frequency sweep data Dvi successively from i=1 to (n) and outputs. In the course of sweeping, the pulse signal of a maximum value detecting circuit 8 is detected, and when the pulse signal is present, corresponding sweep data are recorded successively in a memory. The sweep data recorded in the memory are taken out successively, set and outputted. Then, sample holding 11 is made twice continuously, and numerical value data DOi obtained by A/D conversion are recorded successively in a memory. An effective value Vrms for each frequency Fi is calculated from the numerical value data DOi recorded in the memory. The result is added, and the gain etc. of an amplifier 9 is corrected to obtain the effective value Vrms of the measured signal.

Description

【発明の詳細な説明】 〔発明の利用分野〕 〔発明の背景〕 ビデオ置載をカバーする従来の実効値メータ時間は長か
った。市販品の応答時間は1.5〜7秒(モデル340
0A: YHP 、モデル93:プント長く不適当であ
った。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] [Background of the Invention] Traditional RMS meter times covering video installations have been long. The response time of commercially available products is 1.5 to 7 seconds (Model 340
0A: YHP, Model 93: Punto was long and inappropriate.

〔発明の目的J 本発明の目的は交流ひずみ波冥効値を短時間〔発明の概要〕[Object of the invention J The purpose of the present invention is to reduce the effective value of AC strain waves in a short time [Summary of the invention]

〔発明の実施例〕 りで8/)ill出力電圧値二K・V (t i )を
数値データ:DIiに変換するADC114はDAC3
、極大値検出回路8、AMP9、パルス発生器10およ
びA D C13とのインタフェイスをもち、DAC3
へ掃引データを与える機能、極大値検出回路おからのパ
ルス信号を検出する機能、AMP9へ利得データを与え
、AMPの増幅度を決定する機能、パルス発生器10の
CLK発生・停止を制御する機能、ADC13からの数
値データ今、各周波数成分がFp+FqおよびFrから
成る被測定信号の実効値をめるものと仮定する。
[Embodiment of the invention] The ADC 114 that converts the output voltage value 2K·V (t i ) into numerical data: DIi is the DAC 3
, local maximum detection circuit 8, AMP9, pulse generator 10 and ADC13, and has an interface with the DAC3.
A function to provide sweep data to the maximum value detection circuit, a function to detect the pulse signal from okara, a function to provide gain data to the AMP 9 and determine the amplification degree of the AMP, a function to control CLK generation and stop of the pulse generator 10. , numerical data from the ADC 13. It is now assumed that each frequency component represents the effective value of the signal under measurement consisting of Fp+Fq and Fr.

時刻Tsで測定開始後、#1でC1) Uはテープう。After starting the measurement at time Ts, C1) U is the tape at #1.

次に#2で掃引データ:Driを1==lからDAC3
は掃引データ=D月を電圧:riに変換してVCO4に
印加する。VCO4は電圧=Fiに比例した発振周波数
:fiを作り混合器5に加える。これらの関係を第4図
に示す。
Next, in #2, sweep data: Dri from 1 = = l to DAC3
converts the sweep data=D to voltage:ri and applies it to the VCO4. The VCO 4 generates an oscillation frequency fi proportional to the voltage Fi and applies it to the mixer 5. These relationships are shown in FIG.

一方、被測定18号はLPF2を通過した後、混合器5
に加えられ上記VCO4出力信号により振幅変調を受け
るため、混合器5出力伯号は第5図に示す周波数分布と
なる。従って、中間周波数=lI゛0をfiに等しく設
定すればVCO4発振周波数8.fl〜fn才で掃引す
ることで、被測定信号の直流から(fn−、fl)まで
の周波数成分が中間周波数:FOに変換されてIPフィ
ルタ6出力信号として得られる。掃引の過程で被沖j定
信号成分か中間周波に変換されるとI l”フィルタ6
出力伯号振幅か一時的に大きくなるので検波回路7と極
大値検出回路8でこの時を捕えることかできる。#3は
上記目的の極大値横用回路8パルス信号を検出するルー
チンである。
On the other hand, after passing through LPF 2, test object No. 18 passes through mixer 5.
, and undergoes amplitude modulation by the output signal of the VCO 4, the output signal of the mixer 5 has a frequency distribution as shown in FIG. Therefore, if the intermediate frequency = lI゛0 is set equal to fi, the VCO 4 oscillation frequency is 8. By sweeping from fl to fn, the frequency components of the signal under measurement from DC to (fn-, fl) are converted to an intermediate frequency: FO and obtained as the output signal of the IP filter 6. When the offset signal component is converted into an intermediate frequency during the sweeping process, the Il'' filter 6
Since the output square amplitude temporarily increases, the detection circuit 7 and local maximum value detection circuit 8 can detect this moment. #3 is a routine for detecting the local maximum horizontal circuit 8 pulse signal for the above purpose.

本実施例では時刻Tp、Tqおよびrl+rのとき、す
なわち掃引データ: Dyp、1)rqおよびDrrの
ときである。#3でパルス信号がなきときは#5へ飛び
、パルス信号があったときは該当する掃引データをメモ
+JAiに順次記録する。本実施例では#4において掃
引データ: Dyp、Dyqおよび1)?rかそれぞれ
メモリAI、A2およびA3に記録される。
In this embodiment, this is at times Tp, Tq, and rl+r, that is, when the sweep data is Dyp, 1) rq, and Drr. If there is no pulse signal in #3, jump to #5, and if there is a pulse signal, record the corresponding sweep data in Memo+JAi sequentially. In this embodiment, in #4, the sweep data: Dyp, Dyq and 1)? r are recorded in memories AI, A2 and A3, respectively.

#5は掃引終了を判定するルーチンであり、掃引中は#
2〜#5でループ制御となる。時刻Te直後、掃引終了
にて#6へ抜ける。#6は掃引−巡にて被測定信号成分
を検出できなかった鳩舎を処理するために設けたルーチ
ンである。
#5 is a routine that determines the end of the sweep, and #5 is executed during the sweep.
Loop control is performed in steps 2 to #5. Immediately after time Te, the process exits to #6 at the end of the sweep. #6 is a routine provided to process pigeon lofts in which the signal component to be measured could not be detected during the sweep cycle.

以上、#1〜#6にて被測定信号を構成する各周波数成
分を分析し、メモ1JAiに記録した。
As described above, each frequency component constituting the signal under test was analyzed in #1 to #6 and recorded in Memo 1JAi.

#7では#4でメモ1JAiに記録した掃引データを順
次取出し、#2と同様にセット、出方する。初めに時刻
Thlで掃引データ: Dypをセット、出力し、周波
数成分:Fpの出力をIFフィルタ6出力信号:V(t
)として得る。V (t)はAMP9にてに倍され8/
)111に印加される。#8ではs/H11でAMP9
alカ篭圧値: K−V (t)を固定した後、ADC
13でアナロタ・ディジタル変換し、得た数値データ′
:DOiをメモ1JBiに順次記録する。
In #7, the sweep data recorded in the memo 1JAi in #4 is sequentially taken out, and set and output in the same manner as in #2. First, set and output the sweep data: Dyp at time Thl, and output the frequency component: Fp as the IF filter 6 output signal: V(t
). V (t) is multiplied by AMP9 and becomes 8/
) 111. #8 has s/H11 and AMP9
Al cage pressure value: After fixing K-V (t), ADC
Numerical data obtained by analog-to-digital conversion in step 13'
:Sequentially record DOi in memo 1JBi.

本実施例では時刻T1とT2にてサンプル・ホールドし
、時刻Tllと1゛21にてそれぞれアナロタ・ディジ
タル変換を行ない、メモIJBIとB2に数値データ:
1)011とDO21を記録して、周波数成分:Fpに
対する処理を終える。#9は掃引終了を判定するルーチ
ンであり、掃引中は#7〜#9でループjttl」御と
なる。周波数成分:FqとFrに対1する4#7〜4ト
8の処理を終了した時点で#10へ抜ける。
In this embodiment, sampling and holding are performed at times T1 and T2, and analog-to-digital conversion is performed at times Tll and 1゛21, respectively, and numerical data is stored in memos IJBI and B2:
1) Record 011 and DO21 and finish processing for frequency component: Fp. #9 is a routine for determining the end of the sweep, and during the sweep, a loop jttl'' is controlled in steps #7 to #9. Frequency component: 4 corresponding to 1 for Fq and Fr When the processing of #7 to 4 and 8 is completed, the process exits to #10.

#10はメモ1JHiに記録した数値データ: DOi
より、各周波数成分に対する実効値: r rms(F
i)を初出する。#11では各周波数成分に対する実効
値v rms (Fi)を加算して、被測定信号の実効
値を舞、出する。最後に#12にてAMP9の利鞠袖正
他、混合器5に対する補止も同時に行ない、被測定信号
の最終的な実効値: V nnsを得る。
#10 is the numerical data recorded in Memo 1JHi: DOi
Therefore, the effective value for each frequency component: r rms(F
i) appears for the first time. In #11, the effective value v rms (Fi) for each frequency component is added to obtain the effective value of the signal under measurement. Finally, in #12, corrections for the mixer 5 and the others of the AMP 9 are performed at the same time, and the final effective value of the signal under measurement: V nns is obtained.

本実施例はビデオ帯域(DC〜6 MHz )信号の測
定を対象とし、■CO発振周波数掃引範囲820〜30
MH211F フィルタ通過周波ef20MHzに設定
した。
This example targets the measurement of video band (DC to 6 MHz) signals, and has a CO oscillation frequency sweep range of 820 to 30 MHz.
MH211F filter passing frequency ef was set to 20MHz.

出力信号サンフリフグ時などにcPU主導のタイミンク
決定が可能となり、回路の簡単化、小形化、低価格化が
実現できた。才たAMP9の利鞠調整によりADCの人
力レンジ8最大に有効利用できた。
It is now possible to make cPU-led timing decisions when output signals are being read, making it possible to simplify, downsize, and lower the cost of the circuit. By adjusting the advantage of AMP9, we were able to effectively utilize the maximum human power range of ADC, 8.

〔発明の効果〕〔Effect of the invention〕

本発明によれは、被測定信号をADCで直接に数値デー
タに変換し、演算処理により実効値をめるため、従来の
熱伝幻による実効値算出法に比して副足時間を短縮でさ
る。
According to the present invention, the signal to be measured is directly converted into numerical data using an ADC, and the effective value is calculated through arithmetic processing, so the sub-assembly time can be reduced compared to the conventional effective value calculation method using heat transfer. Monkey.

【図面の簡単な説明】[Brief explanation of the drawing]

弗1図は実施例のブロック図、第2図はフローチャート
図、第3図はタイムチャート図、第4図は掃引データと
■CO発振周波数の対応関係説明図、第5図は被測定信
号と混合器出力信号の周波数分イf4説明図である。 1・・・被測定信号 4・・・VCO 501,混合器 6・・・I k’フィルタ8・・・極
大値検出回路 9・・・AMPio −°°パルス発生
器 13・・・ADC14・・・CPU $2図 笥3図 (の
Figure 1 is a block diagram of the embodiment, Figure 2 is a flowchart, Figure 3 is a time chart, Figure 4 is an explanatory diagram of the correspondence between sweep data and CO oscillation frequency, and Figure 5 is a diagram of the signal under measurement. FIG. 4 is an explanatory diagram of the frequency component f4 of the mixer output signal. 1... Signal to be measured 4... VCO 501, mixer 6... I k' filter 8... Maximum value detection circuit 9... AMPio -°° pulse generator 13... ADC14...・CPU $2 figure 3 figure (of

Claims (1)

【特許請求の範囲】 1、発振周波数を広帯域に掃引する掃引信号発生器と、
その出力4B号と被測定信号とを混合して被測定信号を
構成する各周波数成分を中間周波数に変換する混合器と
、混合器出力信号中の中間周波数を選択的に通す狭帯域
バンドパスフィルタと、該I Pフィルタ出力信号直流
換算値が極大値をとったときを検出し、1極大値検出伯
号を出力する極大値検出回路とミ前述中間周波数のに倍
(N22:整数)の周期で発振するパルス発生器と前述
IFフィルタ出力信号をパルス発生器出力信号に同期し
てアナロタ・ディジタル変換する変換器と、掃引信号発
生器、前記変換器および極大値検出回路とのインタフェ
ース回路を備え、掃引信号の発生・停止制御、極大値検
出回路の検出、アナ口り・ディジタル変換の開始・停止
制御、変換器出力データの読込み、等の機能。 を備え、極大値検出信号ゝオン〃となったときのIPフ
ィルタ出力信号を変換器で連続AD変換して得た数値デ
ータの連続するDrlとDV2に対し、(1)式で示す
演算処理を行ない、当該中In3周波数の実効値: s
r rms iをめ2π 、 =゛(り 但し、N22:整数、i≧1:整数 さらに1巡の周波数掃引にて得られた被測定信号をJm
成する各周波数成分に対応する中間周波数実効値: t
’ rms iに対し、(2)式の演算処理を行ない、 但し、m:正整数 もって被測定信号の実効値: V rmsをめるプログ
ラムならびにハードウェアを内蔵した計算機とから構成
したことを特徴とする特許値メータ。
[Claims] 1. A sweep signal generator that sweeps the oscillation frequency over a wide band;
A mixer that mixes the output No. 4B and the signal under test and converts each frequency component constituting the signal under test into an intermediate frequency, and a narrow band pass filter that selectively passes the intermediate frequency in the mixer output signal. and a maximum value detection circuit that detects when the DC conversion value of the IP filter output signal takes a maximum value and outputs a maximum value detection number, and a period that is twice the intermediate frequency (N22: integer) as described above. A pulse generator that oscillates at , sweep signal generation/stop control, maximum value detection circuit detection, analog/digital conversion start/stop control, converter output data reading, etc. The arithmetic processing shown in equation (1) is performed on the continuous numerical data Drl and DV2 obtained by continuous AD conversion of the IP filter output signal when the local maximum detection signal is turned on. The effective value of the corresponding medium In3 frequency: s
r rms i, 2π, =゛(However, N22: integer, i≧1: integer Furthermore, the signal under test obtained by one round of frequency sweep is Jm
Effective intermediate frequency value corresponding to each frequency component: t
' rms i, where m is a positive integer and m is the effective value of the signal to be measured: V rms It is characterized by being composed of a program and a computer with built-in hardware. Patented value meter.
JP59044006A 1984-03-09 1984-03-09 Effective value meter Pending JPS60188860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59044006A JPS60188860A (en) 1984-03-09 1984-03-09 Effective value meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59044006A JPS60188860A (en) 1984-03-09 1984-03-09 Effective value meter

Publications (1)

Publication Number Publication Date
JPS60188860A true JPS60188860A (en) 1985-09-26

Family

ID=12679614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59044006A Pending JPS60188860A (en) 1984-03-09 1984-03-09 Effective value meter

Country Status (1)

Country Link
JP (1) JPS60188860A (en)

Similar Documents

Publication Publication Date Title
US4310891A (en) Frequency measuring apparatus
JPH0480343B2 (en)
US4774454A (en) Distortion measuring system method utilizing signal suppression
JPH0371067A (en) Spectrum analyzer
JPS6071966A (en) Digital spectrum analyzer
JPS6335149B2 (en)
US5206838A (en) Ultrasonic transducer
JPS60188860A (en) Effective value meter
JP3236710B2 (en) Measurement device for RMS values
US4556067A (en) Bandwidth indicator for Doppler blood flowmeters
US5093751A (en) Carry noise measuring system for magnetic recording medium
JP2787078B2 (en) measuring device
JPS6138443A (en) Method for imaging stress distribution
JPH0130083B2 (en)
JPH0262186B2 (en)
JP2600820B2 (en) Sampling frequency converter
JPH0339270B2 (en)
JPS62299193A (en) Tuning inspection device
JP3284145B2 (en) PLL synchronous measuring device
JPS5990044A (en) Digital eddy current flaw detector
CN111929519B (en) Method and device for testing harmonic resistance of electric energy meter
JPH0648442Y2 (en) LSI tester
JPS6071967A (en) Digital spectrum analyzer
SU599255A1 (en) Dynamic characteristic determining device
JPH07260850A (en) Servo analyzer