JPS60187545A - Heat-generating ceramics - Google Patents
Heat-generating ceramicsInfo
- Publication number
- JPS60187545A JPS60187545A JP4298484A JP4298484A JPS60187545A JP S60187545 A JPS60187545 A JP S60187545A JP 4298484 A JP4298484 A JP 4298484A JP 4298484 A JP4298484 A JP 4298484A JP S60187545 A JPS60187545 A JP S60187545A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- ceramic
- heating element
- generating
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Laminated Bodies (AREA)
- Surface Heating Bodies (AREA)
- Resistance Heating (AREA)
- Central Heating Systems (AREA)
- Electric Stoves And Ranges (AREA)
- Cookers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明はセラミクスに係シ、特に発熱体と熱良導性絶縁
セラミクスが密着、複合一体化した発熱セラミクスに関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to ceramics, and more particularly to a heat-generating ceramic in which a heating element and a thermally conductive insulating ceramic are closely bonded and integrated into a composite body.
従来から用いられてきた暖房機器や調理器等熱機器は、
熱の対象物への伝達手段で分類すると、(1)王として
対流または輻射を利用するもの、(2)主として伝導を
利用するものとなる。このうち(1)にはニアコンディ
ショナーをはじめ電気、ガス、石油などのストーブやレ
ンジの大部分が含まれてお如、゛熱機器として汎用性の
高いものが多い。これに対して(2)には電気毛布、電
気カーペット、アイロン、調理用ナベ、オンド/l/々
とが営まれる。風呂は風呂ガマから水への熱伝導と温水
の浴槽への対流を利用している。これら熱伝達手段の違
いから、熱利用個所において所望の熱量を得る罠は、(
1)の場合熱混が局所的に配置でれているため高温発熱
が必要であり、(2jの場合熱利用個所に匹敵する広面
積の熱源が必要である。今、暖N椴器を対象に考えると
、(1)のタイプは高温ヒートザイクルの繰返し使用に
よって熱源の特性が次第に劣化して熱効率が低下すると
いう問題点と、熱機器の大型化に伴い設置スペースが必
要になるという難点かある。一方(2)のタイプでは寒
冷地で以前よく用いられていたオンドル等は工事費がか
さみ、また熱効率にも問題があるという理由から近年あ
まシ用いられなくなシ、現在では主として家庭用の電気
毛布、電気カーペット、足温器などが普及している。こ
れらは人体に近接して使用される一種のパネルヒーター
であり、比較的低温加熱でも所期の目的を述してはいる
が、ヒーター被覆物の伝熱特性が悪く熱効率が低いとい
う欠点をもっている。Heat equipment such as heating equipment and cookers that have been traditionally used are
When classified by means of transmitting heat to an object, there are (1) those that primarily use convection or radiation, and (2) those that primarily use conduction. Of these, (1) includes many highly versatile thermal appliances, including near conditioners as well as most electric, gas, and oil stoves and ranges. On the other hand, (2) includes electric blankets, electric carpets, irons, cooking pots, ondo/l/, etc. The bath uses heat conduction from the bathtub to the water and convection of hot water into the bathtub. Due to the differences in these heat transfer means, the trick to obtaining the desired amount of heat at the heat utilization point is (
In the case of 1), high temperature heat generation is required because the heat mixer is located locally, and in the case of 2j, a heat source with a wide area comparable to the heat utilization area is required. Considering this, type (1) has the problem that the characteristics of the heat source gradually deteriorate due to the repeated use of high-temperature heat cycles, resulting in a decrease in thermal efficiency, and the problem that the installation space is required as the thermal equipment becomes larger. On the other hand, type (2), which used to be commonly used in cold regions, has become less commonly used in recent years due to high construction costs and problems with thermal efficiency, and is now mainly used for home use. Electric blankets, electric carpets, foot warmers, etc. are becoming popular.These are a type of panel heater that is used close to the human body, and although they serve their intended purpose even when heating at a relatively low temperature. However, the heater coating has poor heat transfer characteristics and low thermal efficiency.
本発明の発熱セラミクスは、上記した従来の暖房機器が
もつ欠点を解消することを主な目的として開発されたも
のである。本発明の別の目的は、熱調理器等の分野で従
来の陶磁器が果していた以上の新しい機能を付与したセ
ラミクスを開示することにある。The heat-generating ceramic of the present invention was developed with the main purpose of eliminating the drawbacks of the conventional heating equipment described above. Another object of the present invention is to disclose ceramics that have new functions beyond those of conventional ceramics in the field of heat cookers and the like.
これらの目的を達成するために本発明では、熱良導性絶
縁セラミクス板上または該セラミクス板内部に導電性発
熱体を密着配置して成る熱放射性基体上に熱反射板を介
するか或いは直接断熱板を密着させ、前記導電性発熱体
から発した熱が前記熱良導性絶縁セラミクス板側一方向
から外に放出されるようなパネルヒーターを開示する。In order to achieve these objects, the present invention provides a thermally insulating substrate, which is formed by disposing a conductive heating element in close contact with a thermally conductive insulating ceramic plate or inside the ceramic plate, through a heat reflecting plate or by directly insulating it. Disclosed is a panel heater in which the plates are brought into close contact with each other and the heat generated from the conductive heating element is radiated outward from one side of the thermally conductive insulating ceramic plate.
このパネルヒーターは固定型の場合壁面床面という建造
物本体や机、椅子などの家具類表面に配置して用いうる
ので暖房機器としての設置スペースを必要としないだけ
でなく、構造上きわめて熱効率および安全性が高い。ま
た放熱面が硬質セラミクスで構成されているため耐摩耗
性2機械的強度にすぐれてお)長寿命である。更に熱調
理器などの移動型製品に用いる場合には、ガス等を用い
ないクリーンな高効率熱調理器をはじめ、「外側が熱く
なく、さめにくい」食器類など従来の陶磁器の性能を越
えた新製品として活用することができる。If this panel heater is a fixed type, it can be used by placing it on the wall or floor of the building itself or on the surface of furniture such as desks and chairs, so it not only does not require installation space as a heating device, but also has extremely high thermal efficiency and Highly safe. In addition, since the heat dissipation surface is made of hard ceramic, it has excellent wear resistance, mechanical strength, and long life. Furthermore, when used in mobile products such as heat cookers, we use products that exceed the performance of conventional ceramics, such as clean, high-efficiency heat cookers that do not use gas, etc., and tableware that does not get hot on the outside and does not easily cool down. It can be used as a new product.
本発明の発熱セラミクスは、本来上記(2)のタイプの
熱機器に属するため暖房機器に応用する場合は熱源面積
が広く発熱温度を高くする必要がないので発熱体の劣化
はきわめて少ない。しかし、これをたとえば熱調理器等
に応用して高温加熱しても、(1)伝熱板(熱良導性絶
縁セラミクス)と導電性発熱部が密着一体化構造であ!
0、(II)伝熱板が高い熱伝導性を有し、(Ill)
熱反射構造によシ単面熱放射型であるため、熱応答が速
くまた熱効率が高く、したがって発熱部の劣化は従来の
熱機器よシはるかに少ない。The heat-generating ceramic of the present invention originally belongs to the above-mentioned type (2) of thermal equipment, so when applied to heating equipment, the heat source area is large and there is no need to raise the heat generation temperature, so deterioration of the heating element is extremely small. However, even if this is applied to a heat cooker etc. for high temperature heating, (1) the heat transfer plate (thermal conductive insulating ceramic) and the conductive heat generating part are tightly integrated!
0, (II) the heat exchanger plate has high thermal conductivity, (Ill)
Since it has a heat reflection structure and a single-sided heat radiation type, it has a fast thermal response and high thermal efficiency, so the deterioration of the heat generating part is much less than that of conventional thermal equipment.
本発明の発熱セラミクスと機能的に類似の家庭用熱機器
、たとえばホットプレートや電磁フライパン、電気アイ
ロン、或いは流体加熱に用いられるヒートパイプは放熱
板表面が不銹性材質、たとえばテフロンなどの絶縁性樹
脂で被覆されており、熱伝導性が悪く、更に樹脂保護の
ため比較的低い温度(約250℃)までしか加熱できな
いし、機械的強度も弱い。これら製品の性能限界は、本
発明の発熱セラミクスによって容易に踏破できる。Household heating appliances that are functionally similar to the heat generating ceramic of the present invention, such as hot plates, electromagnetic frying pans, electric irons, or heat pipes used for heating fluids, have a heat sink surface made of a non-rusting material, such as an insulating material such as Teflon. It is coated with a resin and has poor thermal conductivity.Furthermore, it can only be heated to a relatively low temperature (approximately 250°C) to protect the resin, and its mechanical strength is weak. The performance limits of these products can be easily overcome by the heat generating ceramics of the present invention.
一方、本発明の発熱セラミクスと構造的にやや類似した
製品にプリンター用薄膜サーマルヘッドがある。該サー
マルヘッドは、表面をガラスで被覆したいわゆるグレー
ズドアルミナを基板とし、この上に発熱体薄膜、絶縁性
酸化防止膜、耐摩耗層をこの順で積層した構造になって
いる。熱はグレーズドアルミナ側ではなく、耐摩耗層側
から外に放出される。サーマルヘッドは印刷用小面積部
位(耐摩耗層)を急速(1−10m sec ) 、高
温(〜500℃)、繰返し加熱する目的で開発されてい
るため、導電性発熱体の酸化による劣化防止を重視して
おシ、したがって本発明の場合とは異なシ熱伝導性を犠
牲にして発熱体上に酸化防止膜(絶縁性被膜)を配し、
更にその上の熱放出部、すなわち耐摩耗層として既形成
の低融点グレーズ層や電極層への配慮からやはシ熱伝導
性を犠牲にして低温形成可能なSiCや5102を配し
ている。これら熱伝導性の悪さのために、耐摩耗層表面
(印刷部位)で所定の温度を得るためには発熱体を一層
高温まで加熱しなくてはならず、発熱体下面のグレーズ
層に伝わった熱は直下のアルミナ基板から放熱されるK
しても発熱体の寿命は短かくなることが避けられない。On the other hand, a product that is somewhat similar in structure to the heat generating ceramic of the present invention is a thin film thermal head for printers. The thermal head has a structure in which a so-called glazed alumina substrate whose surface is coated with glass is laminated with a heating element thin film, an insulating antioxidant film, and an abrasion resistant layer in this order. Heat is released from the wear layer side, not the glazed alumina side. Thermal heads are developed for the purpose of rapidly (1-10 msec), high temperature (~500°C), and repeated heating of small area areas (wear-resistant layers) for printing, so they are designed to prevent deterioration due to oxidation of the conductive heating element. Therefore, unlike the case of the present invention, an anti-oxidation film (insulating film) is placed on the heating element at the expense of thermal conductivity.
Furthermore, in consideration of the already formed low-melting point glaze layer and electrode layer, SiC or 5102, which can be formed at low temperature, is used as a heat dissipating part, that is, a wear-resistant layer, at the expense of thermal conductivity. Due to these poor thermal conductivities, the heating element must be heated to an even higher temperature in order to obtain the desired temperature on the surface of the wear-resistant layer (printed area), and the heat is transferred to the glaze layer on the bottom surface of the heating element. Heat is radiated from the alumina substrate directly below.
However, it is inevitable that the life of the heating element will be shortened.
これに対して本発明の発熱セラミクスは上記したような
放熱特性を最重視しておシ放熱面が熱良導性セラミクス
で形成されている点が根本的に異なる。On the other hand, the heat-generating ceramic of the present invention is fundamentally different in that the heat-radiating surface is formed of a ceramic with good thermal conductivity, with the above-mentioned heat-radiating properties as the most important consideration.
以下本発明の実施例に基すいて詳細に述べる。The present invention will be described in detail below based on embodiments.
(実施例1) この実施例は第1図に示される。(Example 1) This example is shown in FIG.
放熱部を形成する熱良導性絶縁セラミクス1の材料とし
て96チht2o5粘土を厚さ1 cm 、面積30×
蜀dに成形し、その片面に深さ約3 m 、幅1.2調
の蛇行溝をピッチ4嗣、折返し点間距離約29.5 c
rnで彫)、これを1400℃以上の高温で焼成後取出
す。As the material of the thermally conductive insulating ceramic 1 that forms the heat dissipation part, 96-chi HT2O5 clay is used with a thickness of 1 cm and an area of 30×
It is formed into a shape with a serpentine groove about 3 m deep and 1.2 m wide on one side with a pitch of 4, and the distance between the turning points is about 29.5 cm.
rn), and then fired at a high temperature of 1400°C or higher and then taken out.
該蛇行溝に沿って密着させて導電性発熱体2として線径
1簡のカンタル線(円形断面)を第1図(イ)に示す如
く配置し、この上に厚さ4瓢2面積(9)×30cdの
92%ht2o 3粘土板を重ねて圧着し、再び130
0℃で焼成して積層タイルを形成する。本実施例の如く
、線状発熱体を用いる場合には、該発熱体2を熱良導性
絶縁セラミクスl中に埋込み固定した構造とすることが
、熱伝導性、耐衝撃性の点で重要である。次に積層タイ
ルに埋込まれたカンタル線の両端に銅合金金具5をそれ
ぞれと9つける。すなわち予め92%At205粘土板
に設けられていた幅5 m 、長さ1crnの切込みを
利用して、片端はタイル内約1cn1の深さに銅合金よ
構成る内径約2咽の円筒孔52が形成されるように、ま
た他端はタイル外約1tynに突出した直径約2咽(前
記円筒孔52にピッタリ密着装填できる太さ)の調合金
棒51から成る。この図を第1図(ロ)に示す。51お
よび52が銅合金金具5を構成する。次に前記96 %
At205セラミクス表面に釉薬7を塗布し900℃
で焼成する。しかる後前記92%ht2o5セラミクス
板上に前記銅合金金具5とは接触しないようにして厚さ
約1wmの銅板を熱反射板として接着し、該熱反射板3
上に厚さ約5間のイソライトレンガを断熱材4として接
着することにより発熱セラミクスが完成する。A Kanthal wire (circular cross section) with a wire diameter of 1 piece is placed in close contact with the meandering groove as the conductive heating element 2, as shown in FIG. ) x 30cd 92% ht2o 3 clay plates are stacked and crimped, and again 130
Fire at 0°C to form a laminated tile. When using a linear heating element as in this example, it is important from the viewpoint of thermal conductivity and impact resistance that the heating element 2 be embedded and fixed in a thermally conductive insulating ceramic l. It is. Next, copper alloy metal fittings 5 and 9 are attached to both ends of the Kanthal wire embedded in the laminated tile. That is, by using a notch with a width of 5 m and a length of 1 crn previously made in the 92% At205 clay plate, a cylindrical hole 52 with an inner diameter of about 2 holes made of copper alloy was made at one end at a depth of about 1 cm in the tile. The other end is made of a prepared alloy rod 51 having a diameter of about 2 mm (thick enough to fit tightly into the cylindrical hole 52) and protruding about 1 tyn outside the tile. This diagram is shown in FIG. 1 (b). 51 and 52 constitute the copper alloy fitting 5. Then the 96%
Glaze 7 is applied to the At205 ceramic surface and heated to 900℃.
Fire it with Thereafter, a copper plate having a thickness of approximately 1 wm is adhered to the 92% Ht2O5 ceramic plate as a heat reflecting plate so as not to come into contact with the copper alloy fitting 5, and the heat reflecting plate 3 is
A heat-generating ceramic is completed by adhering an isolite brick with a thickness of about 5 mm on top as a heat insulating material 4.
この発熱セラミクスを複数個接続して通電すると大形パ
ネルヒーターとして有用である。たとえば3X3m’の
壁面に貼布する場合、10枚の該発熱セラミクスを前記
調合金棒51が隣接するセラミクスの銅合金円筒孔52
内に挿入固定される如くして横一列に配列し、これを1
0段繰返せば、壁面を埋めることができる。隣接する発
熱セラミクスとの間隙は従来のタイル貼シと同様メジを
塗布して固着する。各段横一列の直列接続抵抗値は室温
で約420であった。各段を並列接続してこれを1次側
200 V 、容量15 KVAの交流スライダック2
次側の負荷とする。乾燥後2次側を昇圧していくと各段
横一列の直列接続セラミクス群には100vで約2.5
A 、 200V−r5A近い電流か流れる。室温18
℃。When a plurality of these heat generating ceramics are connected and energized, it is useful as a large panel heater. For example, when pasting on a wall surface of 3 x 3 m, 10 pieces of the heat-generating ceramic are placed in the copper alloy cylindrical hole 5 of the ceramic adjacent to the prepared alloy rod 51.
Arrange them in a row horizontally so that they are inserted and fixed inside the
If you repeat 0 stages, you can fill the wall surface. The gap between the adjacent heat-generating ceramics is fixed by applying meji as in conventional tiling. The series connection resistance value of each horizontal row was about 420 at room temperature. Each stage is connected in parallel and connected to an AC slideac 2 with a primary side of 200 V and a capacity of 15 KVA.
This is the load on the next side. After drying, when the voltage on the secondary side is increased, a voltage of about 2.5 at 100V is applied to the series-connected ceramic group in each row horizontally.
A, a current of nearly 200V-r5A flows. Room temperature 18
℃.
室内空気自然対流の場合この壁面セラミクスに100v
印加すると、5分後壁面温度は22℃に、100分後3
4.155分後44,20分後48℃に達し、はぼ(資
)℃で飽和した。一方、200v印加時には5分後45
℃、 100分後74,15分後91℃に達しほぼ10
5℃で飽和した。壁面に沿って天井側より室内空気を下
降させるような強制対流を採用した場合、200v印加
時でも強い風速下では壁面温度は55℃で飽和した。こ
の条件下では3×3×10ff/の容積をもつ室内の温
度は、当初の18℃から10分間経過後約32℃に達す
る。これは非常に効率のよい温熱脱房機器といえる。In the case of indoor air natural convection, 100V is applied to this wall ceramic.
When the voltage is applied, the wall surface temperature reaches 22℃ after 5 minutes and 3℃ after 100 minutes.
After 4.155 minutes, the temperature reached 48.degree. C. after 20 minutes, and the temperature was saturated at 4.155 minutes. On the other hand, when 200V is applied, 45
℃, reached 74℃ after 100 minutes and 91℃ after 15 minutes, almost 10℃.
It was saturated at 5°C. When forced convection was used to draw indoor air down from the ceiling along the wall, the wall temperature saturated at 55°C under strong wind speed even when 200V was applied. Under these conditions, the temperature in the room having a volume of 3 x 3 x 10ff/ reaches approximately 32°C after 10 minutes from the initial 18°C. This can be said to be a very efficient thermal defoaming device.
上記例では述べなかったが、周知の温度センサーやSC
Rと組合ぜて一定温度に調節することも勿論可能である
。またザーミスタなどと組合せれば、壁面全体が所定温
度迄もつとも短時間で加熱されるような効率的通電方法
を採用することもできる。Although not mentioned in the above example, well-known temperature sensors and SC
Of course, it is also possible to adjust the temperature to a constant temperature in combination with R. In addition, when combined with a thermister or the like, it is possible to adopt an efficient energization method that heats the entire wall surface up to a predetermined temperature in a short time.
このように大型パネルヒーターであるが、壁面や床面の
一部を成しているため、設置場所がとられず、また発熱
体自身の温度が低くてすむ上に完全にセラミクス被覆さ
れているためゴミ、ホコリ等の付着もなく10年間以上
というきわめて長期間高い熱効率を維持することができ
る。Although this is a large panel heater, since it forms part of the wall or floor surface, it does not take up much space to install, and the temperature of the heating element itself is low, and it is completely covered with ceramics. Therefore, it is possible to maintain high thermal efficiency for an extremely long period of 10 years or more without the adhesion of dirt, dust, etc.
(実施例2) この実施例を第2図に示す。熱良導性絶
縁セラミクス1の原料として焼結性にすぐれた活性アル
ミナ92%含有の粘土を厚さ5 mm 、 31X50
dの板状に成形し、1400℃で焼成して磁器板を作る
。片面を研磨してやや平滑とし、この研磨面に第2図(
イ)に示すように幅16℃1間隙1crnのストライプ
状導電膜In2O5−5nO2−5b203を化学スプ
レー法によシ数μmの厚みに形成する。本発熱セラミク
スにおいては、このストライプ状導電膜が発熱体2とな
る。該導電膜面の真上に形成する断熱膜4の端部に貫通
穴lOを設ける。この貫通穴10は、第2図(ロ)に示
す如く長手方向両端近くに前記ストライプ状導電膜パタ
ーンにあわせて直径5咽の穴を貫通させた構成となる(
導電膜上に穴の位置がくる)。断熱膜4は厚さ1 cm
、面積31X50mのイソライトレンガであシ、断熱
材として接着し、周辺部は樹脂モールドして防湿する。(Example 2) This example is shown in FIG. As a raw material for thermally conductive insulating ceramics 1, clay containing 92% activated alumina with excellent sinterability was prepared with a thickness of 5 mm and a size of 31×50.
Form into a plate shape (d) and fire at 1400°C to make a porcelain plate. One side was polished to make it slightly smooth, and the polished surface was marked with the image shown in Figure 2 (
As shown in a), a striped conductive film In2O5-5nO2-5b203 having a width of 16 DEG C. and a gap of 1 crn is formed to a thickness of several micrometers by a chemical spray method. In this heating ceramic, this striped conductive film becomes the heating element 2. A through hole 10 is provided at the end of the heat insulating film 4 formed right above the surface of the conductive film. This through hole 10 has a configuration in which a hole with a diameter of 5 mm is penetrated near both ends in the longitudinal direction in accordance with the striped conductive film pattern as shown in FIG. 2 (b).
(The position of the hole is on the conductive film). The insulation film 4 has a thickness of 1 cm.
It is made of isolite bricks with an area of 31 x 50 m and is glued as a heat insulating material, and the surrounding area is molded with resin to prevent moisture.
次に銅帯板11に直径3趣、長さ1 anのSnni2
を前記イソライトレンガ孔にあわせて1tyn間隔で鉛
直にハンダ付けし、各Sn線12の先端にInペレット
を貼9つける。Next, Snni2 with a diameter of 3 and a length of 1 an is placed on the copper strip plate 11.
are vertically soldered to the isolite brick holes at intervals of 1 tyn, and an In pellet is pasted 9 on the tip of each Sn wire 12.
このSni付銅付板帯板11記イソライトレンガ両端近
くに配置し、各5nal12をイソライトレンガ孔に挿
入してInペレットをストライプ状導電膜上に接触させ
る。約200℃に加熱するとSn先端のInペレットが
溶けてIn −Sn合金として前記ストライプ状導電膜
に活着する。両端の銅帯板11にそれぞれ被覆導線をハ
ンダ付けすると、16本のストライプ導電膜は互いに並
列接続されたことになる。銅帯板11を含むインライト
レンガ表面全体を樹脂モールドして防水、絶縁構造とす
る。しかる後この発熱セラミクスを反転し熱良導性絶縁
セラミクス1表面を土にして床に敷く。ストライプ状溝
N1膜の抵抗値は膜組成、製造条件、厚みなどによって
異なるが、通常1本のストライプは3〜10Ωである。This Sni-coated copper plate strip 11 is placed near both ends of the isolite brick, and each 5nal 12 is inserted into the hole of the isolite brick to bring the In pellet into contact with the striped conductive film. When heated to about 200[deg.] C., the In pellet at the Sn tip melts and adheres to the striped conductive film as an In--Sn alloy. When coated conductive wires are soldered to the copper strips 11 at both ends, the 16 striped conductive films are connected in parallel to each other. The entire surface of the inrite brick including the copper strip 11 is molded with resin to provide a waterproof and insulating structure. Thereafter, this heat-generating ceramic is turned over, and the surface of the thermally conductive insulating ceramic 1 is turned into soil and laid on the floor. The resistance value of the striped groove N1 film varies depending on the film composition, manufacturing conditions, thickness, etc., but usually one stripe has a resistance of 3 to 10 Ω.
上記被覆導線間に電圧を印加して各ストライプに0.5
〜IAの電流を流すと、空気に強制対流を与えない場合
当初18℃であった室内では熱良導性絶縁セラミクス(
アルミナ磁器板)1表面は飽和温度約70℃まで加熱さ
れる。本発熱セラミクスの場合も前実施例の場合同様各
セラミクスを複数枚直並列接続して用いることができる
。実際、防水工事をした上でこの発熱セラミクスパネル
(直並列接続体)を街路に敷きつめれば、冬期の暖房や
寒冷地における路上積雪の防止に役立てることができる
。Apply voltage between the above covered conductors and apply 0.5 to each stripe.
When a current of ~IA is applied, the temperature in the room, which was initially 18℃ without forced convection, is reduced to thermally conductive insulating ceramics (
The surface of the alumina porcelain plate) 1 is heated to a saturation temperature of approximately 70°C. In the case of this heat generating ceramic, a plurality of each ceramic can be connected in series and parallel to each other and used as in the previous embodiment. In fact, if these heat-generating ceramic panels (series-parallel connections) are installed on streets after waterproofing, they can be used for heating in winter and for preventing snow from accumulating on roads in cold regions.
(実施例3) 放熱板用熱良導性絶縁セラミクス1の原
料として96%アルミナを選び、厚さ約1+mnの平板
粘土生地を作る。この上に発熱体2として厚さ約1調の
Ta−8i系サーメツト粘土生地を重ね、更にその上に
厚さ約1mのジルコン(ZrO2・5iO2)粘土生地
を重ね、最上層に熱反射性断熱材4として厚さ約1間の
コージェライト(2Mg0・2At203・5Si02
)粘土生地を重ね圧延して全体を約2閣の厚みにした後
、前記96チアルミナ粘土を内側として底径20 cm
、深さ5crnのナベ形状に加工し、これを1400
℃で焼成後徐冷して取出すと第3図に示す如く発熱セラ
ミクスナベが出来る。このナベに水を入れて電磁調理台
(電磁発振管装填)にかけ、電力を投入する。この結果
、前記Ta−8t系ザ一メツト層に渦電流が生じてジュ
ール加熱される。熱はナベ内側のアルミナ磁器側にはよ
く伝導するが、コージェライト磁器は熱伝導度がアルミ
ナ磁器の約y2oであシ熱伝導が阻害される。ジルコン
磁器は熱伝導率、熱膨張係数などがアルミナとコージェ
ライトの中間値をとり、セラミクス昇温時熱歪の発生を
緩和する。さて、上記したようにコージェライト磁器は
断熱材4として働くが、同時に光屈折率がアルミナの約
半分であシ、したがって熱はコージェライト面で反射さ
れるので熱反射板3としても作用する。以上のような機
能をもつ積層セラミクスナベでは、ナベ内部の水が沸騰
してもナベ外壁は55℃程度で6J)、素手でされるこ
とができろうこれは又、本発熱セラミクスの熱効率が非
常に高いことを意味し、調理時間が短かくなると同時に
、出来上った料理がさめにくいという特質をもっている
。(Example 3) 96% alumina was selected as the raw material for the thermally conductive insulating ceramic 1 for a heat sink, and a flat clay dough having a thickness of about 1+mm was made. On top of this, a Ta-8i cermet clay fabric with a thickness of about 1 tone is layered as the heating element 2, and on top of that, a zircon (ZrO2.5iO2) clay fabric with a thickness of about 1 meter is layered, and the top layer is a heat reflective insulation layer. As material 4, cordierite (2Mg0, 2At203, 5Si02) with a thickness of about 1
) Layer the clay dough and roll it to a thickness of about 2 mm, and then make a bottom diameter of 20 cm with the 96 chialumina clay inside.
, machined into a pan shape with a depth of 5 crn, and
After firing at 100° C., the product is slowly cooled and taken out to form a heat-generating ceramic pot as shown in FIG. Fill this pot with water, put it on an electromagnetic cooking table (equipped with an electromagnetic oscillation tube), and turn on the power. As a result, eddy currents are generated in the Ta-8t-based methane layer, resulting in Joule heating. Heat conducts well to the alumina porcelain side inside the pan, but the thermal conductivity of cordierite porcelain is about y2o compared to alumina porcelain, so heat conduction is inhibited. Zircon porcelain has thermal conductivity and coefficient of thermal expansion that are between those of alumina and cordierite, which alleviates the occurrence of thermal distortion when ceramics are heated. Now, as mentioned above, cordierite porcelain works as a heat insulating material 4, but at the same time, the optical refractive index is about half that of alumina, so that heat is reflected by the cordierite surface, so it also works as a heat reflecting plate 3. In a laminated ceramic pot with the above functions, even if the water inside the pot boils, the outer wall of the pot can be heated to about 55℃ (6 J) with bare hands.This is also due to the extremely high thermal efficiency of this heat-generating ceramic. This means that the cooking time is shorter, and the finished food does not cool down easily.
本発熱セラミクスで湯飲みを作シ、同一サイズの通常の
磁器製湯飲みと比較すると、85℃の湯を同一量だけ注
ぎ込んだ場合50℃まで低下する時間は前者が後者の約
5倍も長いことが確かめられた。If you make a teacup using this heat-generating ceramic and compare it to a regular porcelain teacup of the same size, if you pour the same amount of hot water at 85℃ into it, it will take about 5 times longer for the former to cool down to 50℃ than the latter. It was confirmed.
(実施例4) 第4図にこの実施例を示す。(イ)図は
円径方向の断面図、(ロ)図はA−A’断面図である。(Example 4) This example is shown in FIG. The figure (A) is a cross-sectional view in the radial direction, and the figure (B) is a cross-sectional view taken along the line AA'.
熱良導性絶縁セラミクス1用原料として95q6アルミ
ナを選びその粘土を直径10mmの円筒棒状に仕上げる
。これを発熱体2である内径10.5mm、外径14.
5調のStC焼結体円筒内に挿入する。該SiC焼結体
は両端部が金属Sl処理されてお9、中間部分よシ抵抗
率が約2桁低く加工されている。該SiC焼結体中空円
筒の外側に、上記低抵抗のSIC両端部を除外して厚み
約21+lI+1の80チアルミナ粘土を圧着した後、
内径16.5調の円筒状金型に入れる。95q6 alumina is selected as a raw material for thermally conductive insulating ceramics 1, and the clay is shaped into a cylindrical rod with a diameter of 10 mm. This is the heating element 2, which has an inner diameter of 10.5 mm and an outer diameter of 14.
Insert into a 5-tone StC sintered body cylinder. Both ends of the SiC sintered body are treated with metal Sl,9 and the resistivity of the middle part is lowered by about two orders of magnitude. After pressing 80 thialumina clay with a thickness of about 21+lI+1 on the outside of the hollow cylinder of the SiC sintered body, excluding both ends of the low-resistance SIC,
Place it in a cylindrical mold with an inner diameter of 16.5 mm.
stc円筒の内側にある95%アルミナ粘土層の中心に
直径6簡の貫通孔をあける。金型から取り出した後、こ
の中空多層円筒を1400℃で焼成する。得られた複合
セラミクス管の中空部に7タをして無電界メッキによシ
外側95チアルミナ管表面に十数μmの厚みで銅をメッ
キする。この上に内径17簡の中空パイレックスガラス
管をかぶせて約900℃に加熱し、軟化させながら溶着
して徐冷する。この結果、内側からみテ95%At20
5 / SiC/ 80%Az2o5 / Cu /
パイレックスという積層セラミクス管が出来る。sic
の両端部(金属Si処理によって低抵抗化している個所
)にSn電極をつけて通電すると、該sic管が発熱す
る。熱はアルミナ磁器側に伝導するが、SiCより外側
のアルミナに伝導した熱はCu面で反射し再び内側へ戻
る。すなわちCuは熱反射板3として働く。また最外層
のバイレックスは良好な断熱効果を示し、断熱板4とし
て好適である。このヒートパイプの内側中空部に流体、
たとえば水を通せば、従来のヒートパイプよりはるかに
効率よく加熱することが出来、省エネルギーに貢献する
ことができる。また、この磁器ヒートパイプは耐酸耐ア
ルカリ性にすぐれ、更に1(28などの腐蝕性ガスにも
安定であるため、化学薬品(流体)の加熱には最適であ
シ耐久性抜群である。A through hole with a diameter of 6 holes is made in the center of the 95% alumina clay layer inside the stc cylinder. After being removed from the mold, this hollow multilayer cylinder is fired at 1400°C. Seven taps were placed in the hollow part of the resulting composite ceramic tube, and the surface of the outer 95-dialumina tube was plated with copper to a thickness of more than 10 μm by electroless plating. A hollow Pyrex glass tube with an inner diameter of 17 pieces is placed on top of this, heated to about 900°C, welded while softening, and slowly cooled. As a result, from the inside, 95% At20
5 / SiC / 80%Az2o5 / Cu /
A laminated ceramic tube called Pyrex is produced. sic
When Sn electrodes are attached to both ends of the tube (where the resistance has been lowered by metal Si treatment) and electricity is applied, the SIC tube generates heat. Heat is conducted to the alumina porcelain side, but the heat conducted to the alumina outside the SiC is reflected by the Cu surface and returns to the inside. That is, Cu functions as a heat reflecting plate 3. In addition, the outermost layer of Virex exhibits a good heat insulating effect and is suitable for the heat insulating board 4. Fluid inside the hollow part of this heat pipe,
For example, by passing water through it, it can heat much more efficiently than conventional heat pipes, contributing to energy savings. In addition, this porcelain heat pipe has excellent acid and alkali resistance, and is also stable against corrosive gases such as 1 (28), making it ideal for heating chemicals (fluids) and extremely durable.
以上実施例で述べたように本発明の発熱セラミクスは
■ 放熱板−発熱板−(熱反射板)−断熱板の全固体積
層構造であって機械的強度、耐震性にすぐれている。As described in the examples above, the heat generating ceramic of the present invention has an all-solid laminated structure of (1) heat sink - heat generating plate - (heat reflecting plate) - heat insulating plate and has excellent mechanical strength and earthquake resistance.
■ 放熱板は熱伝導率の高い絶縁セラミクスがら成シ、
熱放射特性にすぐれまた耐摩耗性にすぐれている。■ The heat sink is made of insulating ceramics with high thermal conductivity.
It has excellent heat radiation properties and wear resistance.
■ 熱反射板や断熱板の採用によって放射板からの単面
放熱効率が高い。■ High single-sided heat dissipation efficiency from the radiation plate due to the use of heat reflectors and heat insulating plates.
■ セラミクス構造のため高温発熱可能であり、長寿命
である上に焼成前に任意形状加工することが出来る。■ Due to its ceramic structure, it can generate heat at high temperatures, has a long life, and can be processed into any shape before firing.
■ 抵抗加熱型は単一パネルを直並列接続させることに
よシ太面積加熱板として大型化することができ、設置性
にすぐれた暖房機器として活用することができる。■ The resistance heating type can be made larger by connecting single panels in series and parallel to form a large-area heating plate, and can be used as a heating device with excellent installation ease.
というすぐれた利点を有している。It has excellent advantages.
なお、以上の実施例では本発明の発熱セラミクスにおけ
る発熱体が電気発熱体である場合のみを述べた。しかし
既述の発熱セラミクスの構造から明らかなごとく、発熱
体部を中空伝熱パイプで構成し、内部に加熱された流体
を通して該流体から発する熱を利用することも原理的に
可能である。In the above embodiments, only the case where the heating element in the heat generating ceramic of the present invention is an electric heating element has been described. However, as is clear from the structure of the heat-generating ceramics described above, it is also possible in principle to construct the heat-generating body part with a hollow heat transfer pipe, and to pass heated fluid inside and utilize the heat generated from the fluid.
更に、放熱板の材料としてはアルミナ以外に窒化物、例
えはアルミニウムナイトライド、シリコンナイトライド
、ボロンナイトライド等も使用できる。熱反射板の材料
としては金属以外にフッ化カルシウム、ガラス、アスフ
ァルト、グラスチック等がある。Furthermore, as a material for the heat sink, nitrides such as aluminum nitride, silicon nitride, boron nitride, etc. can be used in addition to alumina. In addition to metal, materials for the heat reflecting plate include calcium fluoride, glass, asphalt, glasstic, and the like.
本発明の発熱セラミクスにより、高効率清浄無騒音長寿
命の暖房機器が達成さ九、壁面、床面暖房だけですく、
椅子、ベンチ、ベッド、温水槽。The heat-generating ceramic of the present invention achieves a highly efficient, clean, noiseless, long-life heating device that only requires wall and floor heating.
Chairs, benches, beds, hot water tank.
植木鉢、屋根瓦、乾燥器、調理器など幅広い製品に応用
することが可能である。It can be applied to a wide range of products such as flower pots, roof tiles, dryers, and cooking utensils.
第1〜第4図はそれぞれ本発明の別の実施例を説明する
ための図である。図においてlは熱良導性絶縁セラミク
ス、2は発熱体、3は熱反射板、4は断熱材、5は銅合
金金具、6は銅帯板、7は釉薬(ガラス)である。
特許出願人 株式会社 ポリトロニクス代理人 弁理士
秋 本 正 実
第1図
(イ)
(ロ)
7
第2因
(o)
第3図
第4N
A′
(ロ)1 to 4 are diagrams for explaining other embodiments of the present invention, respectively. In the figure, 1 is a thermally conductive insulating ceramic, 2 is a heating element, 3 is a heat reflecting plate, 4 is a heat insulating material, 5 is a copper alloy fitting, 6 is a copper strip, and 7 is a glaze (glass). Patent applicant: Polytronics Co., Ltd. Agent: Tadashi Akimoto Actual Figure 1 (a) (b) 7 Second cause (o) Figure 3, 4N A' (b)
Claims (1)
内部に導電性発熱体を密着配置して成る熱放射性基体に
、熱反射板を介するか或いは直接断熱板を密着させ、前
記導電性発熱体から発した熱が前記セラミクス板一方向
から外に放出されるようにしたことを特徴とする発熱セ
ラミクス。 2、特許請求の範囲第1項に記載しlこ発熱セラミクス
において、前記導電性発熱体に対する給電用接続端子を
該セラミクスに設け、複数個の発熱セラミクスを直並列
接続して成る発熱セラミクス。[Claims] 1. A heat insulating plate is closely attached to a heat emitting substrate formed by closely arranging a conductive heating element on or inside a thermally conductive insulating ceramic plate, either through a heat reflecting plate or directly. A heat-generating ceramic, characterized in that heat generated from the conductive heating element is radiated outward from one direction of the ceramic plate. 2. The heat-generating ceramic described in claim 1, wherein the ceramic is provided with a connection terminal for supplying power to the conductive heating element, and a plurality of heat-generating ceramics are connected in series and parallel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59042984A JPH0674900B2 (en) | 1984-03-08 | 1984-03-08 | Large area panel heater using far infrared radiation ceramic style |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59042984A JPH0674900B2 (en) | 1984-03-08 | 1984-03-08 | Large area panel heater using far infrared radiation ceramic style |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60187545A true JPS60187545A (en) | 1985-09-25 |
JPH0674900B2 JPH0674900B2 (en) | 1994-09-21 |
Family
ID=12651297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59042984A Expired - Lifetime JPH0674900B2 (en) | 1984-03-08 | 1984-03-08 | Large area panel heater using far infrared radiation ceramic style |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0674900B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4826974U (en) * | 1971-07-31 | 1973-03-31 | ||
JPS5144250U (en) * | 1974-09-30 | 1976-04-01 | ||
JPS5250336U (en) * | 1975-10-08 | 1977-04-09 | ||
JPS5378075U (en) * | 1976-12-02 | 1978-06-29 | ||
JPS58198887A (en) * | 1982-05-14 | 1983-11-18 | 松下電器産業株式会社 | Panel heater |
-
1984
- 1984-03-08 JP JP59042984A patent/JPH0674900B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4826974U (en) * | 1971-07-31 | 1973-03-31 | ||
JPS5144250U (en) * | 1974-09-30 | 1976-04-01 | ||
JPS5250336U (en) * | 1975-10-08 | 1977-04-09 | ||
JPS5378075U (en) * | 1976-12-02 | 1978-06-29 | ||
JPS58198887A (en) * | 1982-05-14 | 1983-11-18 | 松下電器産業株式会社 | Panel heater |
Also Published As
Publication number | Publication date |
---|---|
JPH0674900B2 (en) | 1994-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104197549B (en) | There is the solar energy hot device of evaporimeter and heat exchanger | |
CS226155B2 (en) | Electric heating unit | |
CN204629668U (en) | A kind of heating installation | |
CN104791888A (en) | Electric heating device | |
CN105444252B (en) | A kind of high heat conduction graphite film ground heating system | |
JPS60187545A (en) | Heat-generating ceramics | |
CN105509131A (en) | Carbon fiber floor-heating system | |
CN108668909A (en) | A kind of livestock and poultry nursery carbon fiber heating floor heating device | |
CN205688750U (en) | A kind of temperature control floor | |
CN209323862U (en) | A kind of heatable health decorative wall panels | |
CN210921539U (en) | High-efficiency heat-transfer heating floor | |
CN210568794U (en) | Mural painting type electric heater | |
RU143280U1 (en) | ELECTRIC HEATING DEVICE FOR HEATING YURT | |
CN208702078U (en) | Floor heating is laid with new construction | |
CN207638912U (en) | Spontaneous heating metal composite pot body | |
RU13416U1 (en) | ELECTRIC HEATING PANEL | |
CN205693911U (en) | A kind of composition type electric heating disc | |
CN2160848Y (en) | Electrothermic heating fin | |
CN2588256Y (en) | Electric heater | |
CN2311909Y (en) | Thermal conductive high-temperature resistant composite electric heating body | |
CN106982478A (en) | Spontaneous heating metal composite pot | |
KR19990004463A (en) | Ondol Heating Panel | |
RU68658U1 (en) | FUEL HEATER | |
CN207350440U (en) | A kind of silicon wafer Electrothermic wall board | |
CN2731326Y (en) | Electric heating board type electric-heater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |