JPH0674900B2 - Large area panel heater using far infrared radiation ceramic style - Google Patents

Large area panel heater using far infrared radiation ceramic style

Info

Publication number
JPH0674900B2
JPH0674900B2 JP59042984A JP4298484A JPH0674900B2 JP H0674900 B2 JPH0674900 B2 JP H0674900B2 JP 59042984 A JP59042984 A JP 59042984A JP 4298484 A JP4298484 A JP 4298484A JP H0674900 B2 JPH0674900 B2 JP H0674900B2
Authority
JP
Japan
Prior art keywords
far
infrared radiation
plate
heat
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59042984A
Other languages
Japanese (ja)
Other versions
JPS60187545A (en
Inventor
政久 室木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polytronics Inc
Original Assignee
Polytronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polytronics Inc filed Critical Polytronics Inc
Priority to JP59042984A priority Critical patent/JPH0674900B2/en
Publication of JPS60187545A publication Critical patent/JPS60187545A/en
Publication of JPH0674900B2 publication Critical patent/JPH0674900B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)
  • Central Heating Systems (AREA)
  • Electric Stoves And Ranges (AREA)
  • Cookers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 →本発明は、遠赤外線放射性セラミクスタイルを利用し
たパネルヒーターに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a panel heater using a far-infrared radiation ceramic style.

特に、多数の遠赤外線放射性セラミクスタイルを利用し
て成る大面積パネルヒータに関する。← 〔従来技術〕 従来の暖房機器や調理器等の熱機器は、熱の対象物への
伝達手段で分類すると、下記の2種類に大別される。
In particular, the present invention relates to a large-area panel heater that utilizes a large number of far-infrared radiation ceramic styles. ← [Prior Art] Conventional heating devices such as a heating device and a cooking device are roughly classified into the following two types when they are classified by means of transferring heat to an object.

主として対流または輻射を利用するもの(非接触伝
達)、 主として伝導を利用するもの(接触伝達)。
Those that mainly use convection or radiation (non-contact transmission), and those that mainly use conduction (contact transmission).

このうち、には、エアコンディショナーをはじめ電
気、ガス、石油などのストーブやレンジの大部分が含ま
れており、熱機器として汎用性の高いものが多い。
Of these, most of the stoves and stoves for electricity, gas, oil, etc., including air conditioners, are included, and there are many highly versatile thermal devices.

これに対いて、には電気毛布、電気カーペット、アイ
ロン、調理用ナベ、オンドルなどが含まれる。
For this, electric blankets, electric carpets, irons, cooking pots, ondols, etc. are included.

序ながら、循環形の風呂の場合は、風呂ガマから水へ熱
伝導()と、温水の浴槽への対流()とを、併用し
ている事になる。
By the way, in the case of a circulation type bath, heat conduction from the bath gama to water () and convection to a hot water bath () are used together.

〔従来技術の問題点〕[Problems of conventional technology]

上記の熱機器は、熱利用箇所において所望の熱量を得よ
うとすると、熱伝達手段の違いに基づいて、熱源に、下
記の様な違いが生じる。
In the above-mentioned thermal equipment, when trying to obtain a desired amount of heat at the heat utilization location, the following differences occur in the heat source based on the difference in the heat transfer means.

の場合 熱源が局所的に配置されいるため高温発熱が
必要である。
In this case, high temperature heat generation is required because the heat source is locally arranged.

の場合 熱利用箇所に匹敵する広面積の熱源が必要で
ある。
In the case of, a large-area heat source comparable to the heat utilization point is required.

今、暖房機器の対象に考えると、のタイプには、高温
ヒートサイクルの繰返し使用によって、熱源の特性が次
第に劣化して熱効果が低下するという問題点と、機器の
大型化に伴って特別な設置スペースが必要になるという
難点とが、ある。
Considering now the object of heating equipment, the type of has a problem that the characteristics of the heat source gradually deteriorate due to repeated use of high temperature heat cycle and the heat effect decreases, and with the increase in size of the equipment, there is a special problem. There is a drawback that it requires an installation space.

一方、のタイプについてみると、以前寒冷地でよく用
いられていたオンドル等は、工事費が嵩むし、熱効率に
も問題があるという理由から、近年あまり用いられなく
なり、現在では、主として家庭用の電気毛布、電気カー
ペット、足温器などが普及している状況にある。これら
の熱機器は、人体に接触乃至近接して使用されるという
意味合いにおいて、パネルヒーターと類縁であり、且比
較的低温発熱で所期の目的を達成してはいるが、ヒータ
ー被覆物の伝熱特性が悪く、熱効率が低いという欠点を
もっている。
On the other hand, looking at the type (1), ondol, which was often used in cold regions before, has not been used much in recent years because of the high construction cost and the problem of thermal efficiency. Electric blankets, electric carpets, foot warmers, etc. are in widespread use. These thermal devices are similar to panel heaters in the sense that they are used in contact with or in close proximity to the human body, and have achieved the intended purpose with relatively low temperature heat generation, but the transmission of the heater coating is It has the disadvantages of poor thermal properties and low thermal efficiency.

〔発明の目的〕[Object of the Invention]

それ故、本発明は、従来の暖房機器がもっている上記の
欠点乃至問題点を解消すること、別言すれば、下記〜
の事を、第一の目的とする。
Therefore, the present invention solves the above-mentioned drawbacks and problems of conventional heating appliances, in other words,
That is the first purpose.

大面積パネルヒーターを提供する事、 広域空間用暖房機器等の場合に従来必要とされていた
所の、暖房機器専用の特別な設置スペースを不要にする
事、 表側において高伝熱特性を実現し、以って発熱体の比
較低温化、延いてはその劣化防止と長寿命化を実現する
事、 反対側において遠赤外線反射特性と断熱特性とを両立
させ、熱損失を低減する事、 熱効率を改善する事。
Providing a large area panel heater, eliminating the need for a special installation space dedicated to heating equipment, which was previously required in the case of heating equipment for wide areas, etc., and achieving high heat transfer characteristics on the front side. Therefore, lowering the temperature of the heating element, preventing its deterioration and extending its life, and achieving far infrared reflection characteristics and heat insulation characteristics on the opposite side to reduce heat loss, improve thermal efficiency. Things to improve.

本発明は、更に、上記従来技術との対比の域を超えて、
下記〜の事を、第二の目的とする。
The present invention further goes beyond the scope of comparison with the above-mentioned conventional technology,
The following are the second objectives.

単面から大量の遠赤外線を放射させる事、 これを居住空間内の空気中の水分に吸収させ、 以って、その空気を効率的に温暖化する事、 又、人体の皮膚の下2ミリにある「温点」を刺激して、
快適な温体感を発生させる事、 防水加工を容易にし、以って、玄関や風呂場等の水回
り箇所にも、安全に使用する事が出来る様にする事、 耐圧性、耐熱衝撃性、耐機械的衝撃性を高め、以っ
て、屋内の床面や壁面だけでなく、屋外街路や線路等に
も、張設する事が出来る様にする事、 利便化、効率化、防水化、長寿命化に加えて、低コス
ト化をも併せて実現する事。
Radiating a large amount of far-infrared rays from a single surface, absorbing this in the moisture in the air in the living space, thereby warming the air efficiently, and 2 mm below the skin of the human body. Stimulate the "hot spot" in
A comfortable feeling of warmth is generated, waterproofing is facilitated, so that it can be used safely even in water areas such as entrances and bathrooms, pressure resistance, thermal shock resistance, Increased mechanical shock resistance, so that it can be stretched not only on indoor floors and walls, but also on outdoor streets and railroad tracks, convenience, efficiency, waterproofing, In addition to prolonging the service life, we must also realize cost reduction.

〔目的達成の手段〕[Means for achieving the purpose]

本発明による目的達成の手段は、凡そ以下の通りであ
る。
Means for achieving the object according to the present invention are as follows.

単面から遠赤外線を直接無媒介的に放射する複数枚の角
形積層ユニットセルと、目地充填材とを、有し、 前記積層ユニットセルは、遠赤外線放射基体と、遠赤外
線反射板(3)と、断熱板(4)と、1対の給電端子
(51,52)とを、有し、 前記遠赤外線放射性基体は、遠赤外線放射板(1)と、
導電性発熱体(2)と、を有し、 前記遠赤外線放射板(1)は、高伝熱性兼遠赤外線放射
性セラミクスタイル板から成り、 前記導電性発熱体(2)は、1個または複数個の線状又
はリボン状の導電性発熱体から成り、 前記遠赤外線放射性基体は、前記遠赤外線放射板(1)
の裏面または内面に、前記導電性発熱体(2)を、密着
配置して成り、 前記積層ユニットセルにおいては、前記線状又はリボン
状の導電性発熱体(2)を、前記1対の給電端子(51,5
2)の間に、電気的に直列又は並列に接続すると共に、
前記遠赤外線放射板(1)を均等に加熱できる様に配設
し、 前記積層ユニットセルは、前記遠赤外線放射性基体と、
前記遠赤外線反射板(3)と、前記断熱板(4)とを、
この順序で、介在物無しに、密着・積層・固体化して成
り、 前記全ての積層ユニットセルは、組合せて大面積パネル
を形成するために、平面状に、且隙間無く配列し、 かくして隣接した積層ユニットセル同士は、全ての目地
において、且少なくとも遠赤外線放射板(1)の部位に
おいて、目地充填材により、相互に強固且水密に結合し
て成る 遠赤外線放射性セラミクスタイル利用の大面積パネルヒ
ーター。
A plurality of prismatic laminated unit cells that directly emit far infrared rays from a single surface without mediation and joint fillers are provided, and the laminated unit cells include a far infrared ray emitting substrate and a far infrared ray reflecting plate (3). And a heat insulating plate (4) and a pair of power supply terminals (51, 52), wherein the far-infrared radiation base is a far-infrared radiation plate (1),
And a conductive heating element (2), wherein the far-infrared radiation plate (1) is made of a highly heat-conductive and far-infrared radiation ceramic plate, and the conductive heating element (2) is one or more. Each of the far-infrared radiating substrates is the far-infrared radiating plate (1).
The conductive heating element (2) is closely arranged on the back surface or the inner surface of the laminated unit cell. In the laminated unit cell, the linear or ribbon-shaped conductive heating element (2) is connected to the pair of power feeds. Terminal (51,5
Between 2), electrically connected in series or in parallel,
The far-infrared radiation plate (1) is arranged so as to be heated uniformly, and the laminated unit cell includes the far-infrared radiation base,
The far-infrared reflector (3) and the heat insulating plate (4),
In this order, they are adhered, laminated, and solidified without inclusions, and all the laminated unit cells are arranged in a plane and without a gap to form a large-area panel by combining them, and thus they are adjacent to each other. Laminated unit cells are bonded to each other firmly and watertightly by joint fillers in all joints and at least in the far infrared radiation plate (1). Large area panel heater using far infrared radiation ceramic style. .

〔作用〕[Action]

このパネルヒーターは熱良導性伝熱板と熱反射構造の採
用によって単面熱放射性・放熱板面内均熱性が非常に高
く、したがって熱応答・エネルギー効率にすぐれている
ので発熱体の劣化も従来の熱機器よりはるかに小さい。
This panel heater has very high heat conductivity and in-plane heat uniformity due to the adoption of a heat conductive heat transfer plate and a heat reflection structure. Therefore, the heat response and energy efficiency are excellent, and the heating element will not deteriorate. Much smaller than traditional thermal equipment.

更にこのパネルヒーターは、伝熱板が小面積の複数枚セ
ラミクスタイルの稠密配列とメジ充填によって、恰も一
枚の大面積セラミクス板から成る如く剛性化され耐震・
対摩耗性にすぐれているので、屋内床面だけでなく屋外
街路にも使用しうるのである。
In addition, this panel heater has a heat transfer plate that is rigid and seismic-resistant so that it consists of a single large-area ceramic plate due to the dense arrangement of multiple ceramic styles with a small area and media filling.
Due to its excellent wear resistance, it can be used not only on indoor floors but also on outdoor streets.

かくして小面積の規格化タイルの接続による大面積化
は、任意の形状・サイズ・色模様に加工できる、基
準面(パネル設置面)の高低差に対応できる。安価に
熱良導性伝熱板を仕上げることができる。熱衝撃や機
械的衝撃はメジ部分で吸収できる。防水加工が容易に
できる、同規格のセラミクス非発熱タイルとの組合せ
により発熱部位の配置パターン適正化が容易に出来るた
めエネルギー効率が高くなる、など従来の暖房用大面積
パネルヒーターにないすぐれた特徴がある。
Thus, increasing the area by connecting standardized tiles with a small area can handle the height difference of the reference surface (panel installation surface) that can be processed into any shape, size, and color pattern. The heat conductive plate can be finished at low cost. Thermal shock and mechanical shock can be absorbed by the image area. Excellent features not found in conventional large-area panel heaters for heating, such as easy waterproofing, and easy combination of the ceramics non-heating tile of the same standard to optimize the layout pattern of the heating area. There is.

このパネルヒーターを床壁面や街路面、或いは机や椅子
に使用すれば、暖房機器としての設置スペースを必要と
せず、また仕上材も必要としないので長寿命性とあわせ
てきわめて利便性が高い。
If this panel heater is used for floor wall surfaces, street surfaces, desks and chairs, it does not require an installation space as a heating device and does not require finishing materials, so it is extremely convenient in combination with long life.

本発明のパネルヒーターと機能的に類似の家庭用熱機
器、たとえばホットプレートや電磁フライパン、電気ア
イロン、或いは流体加熱に用いられるヒートパイプは、
放熱板表面が不銹性材質、たとえばテフロンなどの絶縁
性樹脂で被覆されており、熱伝導性が悪く、更に樹脂保
護のため比較的低い温度(約250℃)までしか加熱でき
ないし、機械的強度も弱い。
Household thermal equipment functionally similar to the panel heater of the present invention, such as a hot plate or an electromagnetic frying pan, an electric iron, or a heat pipe used for fluid heating,
The surface of the heat sink is covered with a non-corrosive material such as Teflon, which has poor thermal conductivity, and can be heated only to a relatively low temperature (about 250 ° C) to protect the resin. The strength is also weak.

これら製品の性能限界は、本発明のパネルヒーターによ
って容易に踏破できる。
The performance limits of these products can be easily overcome by the panel heater of the present invention.

一方、本発明の発熱セラミクスと構造的にやや類似した
製品にプリンター用薄膜サーマルヘッドがある。該サー
マルヘッドは、表面をガラスで被覆したいわゆるグレー
ズドアルミナを基盤とし、この上に発熱体薄膜、絶縁性
酸化防止膜、対摩耗層をこの順で積層した構造になって
いる。熱はグレーズアルミナ側ではなく、対摩耗層側か
ら外に放出される。サーマルヘッドは印刷用小面積部位
(対摩耗層)を急速(1〜10m sec)、高温(〜500
℃)、繰返し加熱する目的で開発されているため、導電
性発熱体の酸化による劣化防止を重視しており、したが
って本発明の場合とは異なり熱伝導性を犠牲にして発熱
体上に酸化防止膜(絶縁性被膜)を配し、更にその上の
熱放出部、すなわち耐摩耗層として既形成の低融点グレ
ーズ層や電極層への配慮からやはり熱伝導性を犠牲にし
て低温形成可能なSiCやSiO2を配している。これら熱伝
導性の悪さのために、耐摩耗層表面(印刷部位)で所定
の温度を得るためには発熱体を一層高温まで加熱しなく
てはならず、発熱体下面のグレーズ層に伝わった熱は直
下のアルミナ基体から放熱されるにしても発熱体の寿命
は短くなることが避けられない。
On the other hand, a thin film thermal head for a printer is a product structurally somewhat similar to the exothermic ceramics of the present invention. The thermal head has a structure in which a so-called glazed alumina whose surface is coated with glass is a base, and a heating element thin film, an insulating antioxidant film, and a wear-resistant layer are laminated in this order on the base. The heat is released not from the glaze alumina side but from the wear layer side. The thermal head is capable of rapidly (~ 10msec), high temperature (~ 500m) for printing small area (against wear layer).
Since it was developed for the purpose of repeated heating, it attaches great importance to preventing deterioration due to oxidation of the conductive heating element, and therefore unlike the case of the present invention, sacrifices thermal conductivity to prevent oxidation on the heating element. SiC that can be formed at a low temperature at the sacrifice of thermal conductivity due to consideration of the heat-dissipating portion on the film (insulating film), that is, the low-melting point glaze layer already formed as the wear-resistant layer and the electrode layer. And SiO 2 are arranged. Due to these poor thermal conductivity, the heating element had to be heated to a higher temperature in order to obtain a predetermined temperature on the surface of the abrasion resistant layer (printed portion), and it was transmitted to the glaze layer on the lower surface of the heating element. Even if the heat is radiated from the alumina substrate directly below, it is unavoidable that the life of the heating element is shortened.

これに対して本発明のパネルヒーターは、上記したよう
な放熱特性を最重視しており放熱面が熱良導性セラミク
ス(以下セラミクスと称する)で形成されている点が根
本的に異なる。
On the other hand, the panel heater of the present invention is fundamentally different in that the above-described heat dissipation characteristics are given the highest priority, and the heat dissipation surface is formed of heat conductive ceramics (hereinafter referred to as ceramics).

〔実施例〕〔Example〕

以下本発明の実施例に基づい詳細に述べる。 Hereinafter, the present invention will be described in detail based on embodiments.

(実施例1) 第1図は、第1の実施例による積層ユニットセルを示
す。この積層ユニットセルは、下記の要領で、製作す
る。
Example 1 FIG. 1 shows a laminated unit cell according to the first example. This laminated unit cell is manufactured by the following procedure.

先ず、積層タイルを形成する。First, a laminated tile is formed.

即ち、放熱部を形成す為の▲熱良導性絶縁セラミクス1
の材料として96%Al2O3粘土を、厚さ1cm、面積30×30cm
2に成形し、その片面に深さ約3mm,幅1,2mmの蛇行溝をピ
ッチ4mm,折返し点間距離約29.5cmで彫り、これを1400℃
以上の高温で焼成後取出す。該蛇行溝に沿って密着させ
て導電性発熱体2として線径1mmのカンタル線(円形断
面)を第1図(イ)に示す如く配置し、この上に厚さ4m
m,面積30×30cm2の92%Al2O3粘土板を重ねて圧着し、再
び1300℃で焼成して積層タイルを形成する。
That is, for forming the heat dissipation part, ▲ good thermal conductive insulating ceramics 1
Material: 96% Al 2 O 3 clay, thickness 1 cm, area 30 × 30 cm
Molded into 2, and engraved on one side a meandering groove with a depth of about 3 mm and a width of 1 and 2 mm with a pitch of 4 mm and a distance between the turning points of about 29.5 cm.
Take out after firing at the above high temperature. A kanthal wire (circular cross section) having a wire diameter of 1 mm is arranged as a conductive heating element 2 by closely contacting it along the meandering groove as shown in FIG.
A 92% Al 2 O 3 clay plate having an area of 30 × 30 cm 2 and an area of 30 m 2 is stacked, pressed and fired again at 1300 ° C. to form a laminated tile.

本実施例の如く、線状発熱体を用いる場合には、該発熱
体2を熱良導性絶縁セラミクス1中に埋め込み固定した
構造とすることが、熱伝導性、耐衝撃性向上の点で、肝
要である。
When a linear heating element is used as in the present embodiment, the heating element 2 is embedded and fixed in the good thermal conductive insulating ceramics 1 from the viewpoint of improving thermal conductivity and impact resistance. , Is essential.

次に、積層タイルに埋め込まれたカンタル線の両端に夫
々、銅合金製金具5,5を取付ける。
Next, copper alloy metal fittings 5, 5 are attached to both ends of the Kanthal wire embedded in the laminated tile, respectively.

即ち、予め92%Al2O3粘度板に設けられていた幅5mm,長
さ1cmの切込みを利用して、一端には、銅合金より成る
内径約2mmの円筒孔52を、タイル内約1cmの深さに、固定
し、他端には、直径約2mmの銅合金棒51を、タイル外に
約1cm程突出する様にして、固定する。円筒孔52は、カ
ンタル線の一端に、又銅合金棒51は、その他端に接続す
る。銅合金棒51の太さは、円筒孔52内にピッタリと密着
装填できる様な太さとする。これを第1図(ロ)に示
す。銅合金棒51及び円筒孔52は、銅合金製金具5を構成
する。次に、前記96%Al2O3セラミクス表面に釉薬7を
塗布し900℃で焼成する。
That is, using a notch having a width of 5 mm and a length of 1 cm provided on a 92% Al 2 O 3 viscous plate in advance, a cylindrical hole 52 made of a copper alloy and having an inner diameter of about 2 mm is provided at one end, and the inside of the tile is about 1 cm. Then, a copper alloy rod 51 having a diameter of about 2 mm is fixed to the other end so as to protrude to the outside of the tile by about 1 cm. The cylindrical hole 52 is connected to one end of the Kanthal wire, and the copper alloy rod 51 is connected to the other end. The thickness of the copper alloy rod 51 is set so that it can be closely fitted into the cylindrical hole 52. This is shown in FIG. The copper alloy rod 51 and the cylindrical hole 52 constitute the copper alloy metal fitting 5. Next, the glaze 7 is applied to the surface of the 96% Al 2 O 3 ceramics and baked at 900 ° C.

然る後、前記92%Al2O3セラミクス板の裏面上に、前記
銅合金製金具5とは接触しない様にして、厚さ約1mmの
銅版を遠赤外線反射板として接着し、該遠赤外線反射板
3上に、厚さ約5mmのイソライトレンガを断熱材4とし
て接着する。
Then, a copper plate having a thickness of about 1 mm was adhered as a far-infrared reflecting plate on the back surface of the 92% Al 2 O 3 ceramic plate so as not to come into contact with the copper alloy metal fitting 5, and the far-infrared reflecting plate was attached. An isolite brick having a thickness of about 5 mm is bonded as the heat insulating material 4 on the reflecting plate 3.

以上により積層ユニットセルが完成する。The laminated unit cell is completed by the above.

このユニットセルを複数個接続して通電すると大形パネ
ルヒーターとして有用である。たとえば3×3m2の壁面
に貼付する場合、10枚の該ユニットセルを前記銅合金棒
51が隣接するユニットセルの銅合金円筒孔52内に挿入固
定される如くして横一列に配列し、これを10段繰返せ
ば、壁面を埋めることができる。隣接するユニットセル
との隙間は従来のタイル貼りと同様メジを塗布して固着
する。
It is useful as a large-sized panel heater by connecting a plurality of these unit cells and energizing them. For example, when affixing to a 3 x 3 m 2 wall surface, 10 unit cells of the above-mentioned copper alloy rod
The walls can be filled by arranging them in a horizontal row so that the 51 are inserted and fixed in the copper alloy cylindrical holes 52 of the adjacent unit cells, and repeating this step 10 times. A gap between adjacent unit cells is fixed by applying a medium as in the conventional tile attachment.

各段横一列の直列接続抵抗値は室温で約42Ωであった。
各段を並列接続してこれを1次側200V、容量15KVAの交
流スライダック2次側の負荷とする。乾燥後2次側を昇
圧していくと格段横一列の直列接続ユニットセル群には
100Vで約2.5A、200Vで5A近い電流が流れる。室温18℃、
室内空気自然対流の場合この壁面ユニットセルに100V印
加すると、5分後壁面温度は22℃に、10分後34℃、15分
後44℃、20分後48℃に達し、ほぼ50℃で飽和した。一
方、200V印加時には5分後45℃、10分後74℃、15分後91
℃に達しほぼ105℃で飽和した。壁面に沿って天井側よ
り室内空気を下降させるような強制対流を採用した場
合、200V印加時でも強い風速下では壁面温度は55℃で飽
和した。この条件下では3×3×10m3の容積をもつ室内
の温度は、当初の18℃から10分間経過後約32℃に達す
る。これは非常に効率のよい温熱暖房機器といえる。
尚、縦横平面状の組立てとしたが、横方向(又は縦方
向)一列を単位とする例もありうる。
The resistance value of the series connection of each row in a row was about 42Ω at room temperature.
Each stage is connected in parallel, and this is used as a load on the secondary side of an AC slidac with a primary side of 200V and a capacity of 15KVA. After drying, the secondary side pressure is increased, and the series connection unit cell group in a significantly horizontal row becomes
Current of about 2.5A at 100V and current of 5A at 200V flows. Room temperature 18 ℃,
In the case of natural convection of indoor air, when 100 V is applied to this wall unit cell, the wall temperature reaches 22 ° C after 5 minutes, 34 ° C after 10 minutes, 44 ° C after 15 minutes, 48 ° C after 20 minutes, and is saturated at about 50 ° C. did. On the other hand, when 200 V is applied, 5 minutes later, 45 ° C, 10 minutes later, 74 ° C, and 15 minutes later, 91 ° C.
It reached ℃ and saturated at about 105 ℃. When forced convection was used to lower the indoor air from the ceiling side along the wall surface, the wall temperature was saturated at 55 ℃ under strong wind speed even when 200 V was applied. Under this condition, the temperature in the room having a volume of 3 × 3 × 10 m 3 reaches about 32 ° C. after 10 minutes from the initial 18 ° C. It can be said that this is a very efficient heating and heating device.
Although the vertical and horizontal planes are assembled, there may be an example in which one row in the horizontal direction (or the vertical direction) is used as a unit.

上記例では述べなかったが、周知の温度センサーやSCR
と組合せて一定温度に調節することも勿論可能である。
またサーミスタなどと組合せれば、壁面全体が所定温度
迄もつとも短時間で加熱されるような効率的通電方法を
採用することもできる。
Although not mentioned in the above example, well-known temperature sensors and SCR
It is of course possible to adjust the temperature to a constant value in combination with.
When combined with a thermistor or the like, it is possible to adopt an efficient energizing method in which the entire wall surface is heated in a short time even if it has a predetermined temperature.

このように大型パネルヒーターであるが、壁面や床面の
一部を成しているため、設置場所がとられず、また発熱
体自身の温度が低くてすむ上に完全にセラミクス被覆さ
れているためゴミ、ホコリ等の付着もなく10年間以上と
いうきわめて長期間高い熱効率を維持することができ
る。
Although it is a large panel heater like this, it does not occupy a place where it is installed because it forms part of the wall surface or floor surface, and the temperature of the heating element itself is low, and it is completely covered with ceramics. Therefore, it is possible to maintain high thermal efficiency for a very long period of 10 years or more without adhering dust or dust.

(実施例2) この実施例を第2図に示す。熱良導性絶縁セラミクス1
の原料として燒結性に優れた活性アルミナ92%含有の粘
土を厚さ5mm,31×50cm2の板状に成形し、1400℃で焼成
して磁気板を作る。片面を研磨してやや平滑とし、この
研磨面に第2図(イ)に示すように幅1cm、間隙1cmのス
トライプ状導電膜In2O3-SnO2-Sb2O3を化学スプレー法に
より数μmの厚みに形成する。本ユニットセルにおいて
は、このストライプ状導電膜が発熱体2となる。該導電
膜面の真上に形成する断熱膜4の端部に貫通穴10を設け
る。この貫通穴10は、第2図(ロ)に示す如く長手方向
両端近くに前記ストライプ状導電膜パターンにあわせて
直径5mmの穴を貫通させた構成となる(導電膜上に穴の
位置がくる)。断熱膜4は厚さ1cm、面積31×50cm2のイ
ソライトレンガであり、断熱材として接着し、周辺部は
樹脂モールドして防湿する。接着、モールドに用いられ
る樹脂は耐熱性を有し、熱反射板としても機能する。次
に銅帯板11に直径3mm,長さ1cmのSn線12を前記イソライ
トレンガ孔にあわせて1cm間隔で鉛直にバンダ付けし、
各Sn線12の先端にInペレットを貼りつける。このSn線付
銅帯板11を前記イソライトレンガ両端近くに配置し、各
Sn線12をイソライトレンガ孔に挿入してInペレットをス
トライプ状導電膜上に接触させる。約200℃に加熱する
とSn先端のInペレットが溶けてIn−Sn合金として前記ス
トライプ状導電膜に溶着する。両端の銅帯板11にそれぞ
れ被覆導線をハンダ付けすると、16本のストライプ導電
膜は互いに並列接続されたことになる。銅帯板11を含む
イソライトレンガ表面全体を樹脂モールドして防水、絶
縁構造とする。しかる後この発熱セラミクスを反転し熱
良導性絶縁セラミクス1表面を上にして床に敷く。スト
ライプ状導電膜の抵抗値は膜組成、製造条件、厚みなど
によって異なるが、通常1本のストライプは3〜10Ωで
ある。上記被覆導線間に電圧を印加して各ストライプに
0.5〜1Aの電流を流すと、空気に強制対流を与えない場
所当初18℃であった室内では熱良導性絶縁セラミクス
(アルミナ磁器板)1表面は飽和温度約70℃まで加熱さ
れる。
(Example 2) This example is shown in FIG. Thermally conductive insulating ceramics 1
Clay containing 92% of activated alumina, which is excellent in sinterability, is formed into a plate shape with a thickness of 5 mm and 31 × 50 cm 2 and is fired at 1400 ° C. to make a magnetic plate. One surface is polished to make it slightly smooth, and a striped conductive film In 2 O 3 -SnO 2 -Sb 2 O 3 with a width of 1 cm and a gap of 1 cm is formed on this polished surface by chemical spraying as shown in Fig. 2 (a). It is formed to a thickness of μm. In this unit cell, this stripe-shaped conductive film serves as the heating element 2. A through hole 10 is provided at the end of the heat insulating film 4 formed right above the conductive film surface. As shown in FIG. 2B, this through hole 10 has a structure in which a hole having a diameter of 5 mm is penetrated near both ends in the longitudinal direction in accordance with the stripe-shaped conductive film pattern (the position of the hole is on the conductive film). ). The heat insulating film 4 is an isolite brick having a thickness of 1 cm and an area of 31 × 50 cm 2 , and is bonded as a heat insulating material, and the peripheral portion is resin-molded to prevent moisture. The resin used for adhesion and molding has heat resistance and also functions as a heat reflection plate. Next, the copper strip 11 has a diameter of 3 mm, and a Sn wire 12 having a length of 1 cm is vertically banded at 1 cm intervals to match the isolite brick holes,
An In pellet is attached to the tip of each Sn wire 12. This Sn wire-attached copper strip 11 is arranged near both ends of the Isolite brick,
The Sn wire 12 is inserted into the isolite brick hole and the In pellet is brought into contact with the stripe-shaped conductive film. When heated to about 200 ° C., the In pellet at the tip of Sn is melted and deposited as an In—Sn alloy on the striped conductive film. When the coated conductors are soldered to the copper strips 11 on both ends, the 16 stripe conductive films are connected in parallel with each other. The entire surface of the Isolite brick including the copper strip 11 is resin-molded to provide a waterproof and insulating structure. Thereafter, the heat-generating ceramics is inverted and laid on the floor with the surface of the heat-conductive insulating ceramics 1 facing up. The resistance value of the stripe-shaped conductive film varies depending on the film composition, manufacturing conditions, thickness, etc., but normally one stripe has a resistance of 3 to 10 Ω. Apply a voltage between the coated wires to
When a current of 0.5 to 1 A is applied, the surface of the high thermal conductivity insulating ceramics (alumina porcelain plate) 1 is heated to a saturation temperature of about 70 ° C in a room where the temperature was initially 18 ° C where forced convection is not applied to the air.

本発熱セラミクスタイルの場合も前実施例の場合同様各
積層ユニットセルを複数枚直並列接続して用いる事が出
来る。実際、防水加工した上でこの発熱セラミクスタイ
ルパネルヒーター(直並列接続体)を街路に敷きつめれ
ば、冬期の暖房や寒冷地における路上積雪、凍結の防止
に役立てることができる。積層ユニットセル(31×50cm
2)を電気的に直並列接続した状態で複数枚をパネル化
する場合、隣接ユニットセルの隙間にはメジが充填され
ていることは言うまでもない。
Also in the case of the present heating ceramic style, a plurality of laminated unit cells can be connected in series and parallel as in the case of the previous embodiment. In fact, if this heating ceramic panel heater (series-parallel connection body) is waterproofed and spread over the street, it can be used for heating in winter and preventing snow and freezing on the street in cold regions. Multilayer unit cell (31 x 50 cm
Needless to say, when a plurality of panels are panelized in a state where 2 ) are electrically connected in series and parallel, the gaps between adjacent unit cells are filled with media.

〔効果〕〔effect〕

以上実施例で述べたように、本発明の発熱セラミクスタ
イル利用のパネルヒーターは、 (1)放熱板/電気発熱板/熱反射板/断熱板の積層形
暖房パネルヒーターにおいて、放熱板材料に熱良導性セ
ラミクスを用いて熱応答性、単面放熱特性を高めたた
め、使用感の改善、エネルギー効率向上が達成された。
As described in the above embodiments, the panel heater using the heating ceramics of the present invention is (1) a laminated heating panel heater of a heat radiating plate / electric heat generating plate / heat reflecting plate / heat insulating plate, wherein the heat radiating plate material is heated. By improving the thermal response and single-sided heat dissipation characteristics by using the good conductivity ceramics, the usability and energy efficiency have been improved.

(2)複数枚の小面積一定規格の熱良導性タイルを稠密
配列して、隣接タイルとの隙間を全てメジ充填すること
により大面積化したセラミクスパネルを放熱板として用
いているため、高い剛性・耐摩耗性をもち熱衝撃に強
く、安価で仕上材不要の放熱板を得ることができた。小
面積規格化タイルの接続で大面積化するため、設置面の
高低差や形状・サイズ・色模様の変化に対処でき、かつ
防水加工、非発熱タイルとの組合せが容易である。
(2) Since a plurality of heat-conductive tiles with a small area and a fixed standard are densely arranged and a gap between adjacent tiles is completely filled with a medium, a ceramics panel having a large area is used as a heat dissipation plate. We were able to obtain a heat dissipation plate that has rigidity and abrasion resistance, is strong against thermal shock, is inexpensive, and does not require finishing materials. Small area standardized tiles can be connected to increase the area, so it is possible to deal with height differences on the installation surface and changes in shape, size, and color pattern, and it is easy to combine waterproofing and non-heating tiles.

というすぐれた利点を有している。It has an excellent advantage.

放熱板の材料としては、上記実施例で述べたアルミナ系
セラミクスの他に窒化物、たとてばアルミニウムナイト
ライド、シリコンナイトライド、ボロンナイトライドや
これらを含むセラミクス材料が適している。
In addition to the alumina-based ceramics described in the above-mentioned examples, nitrides, for example, aluminum nitride, silicon nitride, boron nitride, and ceramics materials containing these are suitable as materials for the heat sink.

また、熱反射板の材料としては、金属以外にフッ化カリ
ウム、ガラス、アスファルト、酸化物セラミクスなど光
屈折率が放熱板材料より小さな無機物、耐熱性プラスチ
ック(樹脂)などが適している。
Further, as the material of the heat reflection plate, in addition to metal, inorganic substances such as potassium fluoride, glass, asphalt, oxide ceramics having a smaller optical refractive index than the heat dissipation plate material, and heat resistant plastic (resin) are suitable.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の第1の実施例の説明図、第2図は、
第2の実施例の説明図である。 1……熱良導性絶縁セラミクス、2……発熱体、3……
熱反射板、4……断熱材、5……銅合金金具、6……銅
帯板、7……釉薬(ガラス)。
FIG. 1 is an explanatory view of the first embodiment of the present invention, and FIG. 2 is
It is explanatory drawing of a 2nd Example. 1 ... Thermally conductive insulating ceramics, 2 ... Heating element, 3 ...
Heat reflection plate, 4 ... Insulation material, 5 ... Copper alloy metal fittings, 6 ... Copper strip plate, 7 ... Glaze (glass).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】単面から遠赤外線を直接無媒介的に放射す
る複数枚の角形積層ユニットセルと、目地充填材とを、
有し、 前記積層ユニットセルは、遠赤外線放射基体と、遠赤外
線反射板(3)と、断熱板(4)と、1対の給電端子
(51,52)とを、有し、 前記遠赤外線放射基体は、遠赤外線放射板(1)と、導
電性発熱体(2)と、を有し、 前記遠赤外線放射板(1)は、高伝熱性兼遠赤外線放射
性セラミクスタイル板から成り、 前記導電性発熱体(2)は、1個または複数個の線状又
はリボン状の導電性発熱体から成り、 前記遠赤外線放射基体は、前記遠赤外線放射板(1)の
内面または裏面に、前記導電性発熱体(2)を、密着配
置して成り、 前記積層ユニットセルにおいては、前記線状又はリボン
状の導電性発熱体(2)を、前記1対の給電端子(51,5
2)の間に、電気的に直列又は並列に接続すると共に、
前記遠赤外線放射板(1)を均等に加熱できる様に配設
し、 前記積層ユニットセルは、前記遠赤外線放射性基体と、
前記遠赤外線反射板(3)と、前記断熱板(4)とを、
この順序で、介在物無しに、密着・積層・固体化して成
り、 前記全ての積層ユニットセルは、組合せて大面積パネル
を形成するために、平面状に、且隙間無く配列し、 かくして隣接した積層ユニットセル同士は、全ての目地
において、且少なくとも遠赤外線放射板(1)の部位に
おいて、目地充填材により、相互に強固且水密に結合し
て成る 遠赤外線放射性セラミクスタイル利用の大面積パネルヒ
ーター。
1. A plurality of prismatic laminated unit cells that directly radiate far infrared rays from a single surface without mediation, and a joint filler.
And the far-infrared radiation base, the far-infrared reflection plate (3), a heat insulating plate (4), and a pair of power supply terminals (51, 52). The radiation base has a far-infrared radiation plate (1) and a conductive heating element (2), and the far-infrared radiation plate (1) is made of a highly heat-conductive and far-infrared radiation ceramic plate. The conductive heating element (2) is composed of one or a plurality of linear or ribbon-shaped conductive heating elements, and the far-infrared radiation base is provided on the inner surface or the back surface of the far-infrared radiation plate (1). In the laminated unit cell, the conductive heating element (2) is closely arranged, and the linear or ribbon-shaped conductive heating element (2) is connected to the pair of power supply terminals (51, 5).
Between 2), electrically connected in series or in parallel,
The far-infrared radiation plate (1) is arranged so as to be heated uniformly, and the laminated unit cell includes the far-infrared radiation base,
The far-infrared reflector (3) and the heat insulating plate (4),
In this order, they are adhered, laminated, and solidified without inclusions, and all the laminated unit cells are arranged in a plane and without a gap to form a large-area panel by combining them, and thus they are adjacent to each other. Laminated unit cells are bonded to each other firmly and watertightly by joint fillers in all joints and at least in the far infrared radiation plate (1). Large area panel heater using far infrared radiation ceramic style. .
JP59042984A 1984-03-08 1984-03-08 Large area panel heater using far infrared radiation ceramic style Expired - Lifetime JPH0674900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59042984A JPH0674900B2 (en) 1984-03-08 1984-03-08 Large area panel heater using far infrared radiation ceramic style

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59042984A JPH0674900B2 (en) 1984-03-08 1984-03-08 Large area panel heater using far infrared radiation ceramic style

Publications (2)

Publication Number Publication Date
JPS60187545A JPS60187545A (en) 1985-09-25
JPH0674900B2 true JPH0674900B2 (en) 1994-09-21

Family

ID=12651297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59042984A Expired - Lifetime JPH0674900B2 (en) 1984-03-08 1984-03-08 Large area panel heater using far infrared radiation ceramic style

Country Status (1)

Country Link
JP (1) JPH0674900B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826974U (en) * 1971-07-31 1973-03-31
JPS5144250U (en) * 1974-09-30 1976-04-01
JPS5250336U (en) * 1975-10-08 1977-04-09
JPS5378075U (en) * 1976-12-02 1978-06-29
JPS58198887A (en) * 1982-05-14 1983-11-18 松下電器産業株式会社 Panel heater

Also Published As

Publication number Publication date
JPS60187545A (en) 1985-09-25

Similar Documents

Publication Publication Date Title
WO2009055959A1 (en) Electric heating panel, and manufacturing method and usage thereof
CN112804774A (en) Automatic temperature control electric heating rock plate and preparation method thereof
JPH05266965A (en) Far infrared radiation laminated body
JPH0674900B2 (en) Large area panel heater using far infrared radiation ceramic style
CN105509131A (en) Carbon fiber floor-heating system
CN205481274U (en) Carbon fiber underfloor heating system
CN215187451U (en) Automatic temperature control electric heating rock plate
JP3075530B2 (en) Snow melting system
CN2240820Y (en) Electric heating-membrane heater
CN206399035U (en) A kind of modular radiation floor based on semiconductor heating
CN207099346U (en) Warmer and surface insulation type PTC electric heaters
KR102366642B1 (en) Manufacturing method for heating floor members
JP2601770B2 (en) Snow melting roofing material
CN220035991U (en) Self-heating floor tile
CA1256480A (en) Space heating element comprising a ceramic shaped body provided with an electrically resistive coating bonded thereto
CN215631275U (en) Low-temperature radiation heating floor structure
CN212271262U (en) Hollow slab with heating function
CN211447576U (en) Splicing structure capable of quickly positioning and bonding ceramic tiles by using binder
CN219372613U (en) Heating rock plate
CN207177134U (en) One kind heating decorative brick
CN219140891U (en) Floor heating with multiple heat sources
JPH09101042A (en) Floor heating structure
CN203464376U (en) Capillary network floor heating system
CN219569450U (en) Self-heating floor structure
CN214468894U (en) Self-heating composite floor structure based on solar energy

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term