JPS6018737B2 - electrical contact materials - Google Patents

electrical contact materials

Info

Publication number
JPS6018737B2
JPS6018737B2 JP54042239A JP4223979A JPS6018737B2 JP S6018737 B2 JPS6018737 B2 JP S6018737B2 JP 54042239 A JP54042239 A JP 54042239A JP 4223979 A JP4223979 A JP 4223979A JP S6018737 B2 JPS6018737 B2 JP S6018737B2
Authority
JP
Japan
Prior art keywords
oxide
weight
contact
amount
electrical contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54042239A
Other languages
Japanese (ja)
Other versions
JPS55134145A (en
Inventor
三吉 信太
信二 大隈
立郎 菊池
晴日 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP54042239A priority Critical patent/JPS6018737B2/en
Publication of JPS55134145A publication Critical patent/JPS55134145A/en
Publication of JPS6018737B2 publication Critical patent/JPS6018737B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Contacts (AREA)

Description

【発明の詳細な説明】 本発明は、電気接点材料、特にAg−金属酸化物複合接
点材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to electrical contact materials, particularly Ag-metal oxide composite contact materials.

Ag−酸化物系接点材料として、Ag−Cdq接点材料
が広く利用されている。
Ag-Cdq contact materials are widely used as Ag-oxide-based contact materials.

Ag−Cd○接点材料は、接点材料に要求される接触抵
抗、耐落着、耐消耗などの性能に対して、平均的に優れ
た特性を示すだけでなく、機械加工性も実用上十分であ
るためにリレーノーヒューズブレーカや、家庭用電子機
器の電源スイッチなど、数アンペア以上の負荷電流域に
多く利用されている。しかしながら、近時、各種の電源
開閉器に対して安全上の規制が厳しくなるのにつれて、
接点材料に対してこれまで以上の特性が求められるよう
になって来ている。特に、家庭用電気機器においては、
スイッチの軽燥作性、小型化が要求され、他方では安全
面から見たときの関雛不能に結びつく溶着と、絶縁耐圧
劣化を招く消耗の両性能の向上が強く望まれている。さ
らに、図に示すように、商用電源1から交流電力を直接
整流して作動用直流電源を得ている機器においては、ダ
イオード2の耐サージ電流特性の向上に伴って、ダイオ
ード保護用の抵抗器3の抵抗値rをきわめて小さくし、
機器の作動電力を少しでも低減しようとする傾向にある
。これは、スイッチ4に対して、突入電流を過大にする
ものとなり、また、図のように片波整流をする場合には
、スイッチ4の負荷電流に樋性が生ずるため、直流負荷
開閉時と同様に、一方の極側のスイッチ接点のみ移転に
より極端に消耗するなどにより、スイッチの動作不能故
障が発生している。この面からも、耐落着、耐消耗性の
改良が望まれている。なお図の5は負荷、6は静電容量
である。本発明は、以上のような点に鑑みて、Ag−C
d○接点材料に代り得る接点材料を提供するものであっ
て、基本的には、Ag−Bi203接点材料の特性改良
に関して提案するものである。
Ag-Cd○ contact material not only exhibits excellent properties on average in terms of performance such as contact resistance, anti-seizure, and wear resistance required for contact materials, but also has sufficient machinability for practical use. Therefore, they are often used in load current ranges of several amperes or more, such as relay no-fuse breakers and power switches for household electronic equipment. However, in recent years, as safety regulations have become stricter for various power switches,
Contact materials are now required to have better properties than ever before. Especially in household electrical equipment,
Switches are required to be easier to operate and more compact, and on the other hand, there is a strong desire to improve performance in terms of both welding, which can lead to failure from a safety standpoint, and wear and tear, which can lead to deterioration of dielectric strength. Furthermore, as shown in the figure, in devices that obtain DC power for operation by directly rectifying AC power from commercial power supply 1, as the anti-surge current characteristics of diode 2 have improved, a resistor for diode protection has been added. The resistance value r of 3 is made extremely small,
There is a tendency to try to reduce the operating power of equipment as much as possible. This causes an excessive inrush current to the switch 4, and when performing single-wave rectification as shown in the figure, a gutter characteristic occurs in the load current of the switch 4, so it is Similarly, only the switch contacts on one pole side become extremely worn out due to relocation, resulting in inoperable failures of the switch. From this point of view as well, it is desired to improve the resistance to settling and abrasion. Note that 5 in the figure is a load, and 6 is a capacitance. In view of the above points, the present invention provides Ag-C
The present invention provides a contact material that can replace the d○ contact material, and basically proposes improvements in the properties of Ag-Bi203 contact material.

Agマトリクス中に、Bi2Qを分散させた接点材料は
、特関昭52−1紙56叫号公報に明らかにされている
ように接触抵抗が低く、耐溶着性の優れた接点材料であ
るが、欠点として消耗量が多いということが見受けられ
る。
A contact material in which Bi2Q is dispersed in an Ag matrix is a contact material with low contact resistance and excellent welding resistance, as disclosed in Tokusekki Sho 52-1 Paper No. 56, but The drawback is that there is a lot of wear and tear.

発明者らは、この点の改良のため種々検討を重ね、Ag
マトリクス中にBi203の他に、ln203を分散さ
せた材料を開発した。しかしながら、この材料において
も、図に示すような、負荷電流に極性がある用途に使用
されると、移転によりスイッチ接点の一方の極が異常に
消耗し、必ずしも満足すべき結果を得られるまでに至ら
なかった。発明者らは、上詰めgマトリクス中にBi2
03とln203を分散した材料に関して引き続いて改
良検討し、Snの酸化物を添加しBi203をBi−S
nの酸化物Bi2Sn207とすることにより、顕著な
接点開閉性能の向上を見ることができたものである。す
なわち、本発明の材料は、Agマトリクス中に、lnの
酸化物(ln203)と、Bi一Snの酸化物(Bi2
Sn207)を主たる酸化物として分散し、さらに、B
iとSnの組成比率によってはBiの酸化物(Bi20
3)またはSnの酸化物(Sn02)を若干童含有して
いるAg−酸化物複合接点材料であって、その含有され
ている成分組成がBil.5〜5重量%、ln3〜8重
量%(ただし3重量%を含まず)、Sno.5〜4重量
%および残部Agよりなる関係において、所望の性能を
見し、出し得るものである。
The inventors conducted various studies to improve this point, and developed Ag
We have developed a material in which ln203 is dispersed in addition to Bi203 in the matrix. However, even with this material, if it is used in an application where the load current has polarity, as shown in the figure, one pole of the switch contact will be abnormally worn out due to transfer, and it may not be possible to obtain satisfactory results. It didn't work out. The inventors added Bi2 in the top-packed g matrix.
We continued to improve the material in which 03 and ln203 were dispersed, and added Sn oxide to change Bi203 to Bi-S.
By using the n oxide Bi2Sn207, it was possible to see a remarkable improvement in the contact opening/closing performance. That is, the material of the present invention contains an ln oxide (ln203) and a Bi-Sn oxide (Bi2
Sn207) is dispersed as the main oxide, and B
Depending on the composition ratio of i and Sn, Bi oxide (Bi20
3) or an Ag-oxide composite contact material containing a small amount of Sn oxide (Sn02), the contained component composition of which is Bil. 5 to 5% by weight, ln3 to 8% by weight (excluding 3% by weight), Sno. The desired performance can be observed and achieved in a relationship of 5 to 4% by weight and the balance being Ag.

そして、特に、図示したような突入電流の大きな軽燥作
力スイッチにおいて、著しい開閉性能の向上を期待する
ことができる。次に、本発明の材料をより具体的に説明
する。
In particular, in a light actuation switch with a large inrush current as shown in the figure, a significant improvement in opening and closing performance can be expected. Next, the material of the present invention will be explained in more detail.

本発明にかかる接点材料は、Agマトリクス中にlnの
酸化物(ln203)とBi−Snの酸化物(Bi2S
n207)が分散し、その相乗作用により接点特性を引
き出しているものである。後者の酸化物(Bi2S〜0
7)は、Biの酸化物(Bi203)とSnの酸化物(
Sn02)をモル比で1:2の割合で700〜900q
oの範囲内の温度で加熱することにより、黄緑石構造を
もつ酸化物として生成する。その融点は1200℃以上
で、昇華性を示し、Agマトリクス中に分散することに
より、耐落着、移転消耗の改善効果が著しい。しかして
、Agマトリクス中に、上記lnの酸化物、Bi−Sn
の酸化物を分散させる手法として、Ag一1n−Bi−
Snの四元合金を、酸化雰囲気中にて加熱し、ln,B
i,Snを選択的に酸化させるいわゆる内部酸化法が取
られるが、BiとSnについて言えば前記モル比より換
算し、四元合金中のBi重量xとSnの重量yがy/x
ニ0.57 の関係にてBi−Snの酸化物(Bi2S山07)を生
成されることができる。
The contact material according to the present invention has ln oxide (ln203) and Bi-Sn oxide (Bi2S
n207) are dispersed and their synergistic action brings out the contact characteristics. The latter oxide (Bi2S~0
7) is a Bi oxide (Bi203) and a Sn oxide (
700 to 900q of Sn02) at a molar ratio of 1:2
When heated at a temperature within the range of 0.05 to 30.0 m, it is produced as an oxide with a pyrochlore structure. Its melting point is 1200° C. or higher, it exhibits sublimation properties, and by dispersing it in an Ag matrix, it has a remarkable effect of improving settling resistance and transfer wear. Therefore, in the Ag matrix, the above ln oxide, Bi-Sn
As a method of dispersing the oxide of Ag-1n-Bi-
A quaternary alloy of Sn is heated in an oxidizing atmosphere to form ln,B
A so-called internal oxidation method is used to selectively oxidize Bi and Sn, but in terms of Bi and Sn, when converted from the above molar ratio, Bi weight x and Sn weight y in the quaternary alloy are y/x.
A Bi-Sn oxide (Bi2S mountain 07) can be generated in the relationship of 0.57.

しかしながら、Biは合金中において偏析しやすいため
に、内部酸化処理により確実にBi−Snの酸化物に転
化させることは困難であり、Biの酸化物、Snの酸化
物が単独で若干重存在することもある。また、当然のこ
とながら、上記y/xの値が0.57より大きくなれば
、Biの酸化物の単独で存在する機会が少なくなり、S
nの酸化物含有量が増加して来る。上記y/xの値が0
.57より小さくなればこの逆の煩向になることは明白
である。しかるに、Snの酸化物が単独で増加すると、
先に述べた消耗量は減少するものの、接触抵抗が上昇し
、加工性も悪化して来るので、y/xの値は2以下とす
る方が好ましい。他方、Biが単独で増加し、本発明の
目的にはそぐわなくなる。このような現象はlnの酸化
物が共存している状態において生ずるものである。一方
でln酸化物が多い場合にはSnの酸化物と反応して、
接触抵抗を著しく上昇させ、また、スイッチ接点の開閉
速度の遅に援点においては、耐落着性が悪化する傾向を
示すことがあり、おのずと、Agマトリクス中に分散し
得る酸化物量には制限がある。優れた接点特性をひき出
すための本発明のAg−酸化物接点材料の金属組成は、
少なくともBil.5〜5重量%、ln3〜8重量%(
ただし3重量%を除く)、Sno.5〜4重量%および
残部Agよりなるものである。Bi,ln,Snの各最
少量は、本発明にかかる材料の目的とした用途に対し添
加効果の認められる下限の値である。また各最多量は、
Biについては後述の実施例にて示すような合金ィンゴ
ットを作製する際に固溶限を越えると偏祈しやすくなる
。その結果Agマトリクス中にBiの酸化物が単独で偏
在し、消耗量の増加を招く。この現象を避けるために制
限される値である。lnについては、上述したように接
触抵抗及びスイッチ接点の開閉速度が遅い場合に耐港着
性の面より制限を受ける値である。SnはBi酸化物を
Bi−Snの酸化物として転化し移転消耗を消滅するた
めに添加されるが、ln酸化物存在下にあったは添加量
が増大すると、接触抵抗が上昇しやすく加工館も降下す
るために、上記した量に制限される。なお、本発明にか
かる材料においては、さらに添加酸化物として、徴量の
NiあるいはCoの酸化物を添加することが接点特性の
向上につながる。特に、添加によりアーク放電の消狐作
用、あるいは材料硬度の上昇により、消耗量、変形を少
なくすることが認められる。添加し得る量は、金属合成
組成にて、0.5重量%以下で、一方その添加効果が認
められる量は0.05重量%である。上誌の量を越えて
添加すると、後述の実施例に示すようなィンゴット作製
時に偏析し、その結果Agマトリクス中に均質に分散し
ないために加工能を悪化させる。また過量に加えること
は耐溶性に対し逆効果に働き望ましいものではない。以
上説明した本発明の材料についてより具体的に実施例に
もとづいて説明する。
However, since Bi tends to segregate in alloys, it is difficult to reliably convert it into Bi-Sn oxides by internal oxidation treatment, and Bi oxides and Sn oxides are present in slightly heavy amounts alone. Sometimes. Naturally, if the value of y/x is greater than 0.57, the chances of Bi oxide existing alone will decrease, and S
The oxide content of n increases. The value of y/x above is 0
.. It is clear that if it becomes smaller than 57, the opposite tendency will occur. However, when Sn oxide increases alone,
Although the amount of wear mentioned above is reduced, the contact resistance increases and the workability deteriorates, so it is preferable that the value of y/x is 2 or less. On the other hand, Bi alone increases, which is not suitable for the purpose of the present invention. Such a phenomenon occurs when an oxide of ln coexists. On the other hand, when there is a large amount of ln oxide, it reacts with the oxide of Sn,
The contact resistance increases significantly, and the resistance to settling tends to deteriorate at points where the opening/closing speed of the switch contact is slow. Naturally, there is a limit to the amount of oxide that can be dispersed in the Ag matrix. be. The metal composition of the Ag-oxide contact material of the present invention to bring out excellent contact properties is as follows:
At least Bill. 5-5% by weight, ln3-8% by weight (
However, 3% by weight is excluded), Sno. It consists of 5 to 4% by weight and the balance being Ag. The minimum amounts of Bi, ln, and Sn are the lower limit values at which the effect of addition is recognized for the intended use of the material according to the present invention. Also, the maximum amount of each is
Regarding Bi, if it exceeds the solid solubility limit when producing an alloy ingot as shown in the examples below, it tends to become unbalanced. As a result, Bi oxide is unevenly distributed alone in the Ag matrix, leading to an increase in consumption. This value is limited to avoid this phenomenon. As mentioned above, ln is a value that is limited in terms of portability when the contact resistance and the opening/closing speed of the switch contact are slow. Sn is added to convert Bi oxide into Bi-Sn oxide and eliminate transfer consumption, but in the presence of ln oxide, as the amount added increases, the contact resistance tends to increase and the processing hall is also limited to the amount mentioned above. In addition, in the material according to the present invention, addition of a certain amount of Ni or Co oxide as an additive oxide leads to improvement in contact characteristics. In particular, it has been found that the amount of wear and deformation can be reduced due to the quenching effect of arc discharge or the increase in material hardness. The amount that can be added is 0.5% by weight or less in the metal synthesis composition, and the amount in which the effect of addition is recognized is 0.05% by weight. If it is added in an amount exceeding the above amount, it will segregate during ingot production as shown in Examples below, and as a result, it will not be homogeneously dispersed in the Ag matrix, resulting in deterioration of processability. Moreover, adding too much is not desirable because it has an adverse effect on solubility resistance. The materials of the present invention explained above will be explained in more detail based on Examples.

本発明の組成に従って、Ag,Bi,ln,Snおよび
Ni,Coを合量200タ溶解し、Ag−Bi−ln−
Snを主成分とするィンゴットを作った。
According to the composition of the present invention, Ag, Bi, ln, Sn and Ni, Co were dissolved in a total amount of 200 ta, Ag-Bi-ln-
An ingot containing Sn as a main component was produced.

溶解はアルミナるつぼを使用し、アルゴン雰囲気にて高
周波炉を用いて行なった。溶湯は、15×30×7仇舷
3 の金型に鋳込まれた。このようにして作製したィン
ゴットを、ただちに圧延機を用いて、厚さ1柳以下の鱗
片状のチップに粉砕した。通常、Bjを1重量%以上含
むAg合金は、冷間加工性がほとんどないため、厚さ1
5脚のィンゴツトを圧延すると、おのずをクラックが入
り、鱗片状のチップに粉砕される。これを、700oo
の空気中にて60時間加熱し、Bi,ln,Snなどを
選択的に酸化した。次にこれを再度圧延機によって厚さ
0.2側以下のチップとした。このときに、上記酸化処
理によってAgマトリクス中に分散した酸化物粒子は、
粉砕微細化され、最終線材としたときの機械加工性付与
に大きな影響を及ぼす。上記0.2肋以下の厚さのチッ
プは、洗浄されたのち2仇剛径の円筒型に装填され、8
トン/地の圧力で成型された。次いで、この成型体を7
80qoの温度で空気中にて2時間加熱糠結した。さら
にこの焼結体を径20.5脚の温間加熱型に装填し、4
0000,8トン/地の圧力を1分間印加してから、再
度780q0の温度で空気中にて4時間焼結した。この
嫌結体は、次いで、550qoの温間押出しにより3肋
径の線材に加工された。最後に700℃で1時間焼鈍し
た後、径5肋、曲率半径7物の球面頭部を有する接点鋲
に加工され、接点開閉試験用の試料とされた。接点特性
は、図に示した回路によって行なった試験により評価さ
れた。
Melting was carried out using an alumina crucible in an argon atmosphere using a high frequency furnace. The molten metal was cast into a mold measuring 15 x 30 x 7 m3. The ingot thus produced was immediately ground into scale-like chips with a thickness of 1 willow or less using a rolling mill. Usually, Ag alloys containing 1% by weight or more of Bj have almost no cold workability, so the thickness is 1% by weight.
When five ingots are rolled, they naturally crack and are crushed into scaly chips. This is 700oo
The sample was heated in air for 60 hours to selectively oxidize Bi, In, Sn, etc. Next, this was made into chips with a thickness of 0.2 or less using a rolling mill again. At this time, the oxide particles dispersed in the Ag matrix by the above oxidation treatment are
It has a great impact on machinability when it is pulverized and made into a final wire rod. After the chips with a thickness of 0.2 mm or less are cleaned, they are loaded into a cylindrical shape with a diameter of 8 mm.
Molded with ton/ground pressure. Next, this molded body was
It was heated and brazed in air at a temperature of 80 qo for 2 hours. Furthermore, this sintered body was loaded into a warm heating mold with a diameter of 20.5 legs, and
After applying a pressure of 0,000,8 tons/kg for 1 minute, sintering was performed again in air at a temperature of 780 q0 for 4 hours. This non-consolidating body was then processed into a wire rod with a diameter of 3 ribs by warm extrusion of 550 qo. Finally, after annealing at 700° C. for 1 hour, it was processed into a contact stud having a spherical head with a diameter of 5 ribs and a curvature radius of 7, and used as a sample for a contact opening/closing test. Contact characteristics were evaluated by tests performed using the circuit shown in the figure.

すなわち、スイッチSとしてASTM型試験機を用い接
触力30夕、開離力40夕「開閉速度10肌/秒にて開
閉条件を構成し、試験負荷として、商用電源電圧l0w
、60HZ、ダイオード保護抵抗器r=0.50、負荷
R=200、容量C=1140ムF(充放電用の350
W.V、380〃Fのコンデンサを3ケ並列接続して使
用)とした。したがって、突入電流の最大ピークは28
2A、定常弘である。接点特性の評価は、上記条件にて
2×nぴ回開閉中の溶着回数すなわち接点を開離するた
めに40夕を越える力を要した回数、および2×nぴ回
開閉後の接点の消耗量、特に正極側の消耗量により行な
った。試験試料数は各6対であり、表に、各特性の最小
値を示した。参考までに、比較試料としてAg−Cd○
(内部酸化法による)の試験結果もあわせて示す。表の
結果から明らかなように、本発明による接点材料は従来
のAg−CdO接点に対し、港着、消耗のいずれの特性
においても、きわめて優れた値を示すものである。
That is, using an ASTM type tester as the switch S, the opening/closing conditions were configured such that the contact force was 30 mm, the separation force was 40 mm, and the opening/closing speed was 10 skins/second, and the commercial power supply voltage was 10 w as the test load.
, 60Hz, diode protection resistor r = 0.50, load R = 200, capacity C = 1140μF (350μF for charging and discharging)
W. 380〃F capacitors were connected in parallel). Therefore, the maximum peak of inrush current is 28
2A, Hiroshi Tsunejo. The evaluation of the contact characteristics is based on the number of welds during 2×n opening/closing under the above conditions, that is, the number of times a force exceeding 40 degrees was required to open the contact, and the wear of the contact after 2×n opening/closing. This was determined based on the amount of consumption, especially the amount of consumption on the positive electrode side. The number of test samples was 6 pairs each, and the minimum value of each property is shown in the table. For reference, Ag-Cd○ is used as a comparison sample.
Test results (based on internal oxidation method) are also shown. As is clear from the results in the table, the contact material according to the present invention exhibits extremely superior values in both portability and wear characteristics as compared to the conventional Ag-CdO contact.

図面の簡単な説明図は本発明にかかる電気接点材料の典
型的な使用形態の一例を説明するためのものである。
The simple explanatory drawings are for explaining one example of a typical usage form of the electrical contact material according to the present invention.

Claims (1)

【特許請求の範囲】 1 Agマトリクスに分散している主たる酸化物がIn
の酸化物と、Bi−Snの酸化物であつて、の金属合成
成分が金属換算値でBi1.5〜5重量%、In3〜8
重量%(ただし3重量%は含まない)、Biの2倍を越
えない範囲内においてSn0.5〜4重量%、残部Ag
の割合であることを特徴とする電気接点材料。 2 Agマトリクスに分散している主たる酸化物がIn
の酸化物と、Bi−Snの酸化物であつて、の金属合成
成分が金属換算値でBi1.5〜5重量%、In3〜8
重量%(ただし3重量%は含まない)、Biの2倍を越
えない範囲内においてSn0.5〜4重量%、Niもし
くはCoのうちの少なくともいずれか一方0.05〜0
.5重量%、残部Agの割合であることを特徴とする電
気接点材料。
[Claims] 1. The main oxide dispersed in the Ag matrix is In.
and Bi-Sn oxide, in which the metal synthesis components are Bi1.5 to 5% by weight and In3 to 8% in terms of metal.
% by weight (not including 3% by weight), 0.5 to 4% by weight of Sn within a range not exceeding twice that of Bi, the balance being Ag
An electrical contact material characterized by a proportion of 2 The main oxide dispersed in the Ag matrix is In
and Bi-Sn oxide, in which the metal synthesis components are Bi1.5 to 5% by weight and In3 to 8% in terms of metal.
% by weight (excluding 3% by weight), 0.5 to 4% by weight of Sn within a range not exceeding twice that of Bi, and 0.05 to 0 of at least one of Ni or Co.
.. An electrical contact material characterized in that the proportion is 5% by weight and the balance is Ag.
JP54042239A 1979-04-06 1979-04-06 electrical contact materials Expired JPS6018737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54042239A JPS6018737B2 (en) 1979-04-06 1979-04-06 electrical contact materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54042239A JPS6018737B2 (en) 1979-04-06 1979-04-06 electrical contact materials

Publications (2)

Publication Number Publication Date
JPS55134145A JPS55134145A (en) 1980-10-18
JPS6018737B2 true JPS6018737B2 (en) 1985-05-11

Family

ID=12630469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54042239A Expired JPS6018737B2 (en) 1979-04-06 1979-04-06 electrical contact materials

Country Status (1)

Country Link
JP (1) JPS6018737B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109231259A (en) * 2018-10-09 2019-01-18 湖南工业大学 A kind of method that indium metal and metallic tin prepare ultra-fine ITO powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884949A (en) * 1981-11-16 1983-05-21 Tanaka Kikinzoku Kogyo Kk Sliding contact material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109231259A (en) * 2018-10-09 2019-01-18 湖南工业大学 A kind of method that indium metal and metallic tin prepare ultra-fine ITO powder
CN109231259B (en) * 2018-10-09 2020-11-13 湖南工业大学 Method for preparing ultrafine ITO powder from metal indium and metal tin

Also Published As

Publication number Publication date
JPS55134145A (en) 1980-10-18

Similar Documents

Publication Publication Date Title
US4141727A (en) Electrical contact material and method of making the same
KR0121724B1 (en) Silver-oxide based electric contact material
JPS6018737B2 (en) electrical contact materials
JPS6047341B2 (en) electrical contact materials
JPS6027746B2 (en) electrical contact materials
JPS6048578B2 (en) electrical contact materials
US5451272A (en) Silver-oxide electric contact material for use in switches for high current
JPS6018735B2 (en) electrical contact materials
JPS6128734B2 (en)
JPS6027747B2 (en) electrical contact materials
JPS6018738B2 (en) electrical contact materials
JPS6018736B2 (en) electrical contact materials
JPS6120616B2 (en)
JPS6018734B2 (en) electrical contact materials
JPS60258436A (en) Electrical contact material
JPS58100650A (en) Electrical contact material
JPS58181837A (en) Electric contact material
JPS58100649A (en) Electrical contact material
JPS5931808B2 (en) electrical contact materials
JPS60258437A (en) Electrical contact material
JPH04314837A (en) Electrical contact material of silver oxide series
US4908158A (en) Electrical contact material and method of preparing same
JPS58100648A (en) Electrical contact material
JPS6026823B2 (en) electrical contact materials
JPS6350413B2 (en)