JPS58181837A - Electric contact material - Google Patents

Electric contact material

Info

Publication number
JPS58181837A
JPS58181837A JP57065923A JP6592382A JPS58181837A JP S58181837 A JPS58181837 A JP S58181837A JP 57065923 A JP57065923 A JP 57065923A JP 6592382 A JP6592382 A JP 6592382A JP S58181837 A JPS58181837 A JP S58181837A
Authority
JP
Japan
Prior art keywords
oxide
contact
mug
contact material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57065923A
Other languages
Japanese (ja)
Other versions
JPH0254409B2 (en
Inventor
Sankichi Shinoda
信太 三「あ」
Yasushi Kigoshi
康司 木越
Akiyoshi Takeshima
竹島 明美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57065923A priority Critical patent/JPS58181837A/en
Publication of JPS58181837A publication Critical patent/JPS58181837A/en
Publication of JPH0254409B2 publication Critical patent/JPH0254409B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Contacts (AREA)

Abstract

PURPOSE:To obtain an Ag-oxide composite electric contact material improved in resistances to fusion and attrition, by dispersing Bi-Sn and Sn oxides in an Ag matrix, and specifying alloying components. CONSTITUTION:The electric contact material prepd. by dispersing Bi-Sn oxide (Bi2Sn2O7) and Sn oxide (SnO2) in an Ag matrix by an internal oxidation method and adjusting metallic alloying components in it to 2-2.9wt% Bi, 6.1-10% Sn, optionally 0.1-2% in total of one or more of Ni, Co, Misch metal, Zn, etc. and the balance Ag, all being expressed in terms of metals. When this composite contact material is used as an electric switch or the like, it exhibits excellent result in both of resistances to fusion and attrition as compared with a conventional Ag-CdO contact.

Description

【発明の詳細な説明】 本発明は五gマl−IJクスに金属酸化物を分散した電
気接点材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrical contact material in which a metal oxide is dispersed in a 5g IJ square.

金属酸化物を利用したムg−酸化物複合接点材料として
、ムg−CdO接点材料が広く利用されている。Ag 
−Cd○接点材料は、接点材料に要求される接触抵抗、
耐溶着性、耐アーク消耗などに平均的に優れた性能を示
すことから、継電器、家庭用電気機器の電源スィッチ、
一般産業用の電磁開閉器など、数アンペア以上の負荷電
流域に多用されている。
Mug-CdO contact materials are widely used as mug-oxide composite contact materials that utilize metal oxides. Ag
-Cd○ contact material is the contact resistance required for contact material,
Due to its average performance in terms of welding resistance and arc wear resistance, it is used in relays, power switches for household electrical equipment,
It is often used in the load current range of several amperes or more, such as electromagnetic switches for general industry.

しかるに、近年、上記各種の電源開閉器に対し安全上の
規制に伴なう接触信M硅、耐絶縁性の向上が強く要求さ
れて来ている。また他方においては、電気機器の半導体
化に連れて各種の電子部品は小型化が望まれ、電源開閉
器においても例外ではない。この要求は、接点間距離の
縮少など安全上の規制から見れば相矛盾するものとなり
、加えて、最近においては、ムg資材の急激々コスト上
昇釦ともない、経済性の面から接点の大きさをより小さ
くする傾向があシ、結果的には、接点の単位面積当りの
開閉負荷を大きくとれる材料が求められている。
However, in recent years, there has been a strong demand for improvements in contact resistance and insulation resistance of the various power switches mentioned above in accordance with safety regulations. On the other hand, as electric equipment becomes more semiconductor-based, various electronic components are desired to be made smaller, and power switches are no exception. This requirement is contradictory in terms of safety regulations such as reducing the distance between contacts, and in addition, recently, with the rapid increase in the cost of mug materials, it has become necessary to increase the size of the contacts from an economical point of view. There is a tendency to reduce the contact area, and as a result, there is a demand for materials that can handle a large switching load per unit area of the contact.

Agマトリクスに酸化ビスマスを分散させた接点材料は
、接触抵抗が低く耐溶着性の優れた接点材料であるが、
その問題点として消耗量が多いということが見受けられ
た。
A contact material in which bismuth oxide is dispersed in an Ag matrix is a contact material with low contact resistance and excellent welding resistance.
The problem was found to be a large amount of wear and tear.

発明者らはこの点を改良するために種々検討を重ねた結
果、先に、ムgマドIJクスにBiの酸化物の他にSn
の酸化物を添加し、これら両酸化物を反応させて、Bi
 −Snの酸化物(Bi25n20z )とし、これを
分散させた材料を提案した。
As a result of various studies to improve this point, the inventors first added Sn in addition to Bi oxide to Mug Mad IJ gas.
oxide is added, and both oxides are reacted to form Bi.
We proposed a material in which -Sn oxide (Bi25n20z) is dispersed.

この接点材料は、耐溶着性、耐消耗性に対して良好な特
性を示すものであるが、前述したように最近の傾向によ
シ接点の形状を小さくして単位面積当りの開閉負荷を大
きくすると、開閉回数が増えるにつれて接点が変形し、
周辺に酸化物が抜けたムgに富む層が生成し、接点特性
、特に耐溶着性を悪化させる傾向が見られた。このとき
の接点の断面を示すと、第1図のとおりである。図にお
いて、1.1′は接点ばね、2.2’はムg−酸化物接
点、3.3′はムgに富む層である。開閉回数が増大す
ると、ムgに富む層はそれに比例して成長するために、
接点表面全体におけるムgに富む層の面積は開閉回数の
2乗にあたかも比例する如くに増える。その結果、接点
表面の真に接触している点が、ムgに富む層に存在する
割合も増大し、当然のことなからムgに富む層は耐溶着
性が劣るため、接点の溶着回数は著しく増加し始める。
This contact material shows good properties in terms of welding resistance and abrasion resistance, but as mentioned above, the recent trend is to reduce the shape of the contact and increase the switching load per unit area. Then, as the number of openings and closings increases, the contacts deform,
A mug-rich layer from which oxides were removed was formed in the periphery, which tended to deteriorate contact characteristics, particularly welding resistance. The cross section of the contact at this time is shown in FIG. In the figure, 1.1' is the contact spring, 2.2' is the mug-oxide contact, and 3.3' is the mug-rich layer. As the number of openings and closings increases, the mug-rich layer grows proportionally, so
The area of the mug-rich layer on the entire contact surface increases as if in proportion to the square of the number of openings and closings. As a result, the proportion of true contact points on the contact surface that exist in the mug-rich layer also increases, and as a matter of course, the mug-rich layer has poor welding resistance, so the number of times the contact welds is increased. begins to increase significantly.

本発明はこのような点に鑑みて成されたもので、改良さ
れたムg −Bi25n207系電気接点材料を提供す
るものである。すなわち、発明者等は上記Ag −7ト
リクスにBi −Sn o酸化物(Bi2Sn207)
を分散した材料に関して引き続いて改良検討した結果、
ムgに富む層の発生を防止する方法としてSn酸化物(
5nO2)をB1−8n酸化物(Bi2Sn207)よ
り十分に多くすることが効果を示すことを見い出した。
The present invention has been made in view of these points, and it is an object of the present invention to provide an improved Mug-Bi25n207-based electrical contact material. That is, the inventors added Bi-Sno oxide (Bi2Sn207) to the Ag-7 trix.
As a result of continued improvement studies on materials containing dispersed
Sn oxide (
It has been found that increasing the amount of B1-8n oxide (Bi2Sn207) by a sufficiently large amount is effective.

以下、本発明の電気接点材料について詳細に説明する。Hereinafter, the electrical contact material of the present invention will be explained in detail.

本発明の電気接点材料は、Agマトリクス中にB1−5
nノ酸化物(Bi25n207)とsn ノ酸化物(S
nO2)を含有するムg−酸化物複合接点材料で、含有
されている酸化物の量は、金属換算値でBi2〜2.9
重量%、 Sn 6.1〜10重量%であり、残部が五
gとなっている。
The electrical contact material of the present invention has B1-5 in the Ag matrix.
n oxide (Bi25n207) and sn oxide (S
This is a mug-oxide composite contact material containing nO2), and the amount of oxide contained is Bi2 to 2.9 in metal equivalent value.
% by weight, Sn 6.1 to 10% by weight, and the balance is 5 g.

上記したムgマ) IJクスに、Bi −Sn  の酸
化物(Bi25n207)とSnの酸化物(5nO2)
  を分散した接点材料においては、全体的な傾向とし
て、Bi の含有量すなわちB125n207酸化物の
含有量が増加すると耐溶着性が上昇する傾向にあるが、
前述の如く小型接点に高負荷を印加した場合、B1の含
有量が多いと接点表面の変型が著しく、第1図に示した
傾向をとりやすい。従って、材料的には耐溶着性が高い
にもかかわらず、開閉回数が増大すると逆に溶着しやす
い結果を招くことになる。
The above-mentioned mugma) In the IJ gas, oxide of Bi-Sn (Bi25n207) and oxide of Sn (5nO2)
In contact materials in which B125n207 is dispersed, there is an overall tendency for the welding resistance to increase as the Bi content, that is, the content of B125n207 oxide, increases.
As mentioned above, when a high load is applied to a small contact, if the content of B1 is large, the contact surface is significantly deformed, and the tendency shown in FIG. 1 is likely to occur. Therefore, even though the material is highly resistant to welding, as the number of openings and closings increases, welding tends to occur.

一方、Snの含有量すなわちSnO2が増加すると。On the other hand, when the Sn content, that is, SnO2 increases.

材料そのものの耐溶着性改善の効果は少ないが、先に記
した変型が少なく、第1図に示した傾向が生じにくい状
況を示す。従って、開閉回数が増大した場合には、結果
的には溶着する割合が少ないことになる。この現象は、
恐ら(Bi25n20yとSnO2のアーク放電やジュ
ール熱に対する熱的挙動においてBi25n207が不
安定であること、さらには機械的な強度、硬さなどの相
違によってもたらされているものと考えられる。B1と
Snの酸化物(B12S02o7)は、Biミノ化物(
Bi205) トSnの酸化物(5nO2) をモル比
で1:2の割合で700〜900℃の範囲内の温度で加
熱することにより、黄縁石構造をもつ酸化物として生成
する。
Although the effect of improving the welding resistance of the material itself is small, the deformation described above is small and the tendency shown in FIG. 1 is unlikely to occur. Therefore, if the number of openings and closings increases, the rate of welding will eventually decrease. This phenomenon is
This is probably due to the instability of Bi25n207 in the thermal behavior of Bi25n20y and SnO2 against arc discharge and Joule heat, and also due to the difference in mechanical strength, hardness, etc. The Sn oxide (B12S02o7) is a Bi minide (
By heating an oxide of Sn (5nO2) at a molar ratio of 1:2 at a temperature within the range of 700 to 900°C, it is produced as an oxide having a yellow curb structure.

その融点は1200’C以上で、昇華性を示し、ムgマ
) IJクスに分散することにより耐溶着性の向上が得
られる。しかして、AgマトリクスにBi −Sn酸化
物を分散させる手法として、ムg −Bi −Snの三
元合金を酸化雰囲気中にて加熱し、B1とSnを選択的
に酸化させるいわゆる内部酸化法が取られるが、上記モ
ル比よシ換算すれば、三元合金中のB4量IとSnの重
量yが’/x ”= 0.57 (7)関係にてBi 
−Snの酸化物(Bi25n207)を生成させること
ができる。しかしながら、この関係にてムgと合金化さ
れているB1とSnを内部酸化により確実にBi −S
nの酸化物(Bi25n207)に転化させることは困
難で、特に、ムg に固溶しにくいB1 が偏析してB
1酸化物(Bi203)  として存在しやすい傾向が
ある。その結果、Bi酸化物(Bi203)が存在する
場合には、先に述べたようK、小径化した接点面に高負
荷を印加すると接触面が荒れたシ変形し、望捷しい状況
を呈しない。このような観点から、ビスマス量に対して
十分な量のSnを配した三元合金を内部酸化することに
よって、B1酸化物が単独で存在することを防止する必
要がある。一方、  Sn量が過多になるとSn酸化物
(5n02)  の影響が特性を強く支配するようにな
る。例えば、Sn酸化物が多く含有されると接触抵抗が
上昇する あるいは、機械加工性が降下するなどの現象
が現われる。しかしながら、小径接点に高負荷を印加し
ている状態においては、B1−8n 酸化物の昇華によ
る接点面の清浄作用によって接触抵抗の増大が防止され
やすいこと、またら、sn量過多の欠点は大きく緩和さ
れる。
It has a melting point of 1200'C or more, exhibits sublimation properties, and can improve welding resistance by dispersing it in IJ gas. Therefore, as a method for dispersing Bi-Sn oxide in an Ag matrix, a so-called internal oxidation method is used in which a ternary alloy of Mug-Bi-Sn is heated in an oxidizing atmosphere to selectively oxidize B1 and Sn. However, if converted from the above molar ratio, the amount I of B4 in the ternary alloy and the weight y of Sn are '/x''= 0.57 (7) In the relationship, Bi
-Sn oxide (Bi25n207) can be generated. However, in this relationship, B1 and Sn alloyed with Mug are reliably Bi-S through internal oxidation.
It is difficult to convert it into the oxide of n (Bi25n207), and in particular, B1, which is difficult to dissolve in solid form in mug, segregates and becomes B1.
It tends to exist as monooxide (Bi203). As a result, when Bi oxide (Bi203) is present, as mentioned above, when a high load is applied to the contact surface with a reduced diameter, the contact surface becomes rough and deformed, resulting in an undesirable situation. . From this point of view, it is necessary to prevent B1 oxide from existing alone by internally oxidizing a ternary alloy in which a sufficient amount of Sn is arranged relative to the amount of bismuth. On the other hand, when the amount of Sn becomes excessive, the influence of Sn oxide (5n02) comes to strongly dominate the characteristics. For example, if a large amount of Sn oxide is contained, phenomena such as an increase in contact resistance or a decrease in machinability will occur. However, when a high load is applied to a small-diameter contact, an increase in contact resistance is likely to be prevented by the cleaning effect of the contact surface due to sublimation of B1-8n oxide, and the drawbacks of an excessive amount of SN are significant. eased.

本発明の電気接点材料は、以上述べたような昇華温度の
低いB1とsnの酸化物と、昇華分解温度の高い錫酸化
物との相乗作用によって1本発明の用途に対して優れた
接点特性を現出しているものであるが、これらの特性を
引き出すためには、重量%、残部がムgより成るもので
ある。これらの成分組成において、B1については前述
した用途に対して望ましい特性の得られる範囲である。
The electrical contact material of the present invention has excellent contact properties for the purpose of the present invention due to the synergistic effect of the B1 and sn oxides with low sublimation temperatures and the tin oxides with high sublimation and decomposition temperatures as described above. However, in order to bring out these characteristics, the balance by weight should be made of mug. In these component compositions, B1 is within a range in which desirable characteristics can be obtained for the above-mentioned uses.

また、  Snについては先に記した変形に対する強さ
から6重量%よりも多いことが望まれ、接触抵抗、材料
の加工性などからは上限として10重量%に留められる
Furthermore, Sn is desirably more than 6% by weight in view of the strength against deformation described above, and is limited to an upper limit of 10% by weight in view of contact resistance, material processability, and the like.

なお1本発明にかかる材料においては、さらに添加酸化
物として、Ni 、 Co 、  ミツシュメタル。
In addition, in the material according to the present invention, additional oxides include Ni, Co, and Mitsushi metal.

Zn の酸化物を添加することが接点特性の向上につな
がる。特に、Ni 、 Co 、  ミツシュメタルは
添加によりアーク放電の消弧作用、あるいは材料硬度の
上昇により消耗量を少なくすることが認められる。また
、Zn酸化物を添加した場合には機械加工能の改善効果
が認められる。これら酸化物の好ましい添加範囲は、金
属成分として0.1〜2重量%である。
Adding Zn oxide leads to improved contact characteristics. In particular, it has been recognized that the addition of Ni, Co, and Mitsushi metal reduces the amount of wear due to the extinguishing effect of arc discharge or the increase in material hardness. Furthermore, when Zn oxide is added, the effect of improving machinability is observed. The preferred addition range of these oxides is 0.1 to 2% by weight as a metal component.

以上説明した本発明をより具体的にするために次に実施
例を示す。
EXAMPLES In order to make the invention described above more specific, examples will be shown next.

(実施例) 本発明の組成に従ッテ、ムg 、 Bi 、 Sn 、
 Ni。
(Example) According to the composition of the present invention, Te, Mug, Bi, Sn,
Ni.

Go  、 Zn 、  ミソシュメタル(ランタン、
セリウム、ネオジウム、プラセオジウムなどの希土類金
属を93重量%以上含む)を合量20og秤量する。こ
れを溶解し、加圧窒素ガスにて噴霧し、200 Orp
mにて回転しているφ400〜のステンレス円板に噴射
し、急冷された径0.5〜1N。
Go, Zn, Misosh Metal (Lantern,
(containing 93% by weight or more of rare earth metals such as cerium, neodymium, praseodymium, etc.) was weighed in a total of 20 og. This was dissolved, sprayed with pressurized nitrogen gas, and heated at 200 Orp.
It was injected onto a stainless steel disk with a diameter of 400~ and rotating at speeds of 0.5~1N and rapidly cooled.

厚さ0.1S以下の隣片状粉体に転化する。これによっ
て、偏析しやすいB1を粉体内に均質に固溶させること
、およびsn量が増大すると次工程における内部酸化の
進行が遅くなるために内部酸化を速く行うこと、さらに
最終素材としての機械加工能の向上が計られる。前記粉
体は、次に760℃の空気中にて20時間加熱され、ム
g以外の添加金属を選択的に酸化し、ムgをマトリクス
とした酸化物を含む粉体とされる。この粉体は、φ2゜
%径の円筒型に装填され、8トン/−の圧力で成型され
、さらに900℃で2時間焼結される。次いで、この焼
結体は66o℃の温間押出しにより2〜径の線材に加工
される。その後、冷間加工と焼鈍を繰返しながら径1.
4〜の線材まで加工され、さらに径2.7X 、曲率半
径8′Xの球面頭部を有する接点鋲に加工され、接点開
閉試験の試料に供される。
Converts into flaky powder with a thickness of 0.1S or less. This allows B1, which tends to segregate, to be homogeneously dissolved in the powder, and as the amount of sn increases, the progress of internal oxidation in the next process is slowed down, so internal oxidation can be performed quickly, and machining as a final material is possible. improvement in performance is expected. The powder is then heated in air at 760° C. for 20 hours to selectively oxidize added metals other than mug, resulting in a powder containing an oxide having a matrix of mug. This powder was loaded into a cylindrical mold with a diameter of 2%, molded under a pressure of 8 tons/-, and further sintered at 900°C for 2 hours. Next, this sintered body is processed into a wire rod having a diameter of 2 to 2 by warm extrusion at 66°C. After that, cold working and annealing were repeated until the diameter was 1.
The wire rods were processed into wire rods with diameters of 2.7X and 8'X, and further processed into contact studs having a spherical head with a diameter of 2.7X and a radius of curvature of 8'X, and used as samples for contact opening/closing tests.

接点特性は、第2図の回路を用いた試験により評価され
た。すなわち、スイッチS1としてASTM型試験機を
用いて、接触力3o9 、開離力4og、開閉速度10
cm/秒なる開閉条件とし、試験負荷として商用電源周
波数60Hz、電圧125V、ダイオード保護抵抗器r
 = 2,4Ω、負荷R−26Ω、容量C=760μF
とした。従って、突入電流のピークは80ム、定常5ム
である。
The contact characteristics were evaluated by a test using the circuit shown in FIG. That is, using an ASTM type tester as the switch S1, the contact force was 3o9, the opening force was 4og, and the opening/closing speed was 10
cm/sec, and the test load was a commercial power supply frequency of 60 Hz, a voltage of 125 V, and a diode protection resistor r.
= 2.4Ω, load R-26Ω, capacitance C=760μF
And so. Therefore, the peak of the rush current is 80 μm, and the steady state is 5 μm.

スイッチS2は、容量Cの電荷をスイッチS1をオンす
る直前に放電させるための回路を構成するものである。
The switch S2 constitutes a circuit for discharging the charge of the capacitor C immediately before turning on the switch S1.

接点特性の評価は、上記条件にて3 X 10’  口
開閉した時の溶着回数、すなわち接点を開離するために
40.!9を越える力を要した回数および、3×10 
回開閉後の接点の消耗量により行った。
The evaluation of the contact characteristics was based on the number of times welded when opening and closing 3 x 10' under the above conditions, that is, the number of times welded in order to open and close the contacts. ! Number of times a force exceeding 9 was required and 3×10
This was determined by the amount of contact wear after opening and closing.

試験数量は各6対であり、次表に各特性の最小値と最大
値を示した。比較試料として、ムg −1d○(CdO
: 13.5  重量%)合金の特性も併せて示す。
The test quantity was 6 pairs each, and the minimum and maximum values of each characteristic are shown in the following table. As a comparative sample, Mug-1d○ (CdO
: 13.5% by weight) The properties of the alloy are also shown.

(以下余白ン 以上の説明および表の結果から明らかなように。(Margin below) As is clear from the above explanation and the results in the table.

本発明にかかる電気接点材料は、従来のムg−CdOの
接点に比較して、溶着、消耗のいずれの特性においfも
優れた値を示しており、産業上の価値の大なるものであ
る。
The electrical contact material according to the present invention exhibits superior f values in both welding and wear characteristics compared to conventional mug-CdO contacts, and is of great industrial value. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の電気接点材料の開閉試験後の状態を示
す断面図、第2図は本発明にかかる電気接点材料の試験
用回路の配線図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 5′♂
FIG. 1 is a sectional view showing the state of a conventional electrical contact material after an opening/closing test, and FIG. 2 is a wiring diagram of a test circuit for the electrical contact material according to the present invention. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 5'♂

Claims (2)

【特許請求の範囲】[Claims] (1)  ムgマドIJクスに分散している主たる酸化
物がBi、−8nノ酸化物(Bi25n207)及びS
nの酸化物(SnO2)であり、その金属合金成分が金
属換算値で、少なくともBiを2〜2.9重量%、 S
nを6.1〜10重量%含み、残部がAgであることを
特徴とする電気接点材料。
(1) The main oxides dispersed in Mug Mado IJ gas are Bi, -8n oxide (Bi25n207) and S
n oxide (SnO2), whose metal alloy components are at least 2 to 2.9% by weight of Bi, S
An electrical contact material comprising 6.1 to 10% by weight of n, with the remainder being Ag.
(2)  ムgマトリクスに分散している王たる酸化物
がBi −Sn  の酸化物(Bi25n207)及び
Snの酸化物(Sn02)  であり、その金属合金成
分が金属換算値で、少なくともB1を2〜2.9重量%
、 Snを6.1〜10重量%およびN1゜CO、ミツ
シュメタル、 Zn  O中の1種を合わせて0.1〜
2重量%含み、残部がムgであることを特徴とする電気
接点材料。
(2) The main oxides dispersed in the mug matrix are Bi-Sn oxide (Bi25n207) and Sn oxide (Sn02), and the metal alloy components thereof are at least B12 in metal equivalent value. ~2.9% by weight
, 6.1 to 10% by weight of Sn and a total of 0.1 to 10% of one of N1°CO, Mitsushmetal, and ZnO.
An electrical contact material characterized in that it contains 2% by weight and the remainder is mug.
JP57065923A 1982-04-19 1982-04-19 Electric contact material Granted JPS58181837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57065923A JPS58181837A (en) 1982-04-19 1982-04-19 Electric contact material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57065923A JPS58181837A (en) 1982-04-19 1982-04-19 Electric contact material

Publications (2)

Publication Number Publication Date
JPS58181837A true JPS58181837A (en) 1983-10-24
JPH0254409B2 JPH0254409B2 (en) 1990-11-21

Family

ID=13300972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57065923A Granted JPS58181837A (en) 1982-04-19 1982-04-19 Electric contact material

Country Status (1)

Country Link
JP (1) JPS58181837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100402195C (en) * 2006-04-07 2008-07-16 桂林金格电工电子材料科技有限公司 Silver composite tin oxide contact material and its preparation technology

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496711U (en) * 1991-01-24 1992-08-21

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5384163A (en) * 1976-12-29 1978-07-25 Matsushita Electric Ind Co Ltd Method of producing electric contactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5384163A (en) * 1976-12-29 1978-07-25 Matsushita Electric Ind Co Ltd Method of producing electric contactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100402195C (en) * 2006-04-07 2008-07-16 桂林金格电工电子材料科技有限公司 Silver composite tin oxide contact material and its preparation technology

Also Published As

Publication number Publication date
JPH0254409B2 (en) 1990-11-21

Similar Documents

Publication Publication Date Title
JPS58181837A (en) Electric contact material
US5728194A (en) Silver-iron material for electrical switching contacts (III)
GB2093066A (en) Electrical contact material
JPS6120616B2 (en)
JPH0124217B2 (en)
KR100462685B1 (en) Thermal Fuse
JPS6027746B2 (en) electrical contact materials
JPS58100650A (en) Electrical contact material
JPH025807B2 (en)
JPS60258436A (en) Electrical contact material
JPS6047341B2 (en) electrical contact materials
JPS58100648A (en) Electrical contact material
EP0440340A2 (en) Electrical contact materials and method of manufacturing the same
US4908158A (en) Electrical contact material and method of preparing same
JPS6018738B2 (en) electrical contact materials
JPS6027747B2 (en) electrical contact materials
JPS5931808B2 (en) electrical contact materials
JPS58100649A (en) Electrical contact material
JPH029096B2 (en)
JPS6350413B2 (en)
JPS633011B2 (en)
JPH0135904B2 (en)
JPH03236443A (en) Sintered contact material for breaking current
JPS58193333A (en) Electric contact material
JPS6330374B2 (en)