JPS6018724B2 - How to dissolve reduced iron - Google Patents

How to dissolve reduced iron

Info

Publication number
JPS6018724B2
JPS6018724B2 JP51144126A JP14412676A JPS6018724B2 JP S6018724 B2 JPS6018724 B2 JP S6018724B2 JP 51144126 A JP51144126 A JP 51144126A JP 14412676 A JP14412676 A JP 14412676A JP S6018724 B2 JPS6018724 B2 JP S6018724B2
Authority
JP
Japan
Prior art keywords
reduced iron
iron
slag
melting
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51144126A
Other languages
Japanese (ja)
Other versions
JPS5368614A (en
Inventor
忍 佐々木
宗谷 高木
淳一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP51144126A priority Critical patent/JPS6018724B2/en
Publication of JPS5368614A publication Critical patent/JPS5368614A/en
Publication of JPS6018724B2 publication Critical patent/JPS6018724B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Furnace Details (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は還元鉄を鋳鉄原材料の一部として低周波誘導炉
にて溶解するに際して、加炭材等の成分調整用添加材や
還元鉄自体の溶解歩留りを向上させかつ発生するスラグ
中の酸化鉄の還元反応を促進させる効率的な溶解方法に
関するものである。
[Detailed Description of the Invention] The present invention improves the melting yield of additives for component adjustment such as recarburizers and the reduced iron itself when melting reduced iron as part of cast iron raw materials in a low frequency induction furnace. The present invention relates to an efficient dissolution method that promotes the reduction reaction of iron oxide in generated slag.

鉄鉱石を軟化や熔融の生じない比較的低温で還元すれば
酸化鉄が占めていた空間から酸素が失われて直接還元鉄
(以下、還元鉄と云う)が得られる。還元鉄には鉱石中
の脈石はそのまま残存するが金属鉄の部分には脈石や還
元剤に由来する不純物は少なく、その品位は製法等によ
り異なるが、全鉄80〜97%、金属鉄70〜斑%、還
元率(金属鉄/全鉄)83〜96%程度のものであり、
製鍵や鋳鉄用原材料としての可能性の大きなものである
。この還元鉄には前述の如く脈石等が含まれているため
に他の材料とともに鋳鉄用原材料として溶解する場合に
はスラグの発生量が多く、又還元鉄はボーラスであり密
度は3〜4夕/ccと一般の鉄の半分であるため溶解方
法によっては原材料がスラグ中にまき込まれ、溶解する
に非常に長時間を要するか、または溶解歩蟹りが低下す
るものである。そのため還元鉄を使用した溶解はこれら
の問題に比較的対処し易い、アーク炉、キューポラ炉に
て行なわれていた。しかしまた近時、鋳造用溶解炉とし
て低周波誘導炉が広く普及しているが、この誘導炉の長
所の一つは炉径が大きいことであり、このため鉄板くず
(スチールスクラップ)をプレス機で大きな直方体に成
形したべーラ−を大量に菱入が可能である。そしてこの
スチールスクラップを原材料として使用する場合は、加
炭材をはじめフェロシリコンやフェロマンガンなどの成
分調整用の添加材が必要となるが、これらの添加材の溶
解歩留りも前述のスラグによって大きく影響されるもの
であり、還元鉄を鋳鉄用原材料の一部として使用する場
合に効率的溶解法の確立が望まれているものである。本
発明は以上の事情にかんがみて、次の方法により所期の
目的を達成するものである。
If iron ore is reduced at a relatively low temperature without softening or melting, oxygen is lost from the space occupied by iron oxide, and directly reduced iron (hereinafter referred to as reduced iron) is obtained. The gangue in the ore remains in reduced iron, but there are few impurities derived from gangue and reducing agents in the metallic iron part, and the grade varies depending on the manufacturing method, but it is 80-97% total iron, metallic iron. It is about 70% to spotty%, and the reduction rate (metallic iron/total iron) is about 83% to 96%,
It has great potential as a raw material for key making and cast iron. As mentioned above, this reduced iron contains gangue, etc., so when it is melted together with other materials as a raw material for cast iron, a large amount of slag is generated.Also, reduced iron is a bolus and has a density of 3 to 4. Since the amount per cc is half that of ordinary iron, depending on the melting method, the raw materials are mixed into the slag and it takes a very long time to melt or the melting rate is reduced. Therefore, melting using reduced iron has been carried out in arc furnaces and cupola furnaces, which are relatively easy to deal with these problems. However, in recent years, low-frequency induction furnaces have become widely used as melting furnaces for casting, but one of the advantages of this induction furnace is its large furnace diameter, and for this reason, steel scrap can be used in presses. It is possible to make large quantities of balers formed into large rectangular parallelepipeds. When using this steel scrap as a raw material, additives such as recarburizer, ferrosilicon, and ferromanganese are required to adjust the composition, but the melting yield of these additives is also greatly affected by the slag mentioned above. Therefore, it is desired to establish an efficient melting method when reduced iron is used as part of the raw material for cast iron. In view of the above circumstances, the present invention achieves the intended purpose by the following method.

即ち、所定量の元湯が貯えられた低周波誘導炉にまずス
チールスクラップと加炭村やフェロシリコンなどの成分
調整用の添加材を菱入し、還元鉄に起因するスラグが発
生しない間に前記袋入物を元湯に溶け込ます。このこと
により溶け落ちた落陽のCやSi成分を高濃度に保持す
ることができるため、次に還元鉄溶解時に発生するスラ
グ中の酸化鉄を前記CやSiなどの元素により金属鉄に
還元することが効率的に行うことが可能となり、その結
果として発生スラグ量を少なくする効果もあわせて期待
することができるものである。次に戻し材よりも前に還
元鉄のみを装入する。この低周波誘導炉中の溶湯量が比
較的少ない時点で還元鉄を菱入することにより誘導電流
による溶湯の濃伴が効率よく行われ、還元鉄自体がスラ
グにまき込まれることなく迅速にかつ歩留り良く溶解で
きるものであり、またこの蝿梓により前記の酸化鉄の還
元も効率よく進行するものである。そして最後に扇し材
を装入すれば全体として溶解歩蟹りが向上し、スラグ中
の酸化鉄の還元も効率よく進むものである。次に実施例
により本発明を説明する。実施例 1 溶解量1.5上の低周波護導炉を使用し、原材料を次の
配合と順序で行った。
That is, first, steel scrap and additives for composition adjustment such as carburization and ferrosilicon are added to a low-frequency induction furnace in which a predetermined amount of raw hot water is stored, and the process is carried out while the slag caused by reduced iron is not generated. Dissolve the contents in the bag into the hot water. As a result, the C and Si components of the fallen sun that have melted down can be retained at a high concentration, so the iron oxide in the slag generated during the melting of reduced iron is then reduced to metallic iron with elements such as C and Si. As a result, the amount of slag generated can be expected to be reduced. Next, only reduced iron is charged before the return material. By injecting the reduced iron at a point when the amount of molten metal in the low-frequency induction furnace is relatively small, the molten metal is efficiently concentrated by the induced current, and the reduced iron itself is not mixed into the slag and can be quickly and It can be dissolved with a high yield, and the reduction of the iron oxide described above also proceeds efficiently with this fly oxide. Finally, if fan material is added, the overall dissolution rate will be improved and the reduction of iron oxide in the slag will proceed efficiently. Next, the present invention will be explained with reference to Examples. Example 1 Using a low frequency guided furnace with a melting capacity of 1.5, raw materials were mixed in the following formulation and order.

‘1’FC20のキュポラ元湯500k9【21 スチ
ールスクラップ250k9、加炭材19k9、フェロシ
リコン14kg、フェロマンガン4.1k9を菱入、炉
体電力350〜40皿Wで20分間で溶け込み、そこで
スラグオフする。
'1' FC20 cupola source water 500k9 [21 Steel scrap 250k9, recarburizer 19k9, ferrosilicon 14kg, ferromanganese 4.1k9 are poured into the furnace, melted in 20 minutes at a furnace power of 350 to 40 W, and slag off there. .

細 還元鉄250k9菱入、炉体電力消費量130〜1
4風MAで30分間で溶け込み。
Fine reduced iron 250k9 Hishiiri, furnace power consumption 130~1
Melts in in 30 minutes with 4 wind MA.

蝿拝効果が十分であり還元鉄がスラグにまき込まれるこ
となく迅速に溶解するのが観察された。‘41戻し材5
00k9袋入。
It was observed that the slag effect was sufficient and the reduced iron was rapidly dissolved without being mixed into the slag. '41 return material 5
00k9 bags included.

炉体電力消費量300〜32雌WAで40分間通電溶解
しスラグオフして出湯。以上の条件での操業の結果は第
1表の通りである。参考例 1 実施例1と同一材料を同一配合量で添加順序のみ変更し
た。
Electricity is melted for 40 minutes at a furnace body power consumption of 300 to 32 female WA, slag off, and hot water is tapped. The results of operation under the above conditions are shown in Table 1. Reference Example 1 The same materials as in Example 1 were used in the same amounts, but only the order of addition was changed.

添加順序‘1)キュポラ元湯、■還元鉄、【3’スチー
ルスクラップ十フエロマンガン+フエoシリコン+加炭
材、‘4’戻し村操業結果を第1表に示す。
Addition order '1) Cupola source water, ■ Reduced iron, [3' Steel scrap 10-ferromanganese + Feo silicon + recarburizing material, '4' Returning village operation results are shown in Table 1.

参考例 2 参考例1の添加順序を更に次の如くにして溶解した。Reference example 2 The addition order of Reference Example 1 was further changed as follows.

添加順序 ‘11キュポラ元湯、■スチールスクラップ
、‘3}還元鉄、■フェロマンガン+フェロシリコン+
加炭材、‘5}房し材操業結果を第1表に示す。
Addition order '11 Cupola source water, ■ Steel scrap, '3} Reduced iron, ■ Ferromanganese + Ferrosilicon +
Table 1 shows the operation results for recarburized material and '5} bunched material.

第 1 表 以上実施例1、参考例1,2の結果より分るごとく特許
請求の範囲の欄に記載と同じ添加順序である実施例1が
参考例1,2に比べてスラグ中のFeQ還元率が高く、
その結果スラグ発生量も少なく、かつ各材料の溶解歩蟹
りも高く効率の良い溶解法であることが理解できる。
Table 1 As can be seen from the results of Example 1 and Reference Examples 1 and 2 above, Example 1, which had the same addition order as stated in the claims column, had a higher FeQ reduction in the slag than Reference Examples 1 and 2. The rate is high;
As a result, it can be seen that the amount of slag generated is small, and the dissolution rate of each material is high, making it an efficient melting method.

Claims (1)

【特許請求の範囲】[Claims] 1 鋳鉄原材料とした還元鉄、スチールスクラツプ、房
し材および加炭材等の成分調整用添加材を誘導炉にて溶
解するに際して、所要量の元湯を貯えた誘導炉にまずス
チールスクラツプと加炭材等の成分調整用添加材を装入
し、前記装入物が溶け落ちた後に還元鉄を装入し、最後
に房し材を装入することを特徴とする還元鉄の溶解方法
1. When melting additives for composition adjustment such as reduced iron, steel scrap, tufting material, and carburizing material as raw materials for cast iron in an induction furnace, steel scrap is first placed in an induction furnace containing the required amount of raw hot water. Reduced iron characterized in that additives for adjusting the composition such as powder and carburizer are charged, reduced iron is charged after the charges have melted down, and finally tassel material is charged. How to dissolve.
JP51144126A 1976-11-30 1976-11-30 How to dissolve reduced iron Expired JPS6018724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51144126A JPS6018724B2 (en) 1976-11-30 1976-11-30 How to dissolve reduced iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51144126A JPS6018724B2 (en) 1976-11-30 1976-11-30 How to dissolve reduced iron

Publications (2)

Publication Number Publication Date
JPS5368614A JPS5368614A (en) 1978-06-19
JPS6018724B2 true JPS6018724B2 (en) 1985-05-11

Family

ID=15354793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51144126A Expired JPS6018724B2 (en) 1976-11-30 1976-11-30 How to dissolve reduced iron

Country Status (1)

Country Link
JP (1) JPS6018724B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103614616B (en) * 2013-11-12 2015-04-22 唐山曹妃甸区通鑫再生资源回收利用有限公司 Steel-making cooling cold material-remelted steel and preparation method thereof

Also Published As

Publication number Publication date
JPS5368614A (en) 1978-06-19

Similar Documents

Publication Publication Date Title
US3446614A (en) Production of iron alloys
US2557458A (en) Method of fusing alloy additions to a steel bath
JPS6018724B2 (en) How to dissolve reduced iron
SE9802976L (en) Addition of doping agents in the manufacture of steel in arc furnaces, doping agents and their use
JP2003049216A (en) Method for producing molten steel
US3329497A (en) Process for the manufacture of ferromanganese-silicon
US4212665A (en) Decarburization of metallic alloys
US3445223A (en) Alloy for addition of columbium to steel
RU2185457C2 (en) Method of processing oxide-bearing nickel ore
US1925886A (en) Manufacture of iron and steel alloys
SU572504A1 (en) Method for maunfacturing iron and its alloys from iron ore
JP3726258B2 (en) Fe-Ce-Al alloy for steel making and method for adding Ce to molten steel
JP2000038612A (en) Production of molten steel
JPS6021205B2 (en) How to dissolve reduced iron
US2745731A (en) Method for making low carbon 18-8 type heats
JPS645082B2 (en)
SU403764A1 (en) Method of deoxidizing carbon steel
US2971834A (en) Process in selective reduction of chrome ore
US1545690A (en) Method of deoxidizing open-hearth-steel baths
SU532634A1 (en) Steel Production Method
SU1560601A1 (en) Alloy for alloying high-speed and structural steels
US3177064A (en) Cupola melting process for producing gray cast iron
SU457737A1 (en) The method of steelmaking
SU559962A1 (en) The method of obtaining steel and alloys
SU836125A1 (en) Method of smelting vanadium-containing steel